Дмрв показания рендж ровер
Ладно, уговорил, хотя это ламерский подход, но дело твоё.
>Какой из проводков отвечает за расход?<
Я ж выше все написал, промежуточных разъемов нет. Оставшийся четвёртый - сигнал температуры, забей на него если показывает.
>YP - похоже, что желто-фиолетовый.<
И синий тоже. Учу читать, ведроводов недорого :))))
>А PS за температуру отвечает.<
или второй дмрв то же гамно, так как немного б/у
Это вряд-ли, да и первый исправен.
Бери мультиметр, отключай разъемы от дмрв и мозга (верхний), потом смотри анфас, увидишь маркировку. Тебе нужны: В1 - синий, В2 - желто-фиолетовый.
Если уж совсем в лом прозванивать, попробуй поискать обрыв в районе разъема мозга + - 20см.(раздербань жгут, подергай провода). Еще раз: желто-фиолетовый и синий, остальные можешь не смотреть.
Больше похоже на нерабочий ДМРВ. Два датчика MAF (массовый расход воздуха) расположены на впускном воздуховоде сразу после воздушного фильтра. Датчик размещен в пластмассовом корпусе, который устанавливается между впускным коллектором и трубопроводом воздухозабора.
Датчик массового расхода воздуха MAF (массовый расход воздуха) работает по принципу плёночного термоанемометра. В печатной схеме расположены два плёночных чувствительных элемента. Температура одного элемента поддерживается на уровне температуры воздуха на впуске, например, 25° C. Второй элемент нагревается на 200° C выше температуры воздуха на впуске, то есть до 225° C. Воздух, поступающий в двигатель, проходит через датчик MAF (массовый расход воздуха) и охлаждает плёнку. ECM (блок управления двигателем) измеряет силу тока, необходимого для поддержания заданной разности температур в 200°C и использует эти сведения для формирования нелинейного основанного на частоте сигнала высокой точности, соответствующего массовому расходу воздуха.
На выходе датчика MAF (массовый расход воздуха) формируется цифровой сигнал, пропорциональный массовому расходу воздуха. Блок ECM (блок управления двигателем) использует эти сведения, наряду с сигналами от прочих датчиков и сведениями от записанных в памяти "карт" подачи топлива, для точного вычисления количества топлива, подаваемого в цилиндры. Этот сигнал используется также в качестве сигнала обратной связи системы рециркуляции ОГ EGR (рециркуляции отработавших газов) .
На датчик MAF (массовый расход воздуха) подается напряжение питания 12 В от BJB (электрораспределительная коробка аккумулятора) , при этом соединение с массой осуществляется через блок ECM (блок управления двигателем) . Оставшиеся два контакта с блоком ECM (блок управления двигателем) обеспечивают выход сигнала датчиков массового расхода воздуха MAF (массовый расход воздуха) и температуры воздуха на впуске IAT (температура воздуха на впуске) .
Блок ECM (блок управления двигателем) проверяет массовый расход воздуха, вычисляя его как функцию частоты вращения коленчатого вала. В том случае, если вычисленное значение расхода воздуха не является правдоподобным, блок ECM (блок управления двигателем) переходит на резервные значения из записанной "карты" зависимости среднего расхода воздуха от частоты вращения коленчатого вала. Значение массового расхода затем корректируется с учётом давления наддува, атмосферного давления и температуры воздуха.
Если происходит отказ датчика расхода MAF (массовый расход воздуха) , то блок управления двигателем ECM (блок управления двигателем) переходит на резервное управление, основанное на частоте вращения коленчатого вала. В случае сбоя сигнала датчика MAF (массовый расход воздуха) может наблюдаться любой из следующих признаков неисправности:
Обрати внимание, что с него идет цифровой сигнал.
Проверить там реально получится, кмк, только 12в на нем и землю, которая через мозги идет.
К чему приводит неисправность ДМРВ?
Работа двигателя с неработающим/неисправным расходомером вызывает детонацию топливной смеси в камере сгорания. Это влияет на работу КШМ (кривошипно-шатунный механизм) и разрушает поверхность поршня, что может стать причиной «клина» двигателя.
Какие показания должен выдавать исправный ДМРВ?
Напряжение аналого-цифрового преобразователя (АЦП) расходомера при нерабочем двигателе должно составлять 0,996 V. Показатели 1,016 и 1,025 V приемлемы, но если они достигают более 1,035 вольт, значит, чувствительный элемент ДМРВ засорен.
Чтобы точно определить степень отклонения значений рабочего расходомера от нормальных показателей, необходимо оценить работу двигателя на разных оборотах.
Например, для инжекторного 1,5-литрового двигателя ВАЗ 2111, если он исправен, на холостом ходу (860–920 об/мин) верные показания составляют 9,5–10 кг/час, а на 2 тыс. об/мин — 19–21 кг/час. Если расходомер на 2 тыс. об/мин показывает около 17–18 кг, то автомобиль будет ехать стабильно. Если же значения составляют от 22 до 24 кг/час, то транспортное средство будет двигаться устойчиво, но потребление горючего на 100 км составит приблизительно 10–11 л. Кроме того, автомобиль станет плохо заводиться на морозе из-за перелива топлива при прогреве двигателя.
Признаки неисправности
ДМРВ находится в воздуховоде около воздушного фильтра. Он предназначен для определения количества поступающего воздуха. В зависимости от его показаний БУ будет показывать, сколько нужно топлива для образования качественной топливной смеси. Нормальным считается соотношение 1:14. Поэтому от правильности показаний расходомера зависит качество топливно-воздушной смеси.
Качественная работа ДМРВ зависит во многом от чистоты воздушного фильтра. Поэтому, если появились симптомы неисправности ДМРВ, прежде чем делать ремонт, следует проверить в первую очередь воздушный фильтр. Расходомер обычно не подлежит ремонту. Если он неисправен, то его меняют на новый прибор. Но его стоимость достаточно высока, поэтому следует сначала убедиться, что причины неполадок именно в датчике, не в других неисправностях машины.
Сигналом для диагностики являются следующие признаки неисправности ДМРВ:
Существуют и другие симптомы «умирающего» датчика. Например, он может иметь трещины в гофрированном шланге, который соединяет дроссельную заслонку с датчиком. Если двигатель глохнет, возможны проблемы с электропитанием или повреждена проводка. Это сигнал для проверки электропроводки. При обнаружении неисправностей нужно выполнить ремонт электрики машины.
Кроме вышеперечисленных возможных признаков выхода из строя ДМРВ, следует провести диагностику уровня сигнала датчика.
Низкий уровень сигнала может означать следующее:
-
ДМРВ не подключен;
Не стоит делать выводы о неисправности датчика массового расхода воздуха, полагаясь только на перечисленные выше признаки. Следует провести полную диагностику двигателя и машины, так как признаки поломки расходомера, могут появиться при неисправности других устройств (например, из-за забитого воздушного фильтра). Тогда нужен ремонт этих устройств, чтобы восстановить работоспособность авто.
Код ошибки ДМРВ
О наличии неисправности в работе ДМРВ могут сообщать такие ошибки:
- Р0100 — повреждение электрической цепи подключения датчика. Для устранения поломки нужно проверить проводку на целостность, поскольку возможно случайное отсоединение разъёма либо повреждение электроконтактов.
- Р0102 — на блок управления автомобиля начал поступать низкий сигнал, который зафиксирован на входе электролинии ДМРВ. Чтобы устранить причину поломки, необходимо проверить электропроводку и изоляционный слой кабеля, возможно окисление контактов разъёма проводки (т. н. фишки).
- Р0103 — критически высокий сигнал, зафиксированный на входе электролинии ДМРВ. Если причина неисправности заключается не в проводке, то потребуется визуальный осмотр и очистка расходомера или придётся его заменять на новый
Проверка и ремонт в домашних условиях
Существует восемь способов самостоятельной проверки амплитудных и частотных ДМРВ.
Способ состоит в отключении датчика от топливной системы машины и проверки работоспособности системы без него. Для этого нужно отключить прибор от разъема и завести мотор. Без ДМРВ контроллер получает сигнал переходить в аварийный режим работы. Он готовит воздушно-топливную смесь лишь исходя из положения дроссельной заслонки. Если машина движется «резвее», не глохнет, значит, прибор неисправен и требуется его ремонт или замена.
Если штатную прошивку изменили, то неизвестно, какая реакция контроллера в ней прошита на случай аварийной ситуации. В этом случае под упор дроссельной заслонки нужно попытаться засунуть пластину толщиной 1мм. Обороты должны увеличиться. Теперь нужно выдернуть фишку с расходомера воздуха. Если силовой агрегат будет продолжать работать, то причина неисправности — прошивка.
Установить заведомо исправную деталь и завести двигатель. Если после замены он стал работать лучше, мотор не глохнет, то требуется замена или ремонт устройства.
Для этого нужно крестовой отверткой открутить хомут, удерживающей гофру воздухосборника. Затем нужно отсоединить гофру и осмотреть внутренние поверхности гофры воздухосборника и датчика.
На них не должно быть следов масла и конденсата, поверхности должны быть в сухом и чистом состоянии. Если не следить за воздушным фильтром и редко его менять, то грязь может попасть на чувствительный элемент датчика и стать причиной его поломки. Это чаще всего встречающаяся неисправность. Следы масла могут появиться в расходомере при повышенном уровне масла в картере, а также если забит маслоотбойник вентиляционной системы картера. При необходимости нужно почистить поверхности с помощью специальных чистящих средств.
Для этого нужно включить тестер в режим, при котором проверяется постоянное напряжение. Предельное значение для измерений следует выставить 2В.
- Провод желтого цвета расположен ближе к лобовому стеклу. Он служит входом для сигнала с расходомера.
- Бело-серый провод – выход напряжения датчиков.
- Черно-розовый провод ведет к главному реле.
- Провод зеленого цвета служит для заземления датчиков, то есть идет на массу.
Провода могут иметь разные цвета, но их расположение неизменно. Для проверки нужно включить зажигание, но не заводить машину. Щуп красного цвета от мультиметра нужно подключить к желтому проводу, а черный нужно присоединить на массу, то есть к зеленому проводу. Измеряем напряжение между этими двумя выходами. Щупы мультиметра дают возможность присоединиться, не нарушая изоляции проводов.
На новом устройстве напряжение на выходе находится в пределах от 0,996 до 1,01 В.
Во время эксплуатации это напряжение постепенно увеличивается и по его значению можно судить об износе расходомера:
- при хорошем состоянии датчика – напряжение от 1,01 до 1.02 В;
- при удовлетворительном состоянии — от 1,02 до 1,03 В;
- ресурс датчика заканчивается, если напряжение находится в пределах от 1,03 до 1,04 В;
- о предсмертном состоянии говорит значение в пределах от 1.04 до 1,05, если противопоказаний нет, то можно продолжать пользоваться датчиком;
- если напряжение превышает 1,05 В, ДМРВ требует замены.
Диагностика ДМРВ «Цешкой» не представляет ничего сложного и может быть выполнена своими руками.
Если на снятом датчике есть загрязнения, его можно почистить самому. Для его промывки можно воспользоваться WD-40. Чтобы почистить ДМРВ, нужно сначала снять с него патрубок, а потом демонтировать сам прибор. Внутри прибора находится сеточка и несколько проволок – датчиков.
Промывка датчика поможет избежать дорогостоящего ремонта.
- Установить на телефон (смартфон), планшет или переносной компьютер программу для диагностики (например, Torque Pro, Opendiag, BMWhat, OBD Авто Доктор).
- Подключить с помощью специального кабеля, Bluetooth-канала мобильного устройства либо ноутбук к диагностическому разъёму, расположенному на электронном блоке управления автомобиля.
- Запустить на телефоне (смартфоне) или компьютере утилиту для диагностики.
- Дождаться окончания сканирования программой всех узлов транспортного средства. В результате утилита проверит исправность каждого агрегата автомобиля.
- Расшифровать коды ошибок, которые покажет программа после завершения диагностики.
Для выполнения этого метода используются тестеры:
- K-Line 409/1;
- Сканматик;
- ELM (ЕЛМ) 327;
- OP-COM.
Чтобы выявить неисправность ДМРВ, не снимая его с машины, нужно:
- Установить на портативный компьютер (ноутбук) программу под названием «ВАСЯ диагност» и запустить её.
- Подключить адаптер к диагностическому порту автомобиля.
- Выбрать из закладок «Блока управления» пункт «Электроника 1» или «01 – Электроника двигателя» для подключения к БУ автомобиля.
- Зайти в «Настраиваемые группы».
- Выбрать 211, 212 (значение по паспорту) и 213 (актуальное значение).
- Сравнить актуальные показатели с паспортными данными. Если отклонения высокие, значит, необходимо заменить ДМРВ.
Данный способ используется для проверки расходомеров частотного типа.
Для проверки ДМРВ мотортестером (осциллографом), необходимо подключить его к датчику (зависит от марки автомобиля) и запустить двигатель.
Параметры проверки ДМРВ:
- время переходного процесса при включенном зажигании;
- показания расхода воздуха на холостом ходу и резком повышении оборотов двигателя;
- напряжение в сети датчика.
Выходные данные индивидуальны для разных типов двигателей. Перед диагностикой следует уточнить актуальные показания у официального представителя.
Замена ДМРВ
Для замены датчика своими руками, нужно приготовить фигурную отвертку и ключ на «10».
Процедура замены состоит из следующих шагов:
- Сначала нужно выключить зажигание, открыть капот.
- Затем нужно отсоединить минусовую клемму на аккумуляторе.
- На следующем этапе нужно ослабить хомут, с помощью которого гофра присоединяется к ДМРВ.
- Далее снимаем гофру с патрубка.
- Затем нужно отогнуть гребенку и отсоединить разъем датчика.
Таким образом, если машина глохнет, имеет все признаки поломки ДМРВ, то перед тем, как начинать его ремонт, следует проверить уровень его сигнала, он не должен быть низким, выполнить полную диагностику машины и отремонтировать все неисправные узлы и детали.
Важно регулярно проходить техосмотр авто и выполнять вовремя техническое обслуживание, тогда детали и узлы будут служить дольше.
Видео «Проверка ДМРВ с помощью мультиметра»
В этом видео от канала «Простое Мнение» демонстрируется, как проверить ДМРВ мультиметром.
1 – корпус воздушного фильтра;
2 – привод изменяемого впуска;
3 – левый впускной коллектор;
4 – крышка левой головки блока цилиндров;
5 – левый турбокомпрессор;
6 – труба, идущая от охладителя наддувочного воздуха к впускному коллектору;
7 – привод отключения впускного коллектора;
8 – труба от воздушного фильтра к турбокомпрессору;
9 – труба от турбокомпрессора к охладителю наддувочного воздуха;
10 – охладитель наддувочного воздуха;
11 – труба, идущая от охладителя наддувочного воздуха к впускному коллектору;
12 – датчики массового расхода воздуха (MAF).
Система распределения впускаемого воздуха дизельного двигателя 3.6 TD включает:
- Датчики массового расхода воздуха (MAF)/температура воздуха на впуске (IAT)
- Воздушный фильтр и корпус воздушного фильтра
- Охладитель наддувочного воздуха
- Сдвоенные турбокомпрессоры
- Система отключения впускного порта
Воздух всасывается снаружи автомобиля через канал воздухозабора правого крыла, вдоль внутренней части крыла к впускному отверстию корпуса воздушного фильтра. Воздух проходит через воздушный фильтр и покидает его через два порта, расположенных в его корпусе. Затем очищенный воздух проходит через датчик MAF/IAT (один на ряд цилиндров) и всасывается турбокомпрессорами. Турбокомпрессор гонит воздух к охладителю наддувочного воздуха и дальше, к дроссельным заслонкам с электроприводами, от которых воздух поступает к соответствующим впускным коллекторам, а затем к головкам цилиндров. Впускной коллектор имеет регулируемый впускной клапан, позволяющий коллекторам обеих сторон соединяться или разъединяться для сохранения баланса воздушного потока.
Головка цилиндров дизельного двигателя 3.6 TD спроектирована таким образом, чтобы оптимизировать уровни завихрения по диапазону частот дизельного двигателя 3.6 TD. Если при впрыске топлива возникает слишком большое завихрение, высокая скорость завихряющихся газов мешает струям распыленного топлива достигать границ камеры сгорания, что приводит к его плохому сгоранию и повышенному выбросу.
В дизельном двигателе 3.6 TD предусмотрена система дезактивации портов, позволяющая корректировать количество завихрений в цилиндре.
В каждом цилиндре есть два впускных порта, один из которых устроен в виде винтового "вихревого" порта, позволяющего создавать оптимальные завихрения и, соответственно, улучшенные условия сгорания топлива, а другой представляет собой "порт заполнения", способный подавать большие объемы воздуха, не нарушая завихрений внутри цилиндра.
Винтовой порт открыт при всех эксплуатационных режимах. При низких нагрузках поток газа так мал, что порт заполнения закрывается, тем самым поднимая скорость газа через винтовой порт и увеличивая степень завихрения до требуемого уровня. В условиях высокого потока газа порт заполнения открывается, способствуя поддержанию оптимальной степени завихрения во всем диапазоне режимов эксплуатации дизельного двигателя 3.6 TD. Это гарантирует, что даже в условиях высокого потока газа степень завихрения будет находиться на оптимальном уровне.
Дезактивация портов управляется дроссельными заслонками, работающими внутри впускного коллектора. Эти заслонки управляются вакуумными соленоидами, находящимися на задней стороне каждой из головок цилиндров. Вакуумные соленоиды управляются вакуумным управляющим соленоидом, который, в свою очередь, управляется сигналами, поступающими от блока управления дизельным двигателем 3.6 TD (ECM). Соленоиды связаны с дроссельными заслонками через маленькие рычаги и эксцентрики.
Элементы блока цилиндров дизельного двигателя 3.6 TD Range Rover и Range Rover Sport
Цилиндры и картер дизельного двигателя 3.6 TD образуют закрытый блок цилиндров, который представляет собой цельную отливку из высокопрочного чугуна.
Датчики детонации дизельного двигателя 3.6 TD Range Rover и Range Rover Sport
Четыре датчика детонации расположены на блоке цилиндров между цилиндрами разных рядов.
Компоненты коленчатого вала и поддона картера дизельного двигателя 3.6 TD Range Rover и Range Rover Sport
Коленчатый вал дизельного двигателя 3.6 TD изготовлен из кованой стали.
Механизм регулировки фаз газораспределения дизельного двигателя 3.6 TD Range Rover и Range Rover Sport
Привод обеспечивается двумя односторонними цепями ГРМ.
Элементы головок блока цилиндров дизельного двигателя 3.6 TD Range Rover и Range Rover Sport
Головки цилиндров каждого ряда выполненные из алюминиевого сплава литьем в кокиль, они не взаимозаменяемы.
Система смазки дизельного двигателя 3.6 TD Range Rover и Range Rover Sport
Система смазки представляет собой масляный картер с подачей масла под давлением.
Выпускной коллектор дизельного двигателя 3.6 TD Range Rover и Range Rover Sport
Чугунные выпускные коллекторы дизельного двигателя 3.6 TD уникальны для каждого ряда цилиндров.
Система подачи топлива и органы управления дизельного двигателя 3.6 TD Range Rover и Range Rover Sport
Двигатель 3.6 TD оборудован системой впрыска топлива с общим топливным коллектором высокого давления.
Топливная система низкого давления дизельного двигателя 3.6 TD Range Rover Sport
Электрический топливный насос дизельного двигателя 3.6 TD устанавливается внутри топливного бака.
Система высокого давления дизельного двигателя 3.6 TD Range Rover и Range Rover Sport
Насос приводится в действие от левого впускного распределительного вала через приводную шестерню и не нуждается в синхронизации с двигателя.
Система привода аксессуаров дизельного двигателя 3.6 TD Range Rover и Range Rover Sport
Шкив коленчатого вала с помощью одного из двух ремней приводит в движение вспомогательные агрегаты.
Система запуска дизельного двигателя 3.6 TD Range Rover и Range Rover Sport
Питание на тяговое реле стартера подаётся по команде блока управления двигателем (ECM).
Система электронных органов управления дизельного двигателя 3.6 TD Range Rover и Range Rover Sport
ECM управляет подачей топлива во все 8 цилиндров через аккумуляторную систему впрыска топлива (Common Rail).
Клапана EGR дизельного двигателя 3.6 TD
Объединенные охладитель и модулятор системы EGR расположены между рядами цилиндров V-образного проема.
Свечи накала (подогрева) дизельного двигателя 3.6 TD на Рендж Ровер СПОРТ и Рендж Ровер
Свечи подогрева установлены в каждом цилиндре со стороны впуска.Свечи подогрева установлены в каждом цилиндре со стороны впуска.
Система вентиляции картерных паров на дизельном двигателе 3,6 ТД Рендж Ровер Спорт и Рендж Ровер
Система вентиляции картера дизельного двигателя 3.6 TD служит для того, что все газы, исходящие из картера были отделены от частиц масла.
Система охлаждения дизельного двигателя 3.6 TD
Основное назначение системы охлаждения дизельного двигателя 3.6 TD – поддерживать оптимальную температуру в системе охлаждения при изменении условий окружающей среды и работы самого дизельного двигателя 3.6 TD.
Турбина дизельного двигателя 3.6 TD на Рендж Ровер Спорт и Рендж Ровер
На дизельном двигателе 3.6 TDV8 устанавливается два турбокомпрессора Borg Warner с изменяемой геометрией, по одному на каждый выпускной коллектор.
За прошедшие три десятилетия моторы с распределённым и непосредственным впрыском топлива окончательно вытеснили все прочие типы конструкций. Казалось бы, срок немалый, но инженеры так и не смогли побороть “детские болезни” важных электронных компонентов, среди которых — датчик массового расхода воздуха (ДРМВ), отвечающий за состав топливовоздушной смеси. Давайте вспомним, как устроен ДМРВ, почему он так важен и как диагностировать его неисправность.
Что такое ДМРВ
В современных моторах применяются два вида системы питания: при распределённом впрыске форсунка подаёт топливо во впускной патрубок, при непосредственном — в камеру сгорания. Для обеих систем важна корректная работа датчика массового расхода воздуха, который когда-то был механическим (флюгерного типа), а сейчас лишен подвижных механических частей и выполнен термоанемометрическим (от «анемо» — ветер).
Заводской ДМРВ немецкого производства для двигателя ВАЗ
Датчик массового расхода воздуха может стоять не только на бензиновом, но и на дизельном моторе, где на него «завязана» работа клапана EGR (система рециркуляции выхлопных газов)
Как говорили шоферы старой школы, ДВС не работает в двух случаях: нечему гореть или нечем поджечь. ДМРВ как раз и сообщает электронному блоку управления о количестве поступающего воздуха, кислород которого и становится “топливом” для рабочей смеси. Получив такой сигнал, ЭБУ может обеспечить максимально полное сгорание. Устройство, расположенное во впускном тракте, состоит из двух резисторов, которые конструктивно могут быть выполнены в различных вариантах. В первом случае резистор подвергают воздействию проходящего воздуха: при изменении интенсивности потока он охлаждается, его внутреннее сопротивление меняется. Во втором случае он не обдувается — по разности показаний с двух резисторов и вычисляют объём воздуха, который нужно подать в цилиндры.
На вторичный рынок датчик поставляется с защитными крышками-заглушками, чтобы исключить его загрязнение при транспортировке
Так выглядит датчик на обычном вазовском двигателе. Демонтировать его из корпуса без спецключа не получится
Снятый датчик в «голом виде». Хорошо виден чувствительный элемент
Исходя из данных по массе и температуре поступившего воздуха, ЭБУ определяет его плотность, а также просчитывает длительность открытия форсунок и количество топлива, которое подаётся в камеру сгорания. В общем, ДМРВ важен и для достижения максимальной мощности мотора, и для более полного сгорания (экологичности), и для экономичной езды. Выход из строя этого датчика, как и большинства остальных, приводит к срабатыванию сигнализатора Check Engine.
Check Engine может загореться по любому поводу. Если нет бортового компьютера с функцией диагностики, придется ехать на СТО, где есть сканер
ДМРВ или ДАД?
Датчик абсолютного давления (ДАД) совместно с датчиком температуры (ДТВ) также контролирует, какое количество воздуха поступает во впускной коллектор. На основании этих показаний контроллер формирует команду-импульс на форсунки. Важное отличие ДАД от ДМРВ — отсутствие воздуха в корпусе, поскольку этот датчик работает на основе измерения показаний разницы давлений на входе и давления в вакуумной камере. Конструктивной особенностью ДАД является высокочувствительная диафрагма, которая растягивается под воздействием давления во впускном коллекторе. Этот процесс влияет на сопротивление тензорезисторов, вследствие чего изменяется напряжение.
Датчик абсолютного давления (на фото) и ДМРВ работают по разным принципам
ДАД намного дешевле датчика массового расхода воздуха, однако алгоритм его работы менее совершенен. Да и вообще далеко не все блоки управления могут корректно работать с ДАД. Более того, при переходе на датчик абсолютного давления мотор может реагировать на открытие дросселя с гораздо большей задержкой, чем с родным ДМРВ. И, конечно же, просто заменить ДМРВ на ДАД без серьезных доработок не получится в силу разности их конструкции и даже расположения.
Есть двигатели, где выбормежду ДАД и ДМРВ не стоит, потому что на моторе присутствуют оба эти датчика сразу!
Но те, кто не заморачивается доработками двигателя, обычно ездят со штатным датчиком массового расхода воздуха, а не заменяют его связкой ДАД+ДТВ (датчик температуры воздуха). Тем более, что далеко не все блоки управления двигателем работают с датчиком абсолютного давления лучше, чем с родным ДМРВ. Какой из датчиков более совершенен по конструкции, однозначно ответить сложно – тем более, если речь идёт о попытке замены одного (и часто уже неисправного) расходомера другим. Ведь история знает множество примеров, когда счастливые владельцы наматывали по несколько сотен тысяч километров как на двигателе с родным расходомером, так и на моторе с датчиком абсолютного давления, особенно если последний штатно ставили на заводе.
Можно ли обойтись без него?
При некорректной работе ДМРВ электроника может начать переобогащать рабочую смесь
Игнорировать неисправность не стоит, поскольку даже на относительно простых автомобилях (переднеприводная линейка Lada первых поколений) отказ ДМРВ грозит заметным перерасходом бензина либо ослаблением выходных характеристик мотора. Именно поэтому ответ на популярный вопрос «Можно ли вообще обойтись без ДМРВ, если он заложен в конструкцию машины?» однозначен и звучит так: нет, нельзя.
Как диагностировать неисправность?
Кроме косвенных признаков, о которых мы упоминали выше, существует вполне объективный параметр, указывающий на состояние датчика и его ресурс — это рабочее напряжение при включенном зажигании. Изучимего на примере «вазовского» датчика как одного из самых распространённых.
Схема подключения ДМРВ на двигателе ВАЗ
Такое напряжение указывает на то, что датчик работает как новый
Один из вариантов измерения напряжения – прямо через разъем подключения датчика
Дальше параметры оцениваются так:
1,010-1,019 В — хорошее состояние, о замене пока не нужно думать
1,020-1,029 В – датчик работоспособен, это примерно половина остаточного ресурса
1,030-1,039 В — еще исправен, но ресурс подходит к концу
1,040-1,049 В – ДМРВ на грани выхода из строя, скоро потребует замены
1,050 В и выше — расходомер требует немедленной замены
При параметре 1,016 В (первое фото) датчик в хорошем состоянии, а вот 1,035 В – уже повод задуматься о покупке нового
Такой параметр датчик выдает на грани исправности, но нужно точно убедиться в том, что данные соответствуют действительности, а не связаны с погрешностью мультиметра
Нужно учитывать, что многие тестеры завышают показания, поэтому существует риск «приговорить» вполне исправный датчик. К тому же его параметры во многом зависят от чистоты «масс» в цепи.
Плохой обжим проводов или сгнившая «коса» могут повлиять на корректность работы как ДРМВ, так и ДАД, что особенно характерно для моторов старых автомобилей
Лучше всего до покупки не самого дешевого датчика установить сначала заведомо исправный «бэушный», одолжив его для проверки на время у коллеги по работе, соседа по стоянке, знакомого по форуму с такой же машиной и т.д. Также стоит больше верить показаниям диагностического сканера, подключенного к разъему OBD-2, чем дешевому мультиметру.
Промывать или нет?
Обратите внимание: для промывки используется специализированный состав именно для чистки ДМРВ, а не универсальный очиститель карбюратора или топливной системы
Главное – не повредить снятый датчик, который боится даже пыли, не говоря уже о механическом воздействии
Многие водители по неопытности сами губят ещё живые датчики при промывке. Чувствительные элементы нельзя трогать руками или протирать ветошью, да и сильный напор жидкости кроме вреда ничего не принесёт. Поэтому к чистке ДМРВ в гаражных условиях нужно относиться с большой осторожностью и помнить:если датчик уже «умер», то это неопасно иему уже не поможет, но, даже если он еще вполне исправен, эта процедура может и не принести заметного результата.
Выход из строя датчика массового расхода воздуха приводит к серьезным сбоям в работе двигателя . Сегодня рассмотрим первые признаки его «смерти», определимся, где он находится под капотом и за что отвечает. Научимся самостоятельно проверять его с помощью мультиметра.
Где он находится и для чего служит
Это маленькая деталь автомобиля, которую трудно будет найти неопытным автолюбителям. Открываем капот машины, ведем глазами от воздушного фильтра до двигателя. Он находится перед впускным коллектором, увидите пластиковую вставку в разрыве воздуховода с проводами.
Он находится в этом месте не случайно. Он меряет количество воздуха, всасываемого мотором, чтобы электронный блок управления мог правильно приготовить топливовоздушную смесь. Если массовое количество воздуха будет маленькое, то нужно подать меньше топлива и наоборот. В противном случая смесь будет обедненной или обогащенной. Что приведет к нестабильной работе силового агрегата.
Причины его выхода из строя
- Попадания на его активный элемент масла, вследствие высокого уровня в картере мотора или неисправной системы вентиляции картера ;
- Повреждение воздушного фильтра. Через него в воздушный канал могут попасть частички пыли, листья, разный мусор извне;
- Большой срок эксплуатации;
- Скачки, перепады напряжения в бортовой сети автомобиля;
- Отсутствие напряжения на контактах датчика, разрыв цепи или растрескивание его корпуса.
Основные признаки выхода его из строя
- Автомобиль теряет мощность, вялый разгон;
- В гости на приборку приходит «Джеки Чан» (Check Engine). Последующее сканирование ошибок покажет, в чем проблема;
- Увеличение потребления топлива автомобилем;
- Будут «плавать» холостые обороты мотора. На холостом ходу частота вращения коленвала будет ниже или выше нормальных значений – 500 или 1200 об/мин.
- Мотор может вообще не заводиться или запуститься и заглохнуть.
Конечно, эти признаки могут указывать на поломки других систем автомобиля, но они чаще всего встречаются при ошибках датчика массового расхода воздуха.
Способы самостоятельной проверки датчика
Способ № 1 – Простой, но не всегда выполнимый
Первым, самым простым способом диагностики является – замена его на заведомо исправный датчик. Если работа двигателя восстановилась, значит, виной был именно ДМРВ. Но проблема заключается в том, что у простых автовладельцев нет под рукой запасного датчика расхода воздуха. Поэтому этот способ проверки не подходит
Способ № 2 – Визуальный
Для этого снимаем сам датчик с гофры воздухозаборника или отсоединяем его входной патрубок. Осматриваем на предмет мусора, трещин. Возможно, будет посторонние жидкости на активном элементе датчика.
Читайте также: