Что такое резонансная частота в автозвуке
Попробуем разобраться с ключевыми параметрами динамиков. Начнем с одного из самых основных параметров — с резонансной частоты(fs). Писал очень долго и муторно, сотни раз переделывал и переписывал, и получилось многабукафф:) Поэтому разбил на две части. Во второй части будет о том, как фс ведет себя при различных оформлениях и резонанс применительно к высокочастотникам.
От вас жду дополнений и исправлений! Попробуем вместе создать действительно хорошие тексты, доступно разъясняющие основы и физику звука. Надеюсь, не только мне хочется от и до во всем разобраться:) Текст не самый легкий, поэтому включаем думалку, и вперед:) Поехали!
Итак, резонансная частота. Разумеется, этот параметр не самодостаточный и для построения сколь угодно качественной системы знания одного его будет мало.
Динамик, как и любая колебательная система, имеет свою резонансную частоту. Это не незыблемая величина, она может довольно сильно меняться в зависимости от разных факторов. Например, температура упала => подвесы задубели – резонанс возрос. Закинули динамик в ЗЯ – резонанс возрос. Накидали на колпак сортирки с ПВА – резонанс упал.
В документации к солидным динамикам всегда указывают эту величину, обозначается она Fs. Представляет собой некое значение частоты в герцах, при которой у динамика в свободном поле наблюдается резонанс. При замере динамик находится не в коробе (в идеале – на солидном удалении от любых отражающих поверхностей), он размят и замер делается при нормальной температуре. Легче всего этот резонанс определить по пику на графике зависимости сопротивления динамика от подаваемой на него частоты. Выглядит этот график примерно так:
Зная резонансную частоту, мы можем с большой долей вероятности определить, на каких частотах будет играть динамик. Динамик с резонансом в 120Гц – это отвратительный сабвуфер и очень плохой мидбас. Даже если он выглядит как сабвуфер и у него 12” дифф, огромный магнит и большая губа.
Кстати: Есть еще два параметра, которые могут полностью изменить картину – это добротность и линейный ход динамика. Например, если дин с частотой 30Гц (неплохо для саба) имеет линейный ход пару мм – это плохой саб. Сыграть красиво и низко он сможет, но очень не громко. Или если у дина с резонансом 30Гц добротность 0,15 – например, в закрытом ящике из него саба не получится. Слишком низкую добротность придется поднимать коробом, а вместе с ней в разы возрастет и результирующая частота. В общем, одной fs обойтись не удастся. Но сегодня говорим только о резонансной частоте.
Теперь смелое утверждение: динамику хорошо ВЫШЕ этой частоты. Чем выше рабочий диапазон динамика, тем более строго соблюдается это утверждение.
Например, пищалкам категорически противопоказано работать на своей Фс. Для них нужно обрезать сигнал так, чтобы на частоте резонанса они не играли вообще, пищалки должны работать значительно выше. Иначе и звук будет непотребный, и за сохранность железа никто не ответит.
Серединки и миды в крайнем случае могут работать до резонансной частоты. Если они не будут ее пересекать – это положительно отразится и на качестве звука, и на долговечности компонентов. Сабвуферы могут забираться и даже жить ниже ФС, но тут многое зависит от акустического оформления и помещения. Общая суть для сабов: чем ниже фс, тем более этот динамик сабовый. Если перед вами лежит 15-ти дюймовый дин с огромным магнитом и у него резонанс 68Гц — сабом он не станет никогда. Максимум, что из него можно будет сделать — это мидбас. Но никак не саб.
А теперь самое интересное: о чем нам может сказать Фс?
Если взять идеальный динамик, и прям перед ним повесить микрофон, АЧХ будет выглядеть примерно так:
Завал начинается как раз на частоте резонанса. А после резонанса играет относительно ровненько до тех пор, пока ему позволяет его конструкция.
Проверил это утверждение на практике. Взял три динамика и снял АЧХ (микрофон в паре см от диффа) и их Т/С параметры. Выглядят динамики так:
Параметры Тиля-Смолла и акустическое оформление динамика.
Параметры Тиля-Смолла и акустическое оформление динамика.
Робких, ленивых и гуманитарно образованных спешу предупредить - формул практически не будет. Покуда возможно, попытаемся обойтись даже без калькулятора - забытым методом устного счета.
Сабвуферы - единственное звено автомобильной акустики, где измерение гармонии алгеброй - дело небезнадежное. Прямее скажу - без расчета спроектировать сабвуфер просто немыслимо. В качестве же исходных данных для этого расчета выступают параметры динамика. Какие? Да уж не те, которыми вас гипнотизируют в магазине, будьте уверены! Для расчета, даже самого приблизительного, характеристик низкочастотного громкоговорителя требуется знать его электромеханические параметры, которых - тьма. Это и резонансная частота, и масса подвижной системы, и индукция в зазоре магнитной системы и еще по меньшей мере два десятка показателей, понятных и не очень. Расстроены? Неудивительно. Так же расстроены оказались лет около двадцати назад два австралийца - Ричард Смолл и Невил Тиль. Они предложили вместо гор цифири использовать универсальный и довольно компактный набор характеристик, увековечивший, вполне заслуженно, их имена. Теперь, когда вы увидите в описании динамика таблицу, озаглавленную Thiel/Small parameters ( или просто T/S) - вы знаете, о чем речь. А если такой таблицы вы не найдете - переходите к следующему варианту - этот - безнадежен.
Минимальный набор характеристик, которые вам понадобится выяснить - это:
Собственная резонансная частота динамика Fs
Полная добротность Qts
Эквивалентный объем Vas.
В принципе, есть и другие характеристики, которые полезно было бы знать, но этого, в общем-то, хватит. (сюда не включен диаметр динамика, поскольку его и так видно, без документации.) Если хотя бы одного параметра из "чрезвычайной тройки" не хватает, дело - швах. Ну а теперь - что все это означает.
Собственная частота - это частота резонанса динамика без какого-либо акустического оформления. Она так и измеряется - динамик подвешивают в воздухе на возможно большем расстоянии от окружающих предметов, так что теперь его резонанс будет зависеть только от его собственных характеристик - массы подвижной системы и жесткости подвески. Бытует мнение, что чем ниже резонансная частота, тем лучше выйдет сабвуфер. Это верно только отчасти, для некоторых конструкций излишне низкая частота резонанса - помеха. Для ориентира: низкая - это 20 - 25 Гц. Ниже 20 Гц - редкость. Выше 40 Гц - считается высокой, для сабвуфера.
Полная добротность. Добротность в данном случае- не качество изделия, а соотношение упругих и вязких сил, существующих в подвижной системе динамика вблизи частоты резонанса. Подвижная система динамика во много сродни подвеске автомобиля, где есть пружина и амортизатор. Пружина создает упругие силы, то есть накапливает и отдает энергию в процессе колебаний, а амортизатор - источник вязкого сопротивления, он ничего не накапливает, а поглощает и рассеивает в виде тепла. То же самое происходит при колебаниях диффузора и всего, что к нему прикреплено. Высокое значение добротности означает, что преобладают упругие силы. Это - как автомобиль без амортизаторов. Достаточно наехать на камешек и колесо начнет прыгать, ничем не сдерживаемое. Прыгать на той самой резонансной частоте, которая присуща этой колебательной системе.
Применительно к громкоговорителю это означает выброс частотной характеристики на частоте резонанса, тем больий, чем выше полная добротность системы. Самая высокая добротность, измеряемая тысячами - у колокола, который в результате ни на какой частоте, кроме резонансной звучать не желает, благо еще, что этого от него никто и не требует.
Популярный метод диагностики подвески машины покачиванием - не что иное как измерение добротности подвески кустарным способом. Если теперь привести подвеску в порядок, то есть прицепить параллельно пружине амортизатор, накопленная при сжатии пружины энергия уже не вся вернется обратно, а частично будет загублена амортизатором. Это - снижение добротности системы. Теперь опять вернемся к динамику. Ничего, что мы туда-сюда ходим? Это, говорят, полезно…С пружиной у динамика все, вроде бы, ясно. Это - подвеска диффузора. А амортизатор? Амортизаторов - целых два, работающих параллельно. Полная добротность динамика складывается из двух: механической и электрической. Механическая добротность определяется главным образом выбором материала подвеса, причем в основном - центрирующей шайбы, а не внешнего гофра, как иногда полагают. Больших потерь здесь обычно не бывает и вклад механической добротности в полную не превышает 10 - 15%. Основной вклад принадлежит электрической добротности. Самый жесткий амортизатор, работающий в колебательной системе динамика - это ансамбль из звуковой катушки и магнита. Будучи по своей природе электромотором, он как и полагается мотору, может работать как генератор и именно этим и занят вблизи частоты резонанса, когда скорость и амплитуда перемещения звуковой катушки - максимальны. Двигаясь в магнитном поле, катушка вырабатывает ток, а нагрузкой для такого генератора служит выходное сопротивление усилителя, то есть практически - ноль. Получается такой же электрический тормоз, каким снабжены все электрички. Там тоже при торможении тяговые двигатели заставляют работать в режиме генераторов, а нагрузка их - батареи тормозных сопротивлений на крыше.
Величина вырабатываемого тока будет, естественно, тем больше, чем сильнее магнитное поле, в котором движется звуковая катушка. Получается, что чем мощнее магнит динамика, тем ниже, при прочих равных, его добротность. Но, конечно, поскольку в формировании этой величины участвуют и длина провода обмотки, и ширина зазора в магнитной системе, окончательный вывод только на основании размера магнита было бы делать преждевременно. А предварительный - почему нет?…
Базовые понятия - низкой считается полная добротность динамика меньше 0,3 - 0,35; высокой - больше 0,5 - 0,6.
Эквивалентный объем. Большинство современных головок громкоговорителей основано на принципе "акустического подвеса".
У нас их иногда называют "компрессионными", что неправильно. Компрессионные головки - это совсем другая история, связанная с применением в роли акустического оформления рупоров.
Концепция акустического подвеса заключается в установке динамика в такой объем воздуха, упругость которого сопоставима с упругостью подвеса динамика. При этом получается, что в параллель к уже имеющейся в подвеске пружине поставили еще одну. Эквивалентным объемом будет при этом такой, при котором веновь появившаяся пружина равна по упругости уже имевшейся. Величина эквивалентного объема определяется жесткостью подвеса и диаметром динамика. Чем мягче подвес, тем больше будет величина воздушной подушки, присутствие которой начнет беспокоить динамик. То же происходит с изменением диаметра диффузора. Большой диффузор при одном и том же смещении будет сильнее сжимать воздух внутри ящика, тем самым испытывая большую ответную силу упругости воздушного объема.
Именно это обстоятельство зачастую определяет выбор размера динамика, исходя из имеющегося объема для размещения его акустического оформления. Большие диффузоры создают предпосылки для высокой отдачи сабвуфера, но требуют и больших объемов. Аргумент из репертуара комнаты в конце школьного коридора "а у меня больше" здесь надо применять осмотрительно.
У эквивалентного объема интересные родственные связи с резонансной частотой, без осознания которых легко промахнуться. Резонансная частота определяется жесткостью подвеса и массой подвижной системы, а эквивалентный объем - диаметром диффузора и той же жесткостью.
В результате возможна такая ситуация. Предположим, имеется два динамика одинакового размера и с одинаковой частотой резонанса. Но только у одного из них это значение частоты получилось вследствие тяжелого диффузора и жесткой подвески, а у другого - наоборот, легкого диффузора на мягком подвесе. Эквивалентный объем у такой парочки при всей внешней схожести может различаться очень существенно, и при установке в один и тот же ящик результаты будут драматически различны.
Итак, установив, что означают жизненно важные параметры, начнем наконец выбирать суженого. Модель будет такая - считаем, что вы определились, на основе, скажем, материалов предыдущей статьи этой серии, с типом акустического оформления и теперь надо выбрать для него динамик из сотен альтернатив. Освоив этот процесс, обратный, то есть выбор подходящего оформления под выбранный динамик, дастся вам без труда. В смысле - почти без труда.
Закрытый ящик
Как было сказано в приведенной статье, закрытый ящик - простейшее акустичнское оформление, но далеко не примитивное, напротив, имеющее, в особенности в автомобиле, ряд важнейших преимуществ перед другими. Популярность его в мобильных приложениях нисколько не угасает, потому с него и начнем.
Что происходит с характеристиками динамика при установке в закрытый ящик? Это зависит от одной-единственной величины - объема ящика. Если объем настолько велик, что динамик его практически не замечает, мы приходим к варианту бесконечного экрана. На практике такая ситуация достигается, когда объем ящика (или другого замкнутого объема, находящегося позади диффузора, а проще говоря, что там скрывать - багажника автомобиля) превышает эквивалентный объем динамика втрое или больше. Если такое соотношение выполняется, резонансная частота и полная добротность системы останутся практически такими же, какими они были у динамика. А значит - их и выбирать надо соответственно. Известно, что акустическая система будет обладать наиболее гладкой частотной характеристикой при величине полной добротности, равной 0,7. При меньших значениях улучшаются импульсные характеристики, но спад частотки начинается довольно высоко по частоте. При больших - частотная характеристика приобретает подъем вблизи резонанса, а переходные характеристики несколько ухудшаются. Если вы ориентируетесь на классическую музыку, джаз или акустические жанры - оптимальным выбором будет несколько передемпфированная система с добротностью 0,5 - 0,7. Для более энергичных жанров не повредит подчеркивание низов, которое достигается при добротности 0,8 - 0,9. И наконец, любители рэпа оттянутся по полной программе, если из система будет обладать добротностью, равной единице или даже выше. Значение 1,2 надо, пожалуй, признать предельным для любого жанра, претендующего на музыкальность.
Надо еще иметь в виду, что при установке сабвуфера в салоне машины происходит подъем низких частот, начиная с определенной частоты, обусловленной размерами салона. Типичные значения для начала подъема АЧХ 40 Гц для большой машины, вроде джипа или мини-вэна; 50 - 60 для средней, вроде восьмерки или "корейки"; 70 - 75 для маленькой, с Таврию.
Теперь ясно - для установки в режиме бесконечного экрана ( или Freeair, если вас не смущает, что последнее название запатентовано Stillwater Designs) нужен динамик с полной добротностью не ниже 0,5, а то и выше и резонансной частотой никак не ниже герц эдак 40 - 60, в зависимости от того, во что будете ставить. Такие параметры обычно означают довольно жесткий подвес, только это и спасает динамик от перегрузки в условиях отсутствия "акустической поддержки" со стороны закрытого объема. Вот пример - фирма Infinity выпускает в сериях Reference и Kappa варианты одних и тех же головок с индексами br (bass reflex) и ib (infinite baffle).Параметры Тиля-Смолла, например, у десятидюймовой Reference различаются так:
Параметр T/S 1000w.br 1000w.ib
Видно, что вариант ib по резонансной частоте и добротности - готовенький для работы "как есть", а судя и по частоте резонанса и по эквивалентному объему - эта модификация намного жестче другой, оптимизированной для работы в фазоинверторе, а, значит, более вероятно выживет в нелегких условиях Freeair.
А что случится, если, не обратив внимания на маленькие буковки, вы загоните в эти условия похожий, как две капли воды динамик с индексом br? А вот что: из-за низкой добротности частотная характеристика начнет заваливаться уже на частотах около 70 - 80 Гц, а ничем не сдерживаемая "мягкая" головка будет себя чувствовать очень неуютно на нижнем краю диапазона, причем перегрузить ее там - проще простого.
Для применения в режиме "бесконечного экрана" надо выбирать динамик с высокой полной добротностью (не меньше 0,5) и резонансной частотой (не ниже 45 Гц), уточнив эти требования в зависимости от типа преимущественного музыкального материала и размера салона.
Теперь о "небесконечном" объеме. Если поставить динамик в объем, сопоставимый с его эквивалентным объемом, система приобретет характеристики, существенно отличающиеся от тех, с которыми в эту систему явился динамик. Прежде всего при установке в закрытый объем возрастет резонансная частота. Жесткость-то увеличилась, а масса - осталась прежней. Возрастет и добротность. Судите сами - приставив в помощь жесткости подвеса жесткость небольшого, то есть неподатливого воздушного объема, мы тем самым как бы поставили вторую пружину, а амортизатор оставили старый.
С уменьшением объема добротность системы и ее резонансная частота растут одинаково. Значит, если мы увидели динамик с добротностью, скажем, 0,25, а хотим иметь систему с добротностью, скажем, 0,75, то резонансная частота тоже увеличится втрое. А какая она там у динамика? 35 Гц? Так значит, в правильном, с точки зрения формы частотной характеристики, объеме она окажется 105 Гц, а это, знаете ли, уже не сабвуфер. Значит - на подходит. Вот видите, и калькулятор не понадобился. Смотрим другой. Резонансная частота 25 Гц, добротность 0,4. Получается система с добротностью 0,75 и частотой резонанса где-то около 47 Гц. Вполне достойно. Попробуем тут же, не отходя от прилавка, прикинуть, какого объема понадобится ящик. Написано, что Vas = 160 л (или же 6 cu.ft, что более вероятно).
(Тут бы формулу написать - она простенькая, но нельзя - обещал). Поэтому для расчетов у прилавка дам шпаргалку: скопируйте и положите в бумажник, если покупка басового динамика входит в планы вашего шопинга:
Резонансная частота и добротность возрастут в Если объем ящика составляет от Vas
1,4 раза 1
У нас - примерно вдвое, так что получается ящичек объемом литров 50 - 60. Многовато будет….Давайте следующий. И так далее.
Получается, что для того, чтобы вышло мыслимое акустическое оформление, параметры динамика мало того, что должны находиться в каком-то определенном коридоре значений, но еще и быть увязаны между собой.
Эту увязку опытные люди свели в показатель Fs/Qts.
Если величина Fs/Qts составляет 50 или меньше, динамик рожден для закрытого ящика. Необходимый объем ящика при этом будет тем меньше, чем ниже Fs или чем меньше Vas.
По внешним данным "прирожденных затворников" можно узнать по тяжелым диффузорами и мягким подвесам (что дает низкую резонансную частоту), не очень большим магнитам (чтобы добротность была не слишком низкой), длинным звуковым катушкам (поскольку ход диффузора у динамика, работающего в закрытом ящике, может достигать довольно больших значений).
Фазоинвертор
Другой тип популярного акустического оформления - фазоинвертор, при всем горячем желании у прилавка посчитать нельзя, даже приблизительно. Но прикинуть пригодность для него динамика - можно. А про расчет мы вообще будем говорить отдельно.
Резонансная частота системы этого типа определяется уже не одной только резонансной частотой динамика, но и настройкой фазоинвертора. Это же относится и к добротности системы, которая может существенно меняться с изменением длины тоннеля даже при неизменном объеме корпуса. Поскольку фазоинвертор может быть, в отличие от закрытого ящика, настроен на частоту, близкую или даже ниже, чем у динамика, собственной резонансной частоте головки "позволено" быть выше, чем в предыдущем случае. Это означает, при удачном выборе, более легкий диффузор и, как следствие, улучшение импульсных характеристик, в чем фазоинвертор нуждается, поскольку его "врожденные" переходные характеристики не из лучших, хуже, чем у закрытого ящика, по крайней мере. Зато добротность желательно иметь возможно ниже, не больше 0,35. Сводя это в тот же показатель Fs/Qts, формула выбора динамика для фазоинвертора выглядит просто:
Для работы в фазоинверторе подходят динамики, у которых показатель Fs/Qts составляет 90 и больше.
Внешние признаки фазоинверсной породы: легкие диффузоры и мощные магниты.
Бандпассы (совсем коротко)
Полосовые громкоговорители, при всех своих громких достоинствах (это в смысле наибольшей эффективности, в сравнении с другими типами) - наиболее сложны в расчете и изготовлении, а согласование их характеристик с внутренней акустикой автомобиля при недостаточном опыте может превратиться в кромешный ад, поэтому с этим видом акустического оформления лучше идти по камушкам и воспользоваться рекомендациями изготовителей динамиков, хоть это и связывает руки. Однако, если руки все же находятся в развязанном состоянии и чешутся попробовать: для одиночных бандпассов подходят практически те же динамики, что и для фазоинверторов, а для двойных или квазиполосовых - они же или, что более желательно, головки с показателем Fs/Qts равным 100 и выше.
Посчитал, что будет многим полезно и интересно. Информация взята с просторов сети интернет.
ВЧ динамик - он же твиттер, он же пищалка, самый маленький в вашем автомобиле. Как правило установлен в стойках дверей. Размер около 5см в диаметре.
СЧ динамик- среднечастотный динамик.
НЧ- низкочастотный динамик (бидбас)
Один из обязательных этапов настройки звучания в салоне автомобиля — подбор оптимального разделения частот между всеми излучающими головками: НЧ, НЧ/СЧ, СЧ (если есть) и ВЧ. Есть два способа решения этой проблемы.
Во-первых, перестройка, а зачастую и полная переделка штатного пассивного кроссовера, во-вторых — подключение динамиков к усилителю, работающему в режиме многополосного усиления, так называемые варианты включения Bi-amp (двухполосное усиление) или Tri-amp (трехполосное усиление).
Первый способ требует серьезных знаний электроакустики и электротехники, поэтому для самостоятельного применения доступен только специалистам и опытным радиоэлектронщикам-любителям, а вот второй хотя и требует большего числа каналов усиления, доступен и менее подготовленному автолюбителю.
Тем более что подавляющее большинство продаваемых усилителей мощности изначально снабжены встроенным активным кроссовером. У многих моделей он настолько развит, что с успехом и достаточно высоким качеством позволяет реализовать многополосное включение АС с большим числом динамиков. Однако отсутствие развитого кроссовера в усилителе или головном устройстве не останавливает поклонников этого метода озвучивания салона, поскольку на рынке представлено множество внешних кроссоверов, способных решать данные задачи.
Вначале следует сказать, что стопроцентно универсальных рекомендаций мы вам не дадим, поскольку их не существует. Вообще, акустика — это область техники, где эксперименту и творчеству отведена большая роль, и в этом смысле поклонникам аудиотехники повезло. Но для проведения эксперимента, чтобы не получилось, как у того сумасшедшего профессора — со взрывами и дымом, — необходимо соблюдать определенные правила. Первое правило — не навреди, а о других речь пойдет ниже.
Больше всего трудностей вызывает включение СЧ- и (или) ВЧ-компонентов. И дело здесь не только в том, что именно эти диапазоны несут максимальную информационную нагрузку, отвечая за формирование стереоэффекта, звуковой сцены, а также сильно подвержены интермодуляционным и гармоническим искажениям при неправильной установке частоты разделения, но и в том, что от этой частоты непосредственно зависит и надежность работы СЧ- и ВЧ-динамиков.
Включение ВЧ-головки.
Выбор нижней граничной частоты диапазона сигналов, подаваемых на ВЧ-головку, зависит от числа полос акустической системы. Когда применяется двухполосная АС, то в наиболее типичном случае, т.е. при расположении НЧ/СЧ-головки в дверях, для поднятия уровня звуковой сцены граничную частоту желательно выбрать как можно ниже. Современные высококачественные ВЧ-динамики с низкой резонансной частотой FS (800-1500 Гц) могут воспроизводить сигналы уже с частоты 2000 Гц. Однако большинство используемых ВЧ-головок имеют резонансную частоту 2000-3000 Гц, поэтому следует помнить, что чем ближе к резонансной частоте мы устанавливаем частоту разделения, тем большая нагрузка ложится на ВЧ-динамик.
В идеале, при крутизне характеристики затухания фильтра 12 дБ/окт, разнос между частотой разделения и резонансной частотой должен быть больше октавы. Например, если резонансная частота головки 2000 Гц, то с фильтром такого порядка частота разделения должна быть установлена равной 4000 Гц. Если очень хочется выбрать частоту разделения 3000 Гц, то крутизна характеристики затухания фильтра должна быть выше — 18 дБ/окт, а лучше — 24 дБ/окт.
Есть еще одна проблема, которую необходимо учитывать при установке частоты разделения для ВЧ-динамика. Дело в том, что после согласования компонентов по воспроизводимому диапазону частот вам необходимо еще согласовать их по уровню и фазе. Последнее, как всегда, является камнем преткновения — вроде бы все сделал правильно, а звук "не тот". Известно, что фильтр первого порядка даст сдвиг фазы на 90°, второго — 180° (противофаза) и т.д., поэтому во время настройки не поленитесь послушать динамики с разной полярностью включения.
К диапазону частот 1500-3000 Гц человеческое ухо очень чувствительно, и для того, чтобы передать его максимально хорошо и чисто, следует быть крайне осторожным. Сломать (разделить) звуковой диапазон на этом участке можно, но следует подумать, как потом правильно устранить последствия неприятного звучания. С этой точки зрения более удобная и безопасная для настройки — трехполосная акустическая система, а используемый в ней СЧ-динамик позволяет не только эффективно воспроизводить диапазон от 200 до 7000 Гц, но и более просто решить проблему построения звуковой сцены. В трехполосных АС ВЧ-динамик включают на более высоких частотах — 3500-6000 Гц, то есть заведомо выше критичной полосы частот, а это позволяет снизить (но не исключить) требования к фазовому согласованию.
Включение СЧ-головки.
Прежде чем обсудить выбор частоты разделения СЧ- и НЧ-диапазонов, обратимся к конструктивным особенностям СЧ-динамиков. В последнее время у инсталляторов очень популярны СЧ-динамики с купольной диафрагмой. По сравнению с конусными СЧ-динамиками они предоставляют более широкую диаграмму направленности и проще в установке, поскольку не требуют дополнительного акустического оформления. Основной их недостаток — высокая резонансная частота, лежащая в пределах 450-800 Гц.
Проблема в том, что чем выше нижняя граничная частота полосы сигналов, подаваемых на СЧ-динамик, тем меньше должно быть расстояние между СЧ- и НЧ-головками и тем более критично, где именно стоит и куда сориентирован НЧ-динамик. Практика показывает, что купольные СЧ-динамики без особых проблем с согласованием можно включать с частотой разделения 500-600 Гц. Как видите, для большинства продаваемых экземпляров это достаточно критичный диапазон, поэтому, если вы решились на такое разделение, порядок разделительного фильтра должен быть достаточно высоким — например, 4-й.
Следует добавить, что в последнее время стали появляться купольные динамики с резонансной частотой 300-350 Гц. Их можно использовать, начиная с частоты 400 Гц, но пока стоимость таких экземпляров достаточно высока.
Резонансная частота СЧ-динамиков с конусным диффузором лежит в пределах 100-300 Гц, что позволяет использовать их, начиная с частоты 200 Гц (на практике чаще используется 300-400 Гц) и с фильтром невысокого порядка, при этом НЧ/СЧ-динамик полностью освобождается от необходимости работать в СЧ-диапазоне. Воспроизведение без разделения между динамиками сигналов с частотами от 300-400 Гц до 5000-6000 Гц дает возможность добиться приятного, высококачественного звучания.
Включение НЧ/СЧ-динамика.
Постепенно мы добрались до НЧ-диапазона. Современные СЧ/НЧ-динамики позволяют эффективно работать в полосе частот от 40 до 5000 Гц. Верхняя граница его рабочего диапазона частот определяется тем, откуда начинает работать высокочастотник (в 2-полосной АС) или СЧ-динамик (в 3-полосной АС).
Многих волнует вопрос: стоит ли ограничивать его диапазон частот снизу? Что же, давайте разберемся. Резонансная частота современных НЧ/СЧ-динамиков типоразмера 16 см лежит в пределах 50-80 Гц и благодаря высокой подвижности звуковой катушки эти динамики не столь критичны к работе на частотах ниже резонансной. Тем не менее воспроизведение частот ниже резонансной требует от него определенных усилий, что приводит к снижению отдачи в диапазоне 90-200 Гц, а в двухполосных системах еще и качества передачи СЧ-диапазона. Поскольку основная энергия ударов бас-бочки приходится на диапазон частот от 100 до 150 Гц, то первое, что вы теряете, четко выраженный панч (punch — удар). Ограничивая снизу при помощи ФВЧ диапазон воспроизводимых НЧ-головкой сигналов на 60-80 Гц, вы не только позволите ей работать намного чище, но и получите более громкое звучание, другими словами — лучшую отдачу.
Сабвуфер.
Воспроизведение сигналов с частотами ниже 60-80 Гц лучше возложить на отдельный динамик — сабвуфер. Но помните, что звуковой диапазон ниже 60 Гц в автомобиле не локализуется, а значит, место установки сабвуфера не столь существенно. Если вы это условие выполнили, а звук сабвуфера все равно локализуется, то в первую очередь необходимо увеличить порядок ФНЧ. Не следует также пренебрегать и фильтром подавления инфранизких частот (Subsonic, или ФИНЧ). Не забывайте, что у сабвуфера тоже есть своя резонансная частота и, отсекая частоты, лежащие ниже нее, вы добиваетесь комфортного звучания и надежной работы сабвуфера. Как показывает практика, погоня за глубокими басами существенно удорожает стоимость сабвуфера. Поверьте, если собранная вами звуковая система с хорошим качеством воспроизводит звуковой диапазон от 50 до 16 000 Гц, этого вполне достаточно, чтобы комфортно слушать музыку в автомобиле.
Способы сопряжения головок.
Довольно часто возникает вопрос: следует ли иметь одинаковый порядок фильтров НЧ и ВЧ? Вовсе не обязательно, и даже совсем не обязательно. Например, если вы установили двухполосную фронтальную АС с большим разнесением динамиков, то чтобы компенсировать провалы ЧХ на частоте разделения, НЧ/СЧ-головку зачастую включают с фильтром меньшего порядка. Более того, даже не обязательно, чтобы частоты срезов ФВЧ и ФНЧ совпадали.
Скажем, для компенсации избыточной яркости в точке разделения НЧ/СЧ-головка может работать до 2000 Гц, а высокочастотник — начиная с 3000 Гц. Важно помнить, что при использовании фильтра первого порядка разность между частотами среза ФВЧ и ФНЧ должна быть не больше октавы и уменьшаться с увеличением порядка. Такой же прием используется при сопряжении сабвуфера и мидвуфера для ослабления стоячих волн (бубнения басов). Например, при настройке частоты среза ФНЧ сабвуфера на 50-60 Гц, а ФВЧ НЧ/СЧ-головки на 90-100 Гц, по заверениям знатоков, полностью устраняются неприятные призвуки, обусловленные естественным подъемом АЧХ в этой частотной области из-за акустических свойств салона.
Так что если и работает в car audio правило перехода количества в качество, то подтверждается оно только в отношении стоимости отдельных компонентов и человеко-лет, определяющих опыт и мастерство установщика, который заставит систему раскрыть свой звуковой потенциал.
Попробуем разобраться с ключевыми параметрами динамиков. Начнем с одного из самых основных параметров — с резонансной частоты(fs). Писал очень долго и муторно, сотни раз переделывал и переписывал, и получилось многабукафф:) Поэтому разбил на две части. Во второй части будет о том, как фс ведет себя при различных оформлениях и резонанс применительно к высокочастотникам.
От вас жду дополнений и исправлений! Попробуем вместе создать действительно хорошие тексты, доступно разъясняющие основы и физику звука. Надеюсь, не только мне хочется от и до во всем разобраться:) Текст не самый легкий, поэтому включаем думалку, и вперед:) Поехали!
Итак, резонансная частота. Разумеется, этот параметр не самодостаточный и для построения сколь угодно качественной системы знания одного его будет мало.
Динамик, как и любая колебательная система, имеет свою резонансную частоту. Это не незыблемая величина, она может довольно сильно меняться в зависимости от разных факторов. Например, температура упала => подвесы задубели – резонанс возрос. Закинули динамик в ЗЯ – резонанс возрос. Накидали на колпак сортирки с ПВА – резонанс упал.
В документации к солидным динамикам всегда указывают эту величину, обозначается она Fs. Представляет собой некое значение частоты в герцах, при которой у динамика в свободном поле наблюдается резонанс. При замере динамик находится не в коробе (в идеале – на солидном удалении от любых отражающих поверхностей), он размят и замер делается при нормальной температуре. Легче всего этот резонанс определить по пику на графике зависимости сопротивления динамика от подаваемой на него частоты. Выглядит этот график примерно так:
Зная резонансную частоту, мы можем с большой долей вероятности определить, на каких частотах будет играть динамик. Динамик с резонансом в 120Гц – это отвратительный сабвуфер и очень плохой мидбас. Даже если он выглядит как сабвуфер и у него 12” дифф, огромный магнит и большая губа.
Кстати: Есть еще два параметра, которые могут полностью изменить картину – это добротность и линейный ход динамика. Например, если дин с частотой 30Гц (неплохо для саба) имеет линейный ход пару мм – это плохой саб. Сыграть красиво и низко он сможет, но очень не громко. Или если у дина с резонансом 30Гц добротность 0,15 – например, в закрытом ящике из него саба не получится. Слишком низкую добротность придется поднимать коробом, а вместе с ней в разы возрастет и результирующая частота. В общем, одной fs обойтись не удастся. Но сегодня говорим только о резонансной частоте.
Теперь смелое утверждение: динамику хорошо ВЫШЕ этой частоты. Чем выше рабочий диапазон динамика, тем более строго соблюдается это утверждение.
Например, пищалкам категорически противопоказано работать на своей Фс. Для них нужно обрезать сигнал так, чтобы на частоте резонанса они не играли вообще, пищалки должны работать значительно выше. Иначе и звук будет непотребный, и за сохранность железа никто не ответит.
Серединки и миды в крайнем случае могут работать до резонансной частоты. Если они не будут ее пересекать – это положительно отразится и на качестве звука, и на долговечности компонентов. Сабвуферы могут забираться и даже жить ниже ФС, но тут многое зависит от акустического оформления и помещения. Общая суть для сабов: чем ниже фс, тем более этот динамик сабовый. Если перед вами лежит 15-ти дюймовый дин с огромным магнитом и у него резонанс 68Гц — сабом он не станет никогда. Максимум, что из него можно будет сделать — это мидбас. Но никак не саб.
А теперь самое интересное: о чем нам может сказать Фс?
Если взять идеальный динамик, и прям перед ним повесить микрофон, АЧХ будет выглядеть примерно так:
Завал начинается как раз на частоте резонанса. А после резонанса играет относительно ровненько до тех пор, пока ему позволяет его конструкция.
Проверил это утверждение на практике. Взял три динамика и снял АЧХ (микрофон в паре см от диффа) и их Т/С параметры. Выглядят динамики так:
Автозвук: параметры и свойства динамиков
Почему одни динамики хорошо работают при установке в двери или в заднюю полку, а другие непременно требуют корпусов? Почему одни сабвуферы хорошо работают в компактных корпусах, а вторым непременно нужен большой объем? Такие вопросы часто задают любители автозвука. Разобраться в этом предлагает Pioneer Russia.
Специалисты рассказали, что в начале 70-х годов Нэвилл Тилль и Рихард Смолл предложили рассчитывать акустическое оформление, взяв за основу три главных параметра, которые названы в их честь – это параметры Тиля-Смолла.
Любой диффузор состоит из неподвижного каркаса и закрепленной на нем подвижной системы. А как известно из школьных уроков физики, любая подвижная система на определенной частоте может входить в резонанс. Это и есть собственная резонансная частота динамика Fs. «Собственной» она называется по той причине, что не учитывает корпус, в который может быть установлен динамик. Если же динамик поставить в корпус, то диффузор будет дополнительно «поджиматься» воздухом, который в нем заключен. Чем меньше корпус, тем более упругим будет эта дополнительная воздушная «пружина» и, соответственно, резонансная частота будет выше.
Подвес, на котором держится диффузор, можно рассматривать как автомобильную подвеску, с пружинами и амортизаторами. Первые придают ей упругость, а вторые имеют определенную вязкость. Соотношение упругих и вязких сил показывает величина добротности: чем лучше подвес гасит собственные колебания, тем добротность ниже и, соответственно, чем он более упруг, тем добротность выше. Эта добротность называется механической и обозначается Qms. Но это еще половина дела. Диффузор можно сравнить и с электродвигателем, ведь в нем есть катушка, которая перемещается при прохождении по ней тока, как бы толкая динамик, а любой электродвигатель, который раскручивают насильно, превращаясь в генератор, сам начинает вырабатывать ток. Когда динамик входит в резонанс, то становится таким генератором: он оказывается «нагружен» усилителем, а значит будет тормозиться. Насколько эффективно это будет происходить, как раз и характеризуется электрической добротностью – Qes. Полная добротность Qts складывается из двух составляющих – Qms и Qes.
Третий из основных параметров Тиля-Смолла – эквивалентный объем Vas. Воздух можно сжимать и разжимать, причем большой объем воздуха сжать легче, а маленький обладает большей жесткостью. Эквивалентный объем динамика – это такой объем воздуха, который при воздействии на него диффузора обладает такой же жесткостью, что и сам подвес. Зависит этот параметр от двух вещей: во-первых, от мягкости самого подвеса – чем он мягче, тем эквивалентный объем больше; во-вторых, от размера диффузора – большой диффузор «толкает» больший объем.
Читайте также: