Bmw лямбда зонд параметры
Лямбда-зонд (датчик кислорода). Методы его проверки. BOSCH
Техническая информация. Генеральный метод проверки датчика кислорода.
Здесь приведены несколько быстрых и доступных процедур, которые могут помочь Вам проверить большинство из датчиков кислорода разных типов. Самое лучшее время для этого – очередное ТО.
Следующие симптомы указывают на неисправность датчика кислорода:
Рывки, дергание и (или) неровная работа двигателя.
Ухудшение топливной экономичности.
Несоответствие нормам токсичности
Преждевременный выход из строя катализатора.
Вам потребуется следующее оборудование:
цифровой вольтметр.
«A propane enrichment device» — что-то типа устройства для обогащения горючей смеси. ( — это банальный балончик с газом ПРОПАН, который и запускается во впускной коллектор для обогащения смеси.)
Разъем-переходник для подключения датчика кислорода.
Специальную инструкцию завода-изготовителя автомобиля.
Для большинства двигателей диагностика займет не более 10 минут времени.
1. Проверьте основные параметры двигателя по инструкции производителя. Проверьте опережение зажигания, целостность электрических цепей, напряжение в бортовой сети, работу системы впрыска и отсутствие внешних механических повреждений.
2. Увеличьте долю бензина в смеси следующим способом:
Отсоедините датчик кислорода от колодки и подключите к вольтметру.
Увеличьте обороты движка до 2500.
Искусственно увеличьте содержание бензина в горючей смеси с помощью устройства для обогащения горючей смеси таким образом, чтобы обороты двигателя упали на 200 об/мин. Или, если Вы имеете автомобиль с электронным впрыском, вы можете вытащить, а потом вставить, вакуумную трубку из регулятора давления топлива в магистрали.
Если вольтметр быстро покажет напряжение в 0.9 В, то датчик кислорода работает правильно. Но если вольтметр реагирует медленно или если уровень сигнала остановился на позиции 0.8 В, то датчик подлежит замене.
3. Проведите тест на бедную смесь. Для этого:
Сымитируйте подсос воздуха через, например, вакуумную трубку.
Если показания вольтметра быстро ( менее чем за 1 сек.) упадут ниже 0.2 В, то кислородный датчик правильно реагирует на обеднение смеси. Если скорость изменения сигнала низкая или уровень остается выше 0.2 В, датчик подлежит замене.
4. Проведите тест динамических режимов. Для этого:
Подсоедините снова кислородный датчик к разъему системы впрыска.
Подсоедините параллельно разъему вольтметр.
Восстановите нормальную работу системы впрыска
Установите обороты двигателя в пределах 1500.
Показания вольтметра должны плавать вокруг 0.5 В. Если это не так – датчик кислорода подлежит замене.
Что следует предпринять:
Если в процессе диагностики были выявлены случаи возникновения проблем с кислородным датчиком, или какой либо из тестов указывает на его неисправность, не откладывайте решение этой проблемы в долгий ящик. Это чревато выходом из строя катализатора.
Помните также, что правильная работа датчика кислорода возможна только при достижении им рабочей температуры в 350oC . Это следует учитывать при проведении испытаний. Таким образом, обратная связь в системах впрыска начинает работать не ранее чем через 2.5 минуты после холодного старта двигателя (может быть сокращено для некоторых типов датчиков с мощным подогревом).
Другой метод проверки:
Подсоедините переходник и запустите двигатель на частоте 2000 об/мин. Для того, чтобы датчик кислорода оставался горячим в течение всего цикла измерений. Не отсоединяйте колодку датчика во избежание нарушения полного цикла обратной связи в системе впрыска топлива. Подсоедините осциллограф к сигнальному проводу датчика кислорода. Будьте внимательны, имеются датчики с подогревом (трех или четырехпроводные). В этом случае подключаться надо к сигнальному проводу. Осциллограф покажет вам осциллограммы работы вашего датчика и даст представление о уровнях сигналов в сигнальной цепи.
До проведения измерений проверьте масштаб, проставленный на измерительном инструменте. Он должен быть правильным.
Правильно работающий датчик кислорода покажет вам сигнал, изменяющийся в пределах от 0.2В до 0.9В в зависимости от содержания кислорода в потоке выхлопных газов. Установите горизонтальную развертку на осциллографе таким образом, чтобы можно было отличить промежуток времени в 300 мСек. Если время переключения сигнала превышает 300 мсек, датчик должен быть заменен. Очень важно, чтобы датчик в момент измерения вышел на свою рабочую температуру (350-800оС), в противном случае измерения окажутся неадекватными.
В заключение хочется сказать, что без именно быстрой реакции датчика кислорода управляющее устройство впрыска не может точно дозировать подачу топлива в двигатель. Медленный датчик приводит к загрязнению окружающей среды и сокращению пробега между техническим обслуживанием.
Следует также придерживаться рекомендаций завода-изготовителя по интервалам замены датчика кислорода в вашем авто.
В случае возникновения затруднений при замене датчика кислорода используйте следующий инструмент фирмы BOSCH:
Если отставание велико (больше 0,2 с), стоит проверить состав отработавших газов четырехкомпонентным газоанализатором (только он позволит объективно об этом судить, обнаружить возможный подсос воздуха и т.п.). О работоспособности датчика говорит стабильный, близкий к стехиометрическому состав смеси как на холостом ходу, так и при 3000 об/мин. Как ранее говорилось, допустимые отклонения к — не более ±1%. Даже если форма сигнала правильная, синусоидальная, но состав меняется сильнее — значит, датчик неисправен. А каков диапазон Х-регулирования? Ясно, что нет смысла делать его шире диапазона воспламеняемости смеси. Реально в современных системах он корректируется не более чем на ±25% из условия, что характеристики машины (мощность, экономичность и др.) остаются приемлемыми. Но иногда этого мало -и на некоторых режимах, где необходим стехиометрический состав, он не выдерживается. Что делать датчику? В старых машинах его сигнал зависал, в зависимости от состава смеси, на одном из граничных значений — например, 0,2 или 0,8 В. В современных ЭБУ сформируется код неисправности; он сообщит, что достигнут предел регулирования состава смеси, а на панели вспыхнет предупреждение Check Engine («проверь двигатель»). Чтобы не менять датчики без необходимости, помните о логике поиска неисправностей.
©А. Пахомов 2007 (aka IS_ 18 , Ижевск)
На написание этого материала натолкнуло обилие вопросов на нашем форуме, связанных с непониманием (или недопониманием) принципа работы датчика кислорода, или лямбда-зонда.
Прежде всего, нужно идти от общего к частному и понимать работу системы в целом. Только тогда сложится правильное понимание работы этого весьма важного элемента ЭСУД и станут понятны методы диагностики.
Чтоб не углубляться в дебри и не перегружать читателя информацией, я поведу речь о циркониевом лямбда-зонде, используемом на автомобилях ВАЗ. Желающие разобраться более глубоко могут самостоятельно найти и прочитать материалы про титановые датчики, про широкополосные датчики кислорода (ШДК) и придумать методы их проверки. Мы же поговорим о самом распространенном датчике, знакомом большинству диагностов.
Итак, датчик кислорода. Когда-то очень давно он представлял собой только лишь чувствительный элемент, без какого-либо подогревателя. Нагрев датчика осуществлялся выхлопными газами и занимал весьма продолжительное время. Жесткие нормы токсичности требовали быстрого вступления датчика в полноценную работу, вследствие чего лямбда-зонд обзавелся встроенным подогревателем. Поэтому датчик кислорода ВАЗ имеет 4 вывода: два из них – подогреватель, один – масса, еще один – сигнал.
Из всех этих выводов нас интересует только сигнальный. Форму напряжения на нем можно увидеть двумя способами:
а) сканером
б) мотортестером, подключив щупы и запустив самописец.
Второй вариант, вообще говоря, предпочтительнее. Почему? Потому, что мотортестер дает возможность оценить не только текущие и пиковые значения, но и форму сигнала, и скорость его изменения. Скорость изменения – это как раз характеристика исправности датчика.
Итак, главное: датчик кислорода реагирует на кислород. Не на состав смеси. Не на угол опережения зажигания. Не на что-либо еще. Только на кислород. Это нужно осознать обязательно. Как именно это происходит, в подробностях описано здесь.
На сигнальный вывод датчика с ЭБУ подается опорное напряжение 0 . 45 В. Чтоб быть полностью уверенным, можно отключить разъем датчика и проверить это напряжение мультиметром или сканером. Все в порядке? Тогда подключаем датчик обратно.
К слову, на старых иномарках опорное напряжение «уплывает», и в итоге нормальная работа зонда и всей системы нарушается. Чаще всего опорное напряжение при отключенном датчике бывает выше необходимых 0 . 45 В. Проблема решается путем подбора и установки резистора, подтягивающего напряжение к «массе», тем самым возвращая опорное напряжение на необходимый уровень.
Дальше схема работы датчика проста. Если кислорода в газах, омывающих датчик, много, то напряжение на нем упадет ниже опорного 0 . 45 В, примерно до 0 . 1 В. Если кислорода мало, напряжение станет выше, около 0 . 8 – 0 . 9 В. Прелесть циркониевого датчика в том, что он «перепрыгивает» с низкого на высокое напряжение при таком содержании кислорода в отработанных газах, которое соответствует стехиометрической смеси. Это замечательное его свойство используется для поддержания состава смеси на стехиометрическом уровне.
Поняв, как работает датчик, легко осознать методику его проверки. Предположим, ЭБУ выдает ошибку, связанную с этим датчиком. Например, Р 0131 «Низкий уровень сигнала датчика кислорода 1 ». Нужно понимать, что датчик отображает состояние системы, и если смесь действительно бедная, то он это отразит. И замена его абсолютно бессмысленна!
Как же нам выяснить, в чем кроется проблема – в датчике или в системе? Очень просто. Смоделируем ту или иную ситуацию.
1 . Например, при жалобе на бедную смесь и низком напряжении на сигнально выводе датчика увеличим подачу топлива, пережав шланг обратного слива. Или, при его отсутствии, брызнув во впускной коллектор бензина из шприца. Как отреагировал датчик? Показал ли обогащенную смесь? Если да – то нет никакого смысла его менять, нужно искать причину, почему система подает недостаточное количество топлива.
2 . Если же смесь богатая, и зонд это отображает, попробуйте создать искусственный подсос, сняв какой-нибудь вакуумный шланг. Напряжение на датчике упало? Значит, он абсолютно исправен.
3 . Третий вариант (достаточно редкий, но имеющий место). Создаем подсос, пережимаем «обратку» – а сигнал на датчике не меняется, так и висит на уровне 0 . 45 В, либо меняется, но очень медленно и в небольших пределах. Все, датчик умер. Ибо он должен чутко реагировать на изменения состава смеси, быстро меняя напряжение на сигнальном выводе.
Для более глубокого понимания добавлю, что при наличии небольшого опыта легко установить степень изношенности датчика. Это делается по крутизне фронтов перехода с богатой смеси на бедную и обратно. Хороший, исправный датчик реагирует быстро, переход почти что вертикальный (смотреть, само собой, мотортестером). Отравленный либо просто изношенный датчик реагирует медленно, фронты переходов пологие. Такой датчик требует замены.
Понимая, что датчик реагирует на кислород, можно легко уяснить еще один распространенный момент. При пропусках воспламенения, когда из цилиндра в выпускной тракт выбрасывается смесь атмосферного воздуха и бензина, лямбда-зонд отреагирует на большое количество кислорода, содержащееся в этой смеси. Поэтому при пропусках воспламенения очень возможно возникновение ошибки, указывающей на бедную топливо-воздушную смесь.
Хочется обратить внимание еще на один важный момент: возможный подсос атмосферного воздуха в выпускной тракт перед лямбда-зондом. Мы упоминали, что датчик реагирует на кислород. Что же будет, если в выпуске будет свищ до него? Датчик отреагирует на большое содержание кислорода, что эквивалентно бедной смеси. Обратите внимание: эквивалентно! Смесь при этом может быть (и будет) богатой, а сигнал зонда ошибочно воспринимается системой как наличие бедной смеси. И ЭБУ ее обогатит! В итоге имеем парадоксальную ситуацию: ошибка «бедная смесь», а газоанализатор показывает, что она богатая. Кстати сказать, газоанализатор в данном случае – очень хороший помощник диагноста. Как пользоваться извлекаемой с его помощью информацией, описано в этой статье.
1 . Нужно совершенно четко отличать неисправность ЭСУД от неисправности лямбда-зонда.
2 . Проверить зонд можно, контролируя напряжение на его сигнальном выводе сканером или подключив к сигнальному выводу мотортестер.
3 . Искусственно смоделировав обедненную или, наоборот, обогащенную смесь и отследив реакцию зонда, можно сделать достоверный вывод о его исправности.
4 . По крутизне перехода напряжения от состояния «богато» к состоянию «бедно» и наоборот легко сделать вывод о состоянии лямбда-зонда и его остаточном ресурсе.
5 . Наличие ошибки, указывающей на дефект лямбда-зонда, отнюдь не является поводом для его замены.
Система выпуска ОГ
E46, E83, E85, E87, E90, E91 / N40, N42, N45, N46
Системы выпуска ОГ для 4-цилиндровых бензиновых двигателей нового поколения (= NG4) с момента запуска в серийное производство 03/2001 непрерывно совершенствовались.
При этом новые модели разрабатывались с учетом особенностей автомобилей конкретных серий.
На E46 Компакт в начале 2001 года были установлены 4-цилиндровые бензиновые двигатели с Valvetronic первого поколения (N42B18).
С этой целью была разработана Y-образная система выпуска ОГ, которая состояла из 2 первичных катализаторов, расположенных рядом с двигателем, и 1 основного катализатора. Данная система вместе с системой подачи добавочного воздуха обеспечила соответствие норме токсичности ОГ D4 или EURO 3.
С 12/2002 на E46 с левым рулем и МКПП данная система выпуска ОГ была заменена вариантом с соединительными патрубками, изолированными воздушным зазором.
Эта система имеет следующие преимущества:
- ранняя готовность к работе за счет большей активности катализатора и обеспечение, тем самым, соответствия норме токсичности ОГ EURO 4;
- более низкое противодавление ОГ;
- снижение расходов на производство благодаря отказу от использования первичных катализаторов и регулировки значения лямбда при помощи 2 лямбда-зондов вместо 4.
С началом выпуска серий E87 и E90 были разработаны системы выпуска ОГ с катализаторами, расположенными рядом с двигателем.
Благодаря этому удалось добиться дополнительных преимуществ:
- меньше вариантов за счет единой концепции для
- еще более совершенные параметры реагирования и быстрая готовность к работе;
- соответствие норме токсичности ОГ EURO 4 даже без использования системы подачи добавочного воздуха;
- вариант двигателя N46B20oL (более мощная версия) с системой выпуска ОГ "4 в 2 в 1" с 2 катализаторами и 4 лямбда-зондами при оптимальном противодавлении ОГ;
- экономичная система выпуска ОГ "4 в 1" с одним катализатором и 2 зондами для забора ОГ для N46B20uL (менее мощная версия) и N45B16.
В обзоре системы представлены все варианты для конкретных серий и двигателей.
[Обзор системы . ]
Краткое описание узла
- Лямбда-зонды
В зависимости от варианта системы выпуска ОГ применяются различные лямбда-зонды.
Широкополосные лямбда-зонды (модель LSU4.2 фирмы Bosch) устанавливаются для N42 и N46 перед катализатором как регулирующие зонды.
[подробнее . ]
Зонды, реагирующие на скачок сопротивления (LSH25 или NTK FLO), для N40 и N45, а также для N42 и N46 применяются в качестве контрольных зондов.
Для N40 и N45 данные зонды (LSF4.2 и NTK FLO) устанавливаются также перед катализатором как регулирующие зонды.
- Катализатор
Катализатор уменьшает выброс вредных веществ:
Цифровая электронная система управления двигателем (DME) непрерывно регулирует параметры топливно-воздушной смеси по следующим критериям:
Для этого система DME при помощи лямбда-зондов регистрирует содержание кислорода в ОГ и на основании полученных данных корректирует количество впрыскиваемого топлива.
ME9.2 управляет исключительно, так называемыми, "моносистемами выпуска ОГ" двигателей N40 и N45. В работе "моносистемы выпуска ОГ" задействовано по одному зонду, реагирующему на скачок сопротивления, перед катализатором и за ним.
ME9.2 с внешним ЭБУ Valvetronic (N42) и MEV9.2 с механизмом активизации Valvetronic, встроенным в ЭБУ DME, (N46) имеют:
Это обеспечивает возможность управления как "стерео- и моносистемами выпуска ОГ, так и Y-образными системами".
Встроенная в DME модель для температуры ОГ выполняет среди прочих следующие функции:
Непременным условием соблюдения жестких предельных значений токсичности ОГ является быстрая готовность лямбда-зонда к работе. Для этого, как можно раньше активизируются встроенные в лямбда-зонд нагревательные элементы. В то же время разрешающий сигнал максимального тока нагрева подается лишь в том случае, если на лямбда-зондах отсутствует конденсат. В противном случае произойдет повреждение керамики лямбда-зонда.
Другая важная функция DME заключается в контроле нейтрализующей способности катализатора, а также в контроле лямбда-зондов и в выведении информации о неисправности на дисплей в случае ее наличия.
С этой целью DME осуществляет следующую электрическую и функциональную диагностику:
Функционирование системы
Для нейтрализации вредных веществ катализатору требуется регулировка значения лямбда. Такая регулировка осуществляется с помощью электронной системы управления двигателем и лямбда-зондов.
Регулировка значения лямбда
Условием полного и бесперебойного сгорания является следующее соотношение смеси: 1 кг топлива и примерно 14,7 кг воздуха. Количество воздуха при этом приблизительно соответствует 11 куб. м.
Соотношение фактически поданного количества воздуха и фактически впрыснутого количества топлива называется лямбда. При нормальной работе автомобиля значение лямбда колеблется. Наибольшей мощности двигатель достигает при дефиците воздуха (лямбда около 0,9 = обогащенная смесь). Наименьший расход двигатель имеет при избытке воздуха (лямбда около 1,1 = обедненная смесь).
Катализатор обеспечивает оптимальное снижение выброса вредных веществ, если значение лямбда смеси примерно = 1.
Коэффициент нейтрализации, т. е. доля нейтрализованных вредных веществ, составляет у современных катализаторов от 98 почти до 100 процентов.
Оптимальный состав топливно-воздушной смеси регулируется цифровой электронной системой управления двигателем (DME). При этом лямбда-зонды обеспечивают получение важной информации о составе ОГ.
Лямбда-зонд непрерывно измеряет количество остаточного кислорода в ОГ. Колеблющиеся значения остаточного кислорода передаются в виде электрического сигнала блоку управления DME. DME корректирует состав смеси, уменьшая или увеличивая количество впрыскиваемого топлива.
За катализатором находится второй лямбда-зонд (контрольный). Катализатор имеет высокую способность накапливать кислород. Поэтому за ним остается еще немного кислорода. Контрольный зонд выдает почти постоянное (сглаженное) напряжение.
По мере отравления катализатора его способность накапливать кислород снижается.
И тогда контрольный зонд реагирует все сильнее колебаниями напряжения на отклонения значения лямбда.
Эта реакция используется в рамках специальной диагностической функции для контроля катализатора. О сбое в работе катализатора сообщает сигнальная лампа выброса ОГ.
Сравнительная таблица предельных значений токсичности ОГ по EURO 4 и EURO 3
Расположенный в выпускном коллекторе двигателя l-зонд отслеживает содержание кислорода в потоке отработавших газов. При контакте молекул О2 с чувствительным элементом зонда датчик вырабатывает амплитудный сигнал в диапазоне от 0.1 до 0.9 В, в зависимости от концентрации кислорода. Причем, значению 0.1 В соответствует высокое содержание О2 (обедненная смесь), а значению 0.9 В низкое (обогащенная смесь). ЕСМ/РСМ непрерывно контролирует поступающий с кислородного датчика сигнал, в случае необходимости выдавая команды на корректировку состава воздушно-топливной смеси за счет изменения продолжительности открывания инжекторов впрыска. Оптимальное соотношение компонентов горючей смеси, гарантирующее минимальный расход топлива при наиболее эффективном функционировании каталитического преобразователя, составляет 14.7 частей воздуха на 1 часть топлива, именно его модуль управления и старается постоянно поддерживать, ориентируясь на поступающую с l-зонда информацию.
Следует отметить, что кислородный датчик способен вырабатывать сигнальное напряжение только будучи прогретым до нормальной рабочей температуры (около 320°С). Пока датчик находится в холодно состоянии ЕСМ/РСМ работает в режиме РАЗОМКНУТОГО КОНТУРА.
Если при прогретом до нормальной рабочей температуры и/или работающем в течение не менее двух минут двигателе кислородный датчик вырабатывает стабильный сигнал амплитудой 0.45 В (при оборотах не ниже 1500 в минуту), система самодиагностики заносит в память ЕСМ/РСМ соответствующий код неисправности (см. Проверка исправности состояния и замена датчика ВМТ/положения коленчатого вала/положения поршней в цилиндрах двигателя (TDC/СКР/CYP)). Код заносится также в случае выявления неисправности в цепи нагревателя датчика.
В случае нарушения исправности функционирования l-зонда или его цепи ЕСМ/РСМ переходит в режим разомкнутого контура, игнорируя поступающую от датчика информацию и поддерживая состав воздушно-топливной смеси на некотором заданном уровне, обеспечивающем достаточную эффективность отдачи двигателя.
Исправность функционирования кислородного датчика зависит от выполнения совокупности некоторых определенных условий:
a) Электрические параметры: Стабильность вырабатываемого датчиком амплитудного сигнала низкого напряжения в большой степени зависит от качества контактных соединений цепи l-зонда, которое и следует проверять в первую очередь в случае возникновения проблем;
b) Подача наружного воздуха: Конструкция l-зонда предусматривает свободную циркуляцию наружного воздуха внутри датчика. При установке зонда всегда проверяйте проходимость воздушных каналов;
c) Рабочая температура: ЕСМ/РСМ начинает реагировать на поступающую от l-зонда информацию только после того как датчик будет прогрет до нормальной рабочей температуры (около 320°С). данный факт следует не упускать из виду при проверке исправности функционирования зонда;
d) Качество топлива: Исправное функционирование l-зонда становится возможным только при условии применения для заправки автомобиля НЕЭТИЛИРОВАННОГО топлива!
В дополнение к перечисленным в предыдущем параграфе условиям при обслуживании l-зонда следует соблюдать некоторые особые меры предосторожности:
a) Кислородный датчик оборудован намертво вмонтированным в него и оборудованным контактным штекером отрезком электропроводки, попытки отсоединения которого могут привести к необратимому выходу датчика из строя;
b) Старайтесь не допускать попадания в жалюзи датчика или его электрический разъем грязи и смазки;
c) Не используйте для очистки кислородного датчика никакие растворители;
d) Обращайтесь с l-зондом крайне осторожно, не роняйте его и старайтесь не стряхивать;
e) Силиконовый защитный чехол должен одеваться на датчик строго определенным образом, чтобы не быть расплавленным и не нарушать исправность функционирования зонда.
Идентификация контактных клемм разъема может быть произведена при помощи схем электрических соединений (см. Главу Бортовое электрооборудование). Подсоедините к скрепке положительный щуп вольтметра, отрицательный вывод заземлите.
1. Отсоедините отрицательный провод от батареи. Поддомкратьте автомобиль и установите его на подпорки.
Сегодня научимся самостоятельно диагностировать исправность лямбда-зондов. Это пригодится в том случае, если на приборной панели выпал сигнал «Check Engine» и сканер показывает ошибки по датчикам кислорода. Это еще может проявляться повышенным расходом топлива, переобогащенной топливной смесью, о чем будут свидетельствовать черный нагар на свечах зажигания, об этом подробно писал здесь .
Поэтому, исправность этих датчиков важно для стабильной и нормальной работы двигателя. При проявлениях этих симптомов можно обратиться к специалистам. Но, как настоящий автолюбитель, можно самостоятельно их проверить. Для этого понадобится только мультиметр – это недорогое устройство, которое всегда пригодиться при диагностике неисправностей электрооборудования автомобиля.
Существует несколько разновидностей лямбда-зондов. Каждый из них диагностируется по-своему. Давайте с начало разберем особенности каждого типа.
Какие бывают кислородные датчики
Они разделяются на три типа:
- Без подогрева;
- С подогревом;
- Широкополосные.
В зависимости от типа и конструкции они бывают с одним или пятью проводами. Именно этот параметр для нас сегодня важен. По нему мы сможем диагностировать неисправности лямбда-зонда. Давайте рассмотрим этот параметр ближе.
- Кислородный датчик с одним проводом черного цвета – это сигнальный провод. Это самая простая «лямбда».
- С двумя проводами. Черный – сигнал, Серый или белый – масса.
- Три провода. Черный сигнал. Два белых отвечают за нагревательный элемент.
- Четыре провода. Черный сигнал. Белые провода – нагревательный элемент, серый – масса. В некоторых случаях белый провод – питание нагревателя, коричневый – «земля» нагревательного элемента.
- С пятью проводами. Желтый – Минус нагревательного элемента. Синий – плюсовой провод нагревательного элемента. Белый – сигнал тока накачки кислорода в камеру. Серый – сигнал измерительной ячейки. Два черных – «земля» сигнального провода накачки и измерительной ячейки.
Вдаваться в подробности, как работает лямбда-зонд не буду. Это тема отдельной статьи . Сегодня научимся «прозванивать» каждый из видов кислородных датчиков.
Датчик с одним или двумя проводами
Принцип их работы одинаковый, разница только в количестве проводов. У первого, черный – это сигнальный, а масса является корпусом лямбды. У второго, черный – сигнал, серый – масса. Поэтому, проверка у них одинаковая, отличается только куда подключат щупы мультиметра.
Проверяем опорное напряжение
За него отвечает черный провод. Сдвигаем немного изоляцию на «фишке» со стороны датчик, чтобы добраться до проводов и видеть их цвета.
Вставляем в разъем черного провода плюсовой вывод мультиметра. Если датчик с одним проводом, то минус прибора подключаем к минусовой клемме аккумулятора. Если два проводка идут от лямбды, то минусовый щуп вставляем в разъем серого провода.
Переводим режим мультиметра в измерение постоянного напряжения в пределах «20 В». Включаем зажигание автомобиля, но не заводим двигатель. На приборе должно быть значение «0,45 В» . Это нормальное показание, опорное напряжение в норме.
Если оно отсутствует или сильно занижено, значит, блок управления двигателем не выдает необходимого опорного напряжения на лямбда-датчик. Он правильно работать не будет. Нужно искать проблему в ЭБУ мотора.
В случае двухпроводной лямбды может отсутствовать «земля» на сером проводе . Возможен обрыв на нем или блок управления не «присылает» минус – проблемы в электронике блока. Чтобы в этом убедиться, можно минусовый щуп мультиметра подключить к «минусу» аккумулятора. Если на приборе покажутся заветные «0,45 В», значит нет «массы» в ЭБУ.
Проверяем работоспособность активного элемента лямбда-зонда
Щупы прибора оставляем в таком же положении. Заводим мотор автомобиля, даем ему немного прогреться. Показания мультиметра должны изменяться приблизительно в течение 1 секунды от 0,1 до 0,9 В. Если они неизменные, то датчик неисправен.
Чтобы сильнее убедиться в работоспособности лямбды, можно снять с ресивера вакуумный шланг, то есть увеличить количество воздуха во впускном коллекторе после ДМРВ (датчика массового расхода воздуха), тем самым обеднить смесь. Показания мультиметра должны измениться, то есть, границы амплитуды изменения напряжения поменяются.
Проверка датчика с тремя и четырьмя проводами
В этих лямбда-зондах используется подогреватель. Поэтому добавляются дополнительные провода белого цвета – плюс и минус нагревательного элемента. Проверка опорного напряжения и активного элемента датчика происходит таким же образом, как описано выше.
В нашем случае нужно проверить работоспособность нагревателя. Он питается от главного реле напряжением в «12 В», блок управления является «массой». Подключаем один щуп мультиметра к любому из белых проводов датчика, второй – ко второму того же цвета. Включаем зажигание, на приборе должно быть напряжение бортовой сети, то есть около 12 Вольт.
Читайте также: