Аналоговый тахометр на микросхеме
Основная задача тахометра в автомобиле – это помощь выбора правильной передачи, что положительно влияет на срок работы двигателя. В большинстве автомобилей уже имеется аналоговый тахометр и когда его стрелка приближается к красной отметке, необходимо переключиться на повышенную передачу.
Кроме того автовладельцы применяют для регулировочных работ, как на холостом ходу, так и для контроля частоты вращения вала двигателя во время движения.
Физический принцип работы тахометра заложен в подсчете числа импульсов, которые регистрируются датчиками, порядка их поступления, а также пауз между этими импульсами.
При этом подсчет количества импульсов можно выполнить различными методами: в прямом, в обратном и в обоих направлениях. Полученные результаты, обычно, трансформируются в нужные нам величины. Такой величиной можно считать часы, минуты, секунды, метры и тому подобное.
Конструкция всех тахометров позволяет обнулять полученные значения. Точность данных результатов измерений достаточно условна, около 500 об/мин, самые точные электронные тахометры измеряют с погрешностью до 100 об/мин.
Какие виды автомобильных тахометров существуют?
Автомобильные тахометры бывают двух видов цифровые и аналоговые. Цифровой автомобильный тахометр состоит из следующих блоков:
На дисплей цифрового автомобильного тахометра, выводятся результаты измерений оборотов вала и двигателя. Цифровой тахометр очень полезен при регулировочных операциях с электронными блоками зажигания двигателя автомобиля, при точной установке порогов экономайзера и др.
Аналоговые автомобильные тахометры более распространены и понятны большему числу автолюбителей. Он показывает результаты измерений с помощью перемещающейся стрелки.
Обычно аналоговый тахометр состоит из:
Работает такой тахометр следующим образом. Сигнал от коленчатого вала поступает по проводам на микросхему, которая определяет положение стрелки по градуированному циферблату.
В автомобиле лучше всего иметь и тот и другой вид тахометра. Так цифровой отлично справляется с регулировкой холостого хода, проверки работы блока управления ЭПХХ (экономайзер принудительного холостого хода) и проверки штатного тахометра (т.к цифровой тахометр обладает гораздо более высокой точностью). Во время управления автомобилем гораздо удобнее использовать штатный аналоговый тахометром, т.к глаз и мозг человека лучше и быстрее анализирует аналоговую информацию, чем ее цифровое значение, а лучшая точность во время управления транспортным средством совсем не требуется.
Кроме того тахометры классифицируются также по способу установки. Существуют штатный и выносной автомобильный тахометр. Первый монтируется непосредственно в приборную панель автомобиля. «Он» более прост и используется в большинстве автомобилей. Выносной тахометр предназначен для установки его на торпедной панели. Они используются для придания автомобилю более тюнингового внешнего вида. В конструкция выносного тахометра имеется ножка для закрепления его на торпедной панели.
Самодельный цифровой тахометр автомобильный индикатор
Ниже представлена схема квазианалогового электронного тахометра. Принцип ее работы следующий. Частота вращения коленвала двигателя отображается на упрощенной линейной шкале из светодиодов. Шкала цифрового тахометра состоит из девяти светодиодов. Каждый из них примерно соответствует 600 оборотам в минуту двигателя. На холостом ходу светится только первый светодиод. Регулировка тахометра осуществляется путем подбора сопротивления R6. В зависимости от него, можно настроить индикаторы на требуемое количество цилиндров. Можно поменять и цену деления.
В качестве источника импульсов для правильной работы цифрового тахометра может быть датчик Холла, который присутствует в электронной системе зажигания, датчик положения вала и другие. Главное чтоб датчик посылал на нашу схему импульсы, которые меняют сопротивление резистора R1.
Данная схема работает как простой частотомер. Импульсы, которые постоянно идут от датчика двигателя, поступают на счетный вход десятичного счетчика К561ИЕ8, и далее на светодиоды. Запитать схему можно от прикуривателя или разъема подключения автомагнитолы.
Диод VD1 КД522 защищает схему от неправильного подключения полярности питания. Датчик оборотов коленчатого вала шлет импульсы на базу транзистора VT1. Сопротивление R1 выбираем в зависимости от датчика (на схеме сопротивление подобрано для датчика Холла в бесконтактной системе зажигания карбюраторного двигателя). С выхода VT1 импульсы попадают на триггер Шмитта, выполненный на элементах D1.1-D1.2. Он преобразует импульсы в требуемую прямоугольную форму. Конденсатор С2 фильтрует помехи, в паре с резистором R4 он составляет фильтр, срезающий импульсы высокой частоты. С Выхода D1.2 импульсы поступают на счетчик.
Мультивибратор собранный на элементах микросхемы D1.3 и D1.4 генерирует тактовые импульсы частотой зависящей от R6. Эти импульсы идут на цепочку C3-R7, что формирует импульс для обнуления счетчика D2. Сверхяркие светодиоды HL1-HL9 подключены непосредственно к выходам счетчика К561ИЕ8. С помощью R9 можно регулировать яркость индикации.
Светодиоды 1-4 на печатной плате подключаются монтажным проводом.
Наладку конструкции начинается с расчета значения резистора R1 в соответствии от размаха входящих импульсов. Затем заменяем R6 последовательно включенными переменными резисторами на 1 Ом и постоянным на 10 кОм. Далее подкручиваем переменный резистор на максимальное сопротивление. Затем крутим его так, чтобы на холостом ходу двигателя загорелись только два светодиода. Отмечаем это положение подстроечного резистора. Затем уменьшаем сопротивление, чтобы горел только один светодиод. Затем регулируем резистор в среднем положение. Далее измеряем мультиметром полученное сопротивление R8.
Итак, приступаем к изготовлению важного элемента - датчик. Нам потребуется излучающий ИК-светодиод и фотодиод.
Сначала необходимо зашкурить светодиод и фотодиод, чтобы сделать их максимально плоскими. Затем складываем полоску, как показано на фотографии и делаем две структуры так, чтобы светодиод и фотодиод плотно сели в них. Соединяем их вместе клеем и красим в черный цвет. Вставляем в них светодиод и фотодиод. Склеиваем их с помощью суперклея и припаеваем провода.
Номиналы сопротивлений могут отличаться в зависимости от типа фотодиода. Потенциометр снижает или увеличивает чувствительность датчика. Припаяйте провода датчика в соответствии с фото ниже.
Конструкция тахометра использует 8-разрядный сдвиговый регистр 74HC595 с ЖК дисплеем 16х2. В корпусе тахометра необходимо сделать небольшое отверстие для фиксации LED индикатора.
Припаеваем 270-омное сопротивление к светодиоду и вставляем в 12-й пин Arduino. Датчик желательно поместить в кубическую трубку.
В данной радиолюбительской конструкции микросхема таймера включена по схеме моностабильного мультивибратора. Период импульсов зависит от резистора 47кОм и конденсатора 100нФ на шестом выводе микросхемы.
Импульсы от распределителя зажигания идут через ограничительный резистор номиналом 1 кОм и стабилитрон. Затем, через разделительную емкость 100нФ попадаютна микросхему. С выхода таймера, импульсы тока через потенциометр поступают на амперметр. Схема питается от автомобильной бортовой сети.
Эта схема позаимствована из старого выпуска журнала Радио, 1983, N9
Цифровой тахометр состоит из узла управления собранных на триггере DD1 и элементов И-НЕ DD2.1, DD2.3, DD2.4; двух генераторов на транзисторах VT1-VT4; входного формирователя импульсов - триггера Шмитта VT5, DD2.2; счетчика импульсов на микросхеме К155ИЕ2; промежуточной памяти на К155ТМ5; дешифратора на КР514ИД2 DD7, DD8 и индикатора HI.
Мультивибратор на первой паре транзисторов КТ315Г задает время измерения, а мультивибратор на VT3, VT4 - рабочий цикл тахометра. В схему цифрового тахометра для исключения мерцания цифр индикатора во время счета добавлена промежуточная память на триггерах . Они синхронизируются сигналом с восьмой ножки DD1, проходящим через конденсатор С4 и DD9.1 для получения требуемой длительности и фазы. Время рабочего цикла можно изменить с помощью резистора R11, а время измерения - подбором сопротивления R7.
Для автомобильного четырехтактного четырехцилиндрового двигателя используется индуктивный датчик. Его легко собрать намотав 50-70 витков провода ПЭЛ 1.0 виток к витку на высоковольтном проводе, от распределителя зажигания до катушки зажигания. Один конец индукционного датчика изолируем, а другой - соединяем со входом тахометра.
Частота импульсов зажигания определяется по формуле: f = 2n/60, где n - число оборотов в минуту вала двигателя.
Если числа оборотов двигателя 3000 то частота будет 100 Гц. Но так как индикатор тахометра должен показывать в это время 3.0, на счетчик должно поступить только 30 импульсов из 100 за секунду. Поэтому время измерения в данном случае устанавливается 0,3 секунды. Время рабочего цикла должно быть в 10-20 раз больше (3-6 с).
Двухразрядный индикатор VQE24 можно заменить - АЛС324Б или АЛС342Б. Все отечественные микросхемы серии 155 можно заменить на соответствующие серий 133, 555, 1533 или их зарубежные аналоги. Если вас заинтересовала эта схема цифрового тахометра то чертеж печатной платы вы можете найти в журнале радио ссылка на который чуть выше.
Устройство подойдет для измерения оборотов любого двигателя. Начиная от мопедного одно цилиндрового двухтактного и заканчивая шестнадцати цилиндровым четырехтактным двигателем. Индикация результатов осуществляется на четырех разрядном цифровом индикаторе.
После подачи напряжения питания — устройство сразу начинает фиксировать обороты. Однократное нажатие кнопки — вызовет индикацию установленных количества импульсов на 1 оборот (по умолчанию задается два импульса на один оборот, что подходит для четырех тактного четырех цилиндровому двигателю). На экране будет высвечиваться значение Р-2,0. Вторичное нажатие кнопки, сделает возможным выбор всех допустимых значений — от 0,5 до 8 импульсов на один оборот. После выбора необходимого количества импульсов, через пять секунд — прибор запишит ваш выбор в память EEPROM (т.е. при последующем включении прибора, не требуется опять задовать количество импульсов). Устройство само перейдет в режим измерения оборотов с вновь заданным количеством импульсов.
Рисунок печатной платы для программы Sprint Layout и прошивку контроллера можно скачать по ссылке выше.
Рассматриваемый бесконтактный тахометр – это компактное устройство на микроконтроллере ATMega48 производства компании Atmel, позволяющее измерять высокие скорости вращения бесконтактным способом. Для измерения используется ИК сенсор (оптопара, ИК светодиод и ИК фотодиод в одном корпусе). Вывод данных осуществляется на двухстрочный символьный ЖК дисплей на базе контроллера HD44780.
Принцип работы
ИК сенсор (оптопара), представляющий собой миниатюрный компонент с ИК светодиодом и фотодиодом в одном корпусе, посылает ИК излучение на вращающийся механизм (вал, ротор двигателя), на котором должна быть небольшая отражающая наклейка.
Благодаря этой наклейке, каждый оборот вала вызывает появление отраженного импульса ИК излучения. Используемый сенсор производства компании Vishay Semiconductor имеет маркировку TCND-5000.
Данный сенсор был выбран после тестирования эквивалентных продуктов, так как его корпус обеспечивал оптическую изоляцию передающей и приемной части, а ИК светодиод выдерживает большие токи, что позволяет проводить измерения на больших расстояниях.
Таким образом, используя оптопару мы можем подсчитать время полного оборота вала, а далее, зная время (обозначим это время T в секундах), мы можем вычислит количество оборотов в минуту, используя простое выражение 60/T.
Получение данных от сенсора
Для снижения стоимости устройства и сложности сборки, а также для повышения гибкости системы, мы непосредственно подключим ИК сенсор к микроконтроллеру и программно реализуем всю обработку получаемого сигнала. Сразу стоит заметить, что это не так просто, так как получаемый с ИК фотодиода сигнал содержит шумы, а внешнее освещение постоянно оказывает на него влияние. Таким образом, проблема состоит в том, чтобы разработать устройство с автоматической адаптацией к внешней освещенности и расстоянию до объекта измерения.
На рисунке ниже изображена диаграмма аналогового сигнала от ИК сенсора (фотодиода)
Так как сигнал имеет шумы, при каждом определении наличия и отсутствия импульса (наличие импульса говорит о том, что вал вращается и сенсор «видит» отражающую наклейку), большое количество колебаний «вводит в заблуждение» микроконтроллер. Кроме того, эти факторы не позволяют использовать встроенный в микроконтроллер аналоговый компаратор, и нам необходимо ввести обработку аналогового сигнала перед каждой процедурой подсчета циклов.
Решение было найдено в оценке средней интенсивности, основанную на максимальном и минимальном значении интенсивности сигнала от сенсора, и включением гистерезиса в районе средней интенсивности. Гистерезис используется для предотвращения многократного счета циклов зашумленных импульсов. Рисунок ниже поясняет работу такого алгоритма.
Когда сигнал нарастает от низкого состояния (отсутствует отражение от наклейки на валу) к высокому (отражение ИК импульса), алгоритм возьмет в расчет этот импульс высокого уровня лишь после того, как он пересечет «возрастающий уровень» гистерезиса, и примет в расчет низкий уровень лишь после того, как сигнал пересечет «спадающий уровень» гистерезиса. Такой алгоритм позволяет избежать ошибок вычислений, вызываемых шумным сигналом.
Принципиальная схема устройства
Схемотехническое решение очень простое и компактное (благодаря использованию миниатюрного сенсора), не содержит дорогостоящих компонентов. Питание устройства осуществляется от трех батарей типа AAA.
Как вы, наверное, заметили, отсутствует потенциометр регулировки контрастности дисплея (что также позволяет уменьшить размер устройства). Это возможно благодаря программной реализации алгоритма автоматической подстройки контрастности в зависимости от уровня напряжения питания с применением ШИМ и фильтра низких частот на элементах R3, R4 и C2. Пользователи могут ознакомиться с текстом алгоритма в исходном коде ПО микроконтроллера во второй части статьи.
Разъем JP1 предназначен для внутрисхемного программирования микроконтроллера. Разъем JP2 предназначен для подключения дополнительного пользовательского датчика.
Список примененных компонентов
Обозначение в схеме | Наименование, номинал |
IC1 | Микроконтроллер ATmega48 |
Q1, Q2 | Транзистор BCW66G |
C1, C2 | 10 нФ |
C4, C5 | 33 пФ |
X1 | Кварцевый резонатор 20 МГц |
R1, R2, R7 | 470 Ом |
R3 | 1 кОм |
R4 | 1.5 кОм |
R5 | 1 МОм |
R6 | 110 Ом |
R8 | 70 Ом |
LED3 | Светодиод |
IR1 | Оптопара TCND-5000 |
B1 | Кнопка |
B2 | Выключатель питания |
JP1 | Разъем внутрисхемного программирования |
JP2 | Разъем расширения |
Демонстрация работы бесконтактного тахометра на микроконтроллере AVR
Во второй части статьи рассмотрим конструкцию прибора и основные моменты в программном обеспечении микроконтроллера, включая аналого-цифровое преобразование и организацию обмена данными с ЖК дисплеем.
В данном тахометре (как, впрочем, и в большинстве подобных цифровых приборов) использован принцип пересчета частоты импульсов (Гц) с датчиков вращения вала в число оборотов в минуту путем умножения входных импульсов на число «подставных» импульсов. Т.е., каждый из входных импульсов инициирует появление на входе счетчика n-количества импульсов, увеличивающих показания цифрового дисплея в n-раз относительно числа входных импульсов. Для конкретного ДВС количество «подставных» импульсов может быть различным и зависит от конфигурации двигателя, выражающейся:
- в количестве цилиндров
- в числе тактов
- в количестве катушек зажигания
Формула такой зависимости выглядит следующим образом: F=N*I/30*U*G, где F – частота импульсов датчиков вращения, U – число тактов, G - число катушек зажигания, N – количество оборотов в минуту, I - число цилиндров.
Так, например, исходя из приведенной формулы, число импульсов в пачке, определяемой параметрами входного импульса и частотой генератора «подставных» импульсов, для 4-тактного, 4-цилиндрового ДВС с единственной катушкой зажигания (условно назовем конфигурацию 4-1-4) составит 30; для 8-цилиндрового ДВС (8-1-4) при прочих неизменных параметрах – 15; для 6-цилиндрового (6-1-4) – 20, с учетом времени измерения счетчика равным 1с. Время измерения можно выбрать иным с пересчетом количества импульсов в пачке. В большинстве тахометров для формирования «подставных» импульсов используется числоимпульсный генератор с достаточно громоздкой схемотехникой (если речь не идет о МК) и определенными сложностями коммутации режимов. Пачка импульсов в большинстве случаев формируется по фронту входного импульса, а частота импульсов в пачке фиксирована, привязана к опорной частоте, к которой привязано так же время измерения и индикации прибора.
рис.1 Принципиальная схема тахометра
В тахометре, схема которого изображена на рис.1, пачка импульсов формируется импульсом определенной фиксированной длительности, сформированным из входного импульса одновибратором на микросхеме U3 и генератором "подставных" импульсов на элементе U1.2. Если длительность выходного положительного импульса одновибратора (U3), предположим, составит 3мс, то для размещения в нем 30-ти импульсной пачки, период импульсной последовательности генератора на элементе U1 должен составить 100мкс. Т.е., частота генератора на элементе U1.2 должна составить 10кГц. Тогда при входной частоте сигналов датчиков вращения вала равной 40Гц, времени измерения 1с для 4-тактного 4-цилиндрового ДВС с единичной катушкой зажигания показания тахометра будут равны 1200об/м.
При уменьшении времени измерения количество «подставных» импульсов должно быть пропорционально увеличено, так же, как и при изменении числа тактов работы ДВС или числа катушек зажигания. При увеличении количества цилиндров число «подставных» импульсов должно быть пропорционально уменьшено.
Таким образом, импульс датчика, полученный по любому из входов (“IND” или ”DH”), преобразуется микросхемой U3 в положительный импульс длительностью 3мс. На время действия импульса разрешается запуск генератора «подставных» импульсов (U1.2), которые в инверсном виде после элемента U1.3 попадают на вход CLK (вывод 12) микросхемы МС14553 (U4), которая и производит счет импульсов. Время счета определяется длительностью положительного импульса по входу DIS (вывод 11). По спаду импульса на входе DIS данные на выходах микросхемы U4 Q0-Q3 фиксируются до прихода короткого положительного импульса на вход MR (вывод 13) микросхемы U4. Время счета и время до сброса индикации задается тактовым генератором на элементе U1.1. Длительности импульсов для счета и индикации выставляются значениями сопротивлений R10 и R12. Счет импульсов происходит во время, когда данные на выходах U4 зафиксированы и на дисплее, управляемым дешифратором U5 (или U6), не визуализируется процесс счета, - высвечиваются показания предыдущего счетного цикла или нулевые значения (до окончания первого цикла).
Микросхема МС14553 содержит три декадных счетчика, обеспечивающих режим динамической индикации, что позволяет обойтись небольшим количеством микросхем. Частота переключения выходов декад задается встроенным в микросхему генератором, частота которого определяется внешним конденсатором С11.
Работа дешифратора на микросхеме U5 (или U6), как и счетчика (U4), - возможна со светодиодными индикаторами, имеющими различные общие электроды. В качестве U5 подразумевается использование отечественных микросхем К176ИД2 или ИД3. Второй из них имеет открытые стоковые выходы ключей с p-каналом. В качестве дешифратора U6 должна использоваться микросхема MC14543, являющаяся практически полным аналогом микросхемы К176ИД2 (неполное совпадение цоколевки). Для использования индикаторов с общим анодом необходимо наличие транзисторов VT3-VT5, наличие резисторов R23-R30 (в случае использования U5 – К176ИД3), наличие перемычки ОА. При использовании в качестве U5 микросхемы К176ИД2 или в качестве U6 микросхемы МС14543, необходимость в резисторах R23-R30 отпадает. Резисторы R21-R24 при этом на плату не устанавливаются. При использовании индикаторов с общим катодом, перемычка ОА должна отсутствовать, VT3-VT5 так же не устанавливаются на плату, устанавливаются резисторы R21-R24. Важной особенностью используемых микросхем дешифраторов является встроенная опция ограничения тока выходных ключей, благодаря чему, индикаторы можно подключать к выходам микросхем без токоограничительных резисторов.
В схему тахометра для удобства настройки внедрен генератор импульсов на микросхеме U2 с диапазоном изменения частоты импульсной последовательности 10-200Гц (приблизительно). Генератор при необходимости подключается нажатием фиксированной кнопки S1 к входу "DH" тахометра.
Индикатор тахометра - 3-разрядный. "Тысячный" разряд выделен децимальной точкой. Светодиод HL3 индицирует подключение встроенного генератора в схему. Светодиод HL1 индицирует состояние входов (сигналы датчиков), HL2 - импульсы на выходе формирователя.
Все настройки тахометра взаимозависимы и начинать настройку прибора следует с установки длительности импульса на выходе микросхемы U3. Для этого следует подать на вход сигнал встроенного генератора на вход "DH" тахометра (кнопкой S1) и, контролируя с помощью осциллографа или частотомера (в режиме измерения длительности импульсов) выставить длительность выходного импульса формирователя равным 3мс (потенциометр PR3). Длительность импульса должна оставаться неизменной во всем диапазоне частот встроенного генератора.
Далее частоту генератора на элементе U1.2, контролируя импульсы частотомером на выводе 4 U1, необходимо выставить равной 10кГц (PR1). Частота тактового генератора на элементе должна быть равна 0,5Гц. При этом счет импульсов будет происходить в течении секунды. На этом настройка для конфигурации ДВС 4-1-4 (см. выше) закончена. Для настройки режимов тахометра под ДВС с иной конфигурацией, используется та же методика.
рис.2 макет тахометра
Тахометр был собран в нескольких вариантах (с использованием различных комплектующих) на макетной плате (рис.2). На рис.1 показан оптимальный вариант принципиальной схемы из версий, отработанных на макетной плате. Характеристики тахометра сравнивались с тахометром, собранным на МК (рис.3).
рис.3 сравнение работы двух тахометров
Кроме несколько большего ухода показаний за час работы (+50 относительно прибора с МК, что вполне предсказуемо) при фиксированной частоте входной импульсной последовательности, прочих недостатков замечено не было.
В генераторах тахометра желательно использовать конденсаторы и резисторы высокого качества, т.к. точность прибора во многом будет определяться качеством компонентов и их температурной зависимостью при отсутствии стабилизированной опорной частоты.
рис.4 вид печатной платы тахометра
Для тахометра была разработана печатная плата (рис.4) с размерами 75Х50мм. Предусмотрена возможность установки одной из указанных выше микросхем-дешифраторов; возможность установки 3-разрядных дисплеев размером 0,56" или 0,36".
Тахометр можно сделать многорежимным, используя простую коммутацию предварительно подобранных резисторов R6, меняя частоту генератора (элемент U1.2) «подставных» импульсов, изменяя тем самым количество импульсов в пачке. Коммутировать таким образом можно и время счета, изменяя частоту генератора на элементе U1.1. При этом элементы коммутации следует располагать на печатной плате для сохранения стабильности генерации и уменьшения влияния внешних электромагнитных проявлений. В данной печатной плате не предусмотрена установка элементов коммутации.
Тахометр предназначен для питания от бортовой сети автомобиля (+12В) и гарантированно работоспособен в диапазоне напряжений +10,5…+16,5В. Ток потребления в указанном диапазоне напряжений, при активности всех сегментов светодиодного индикатора и наличии входного сигнала, не превышает 60мА.
Автомобильный тахометр — это измерительный прибор, который предназначен для измерения количества оборотов коленчатого вала двигателя в минуту (об/мин). Раньше в автомобили устанавливались механические тахометры. В современных автомобилях устанавливаются электрические или электронные тахометры.
Во время работы двигателя автомобиля тахометр позволяет контролировать стабильность его оборотов на холостом ходу и при движении автомобиля. По стабильности оборотов на холостом ходу можно судить о состоянии системы подачи топлива, системы зажигания и самого двигателя.
При установке оборотов холостого хода и регулировки угла опережения зажигания двигателя с помощью стробоскопа без тахометра не обойтись. Необходимо одновременно производить регулировку и наблюдать за оборотами двигателя. После каждого подкручивания винта регулировки смотреть показания тахометра, установленного в салоне автомобиля неудобно. Может выручить установленное в салоне зеркало, но это тоже не лучшее решение. Гораздо удобнее иметь тахометр, вмонтированный в стробоскоп.
При изготовлении стробоскопа своими руками я вмонтировал, тахометр в его корпус. При проверке и настройке УОЗ двигателя такое техническое решение показало удобство в работе.
Опубликованные в Интернете аналоговые схемы тахометров отличаются большей погрешностью показаний, выполненные на цифровых микросхемах не каждому автолюбителю под силу повторить.
Предлагаемое Вашему вниманию схемное решение тахометра отличается простотой и высокой точностью показаний в независимости от изменения температуры окружающей среды и питающего напряжения. Имеет растянутую шкалу, что позволяет при применении малогабаритного стрелочного индикатора измерять частоту оборотов двигателя с высокой точностью.
Электрическая принципиальная схема
Представленная схема тахометра отличается простотой и доступностью деталей для повторения благодаря применению интегрального таймера - микросхемы КР1006ВИ1 (аналог NE555).
Схема состоит следующих функциональных узлов. Формирователя импульсов, выполненного на VT1-VT2, широтно-импульсного модулятора на микросхеме DA1 типа КР1006ВИ1 и резисторного моста на резисторах R8-R13. Для снятия показаний применен электродинамический стрелочный микроамперметр. К недостаткам схемы тахометра можно отнести необходимость балансировки моста для каждого типа миллиамперметра при повторении схемы. Но это не сложная операция.
Питающее напряжение на схему тахометра подается непосредственно с клемм автомобильного аккумулятора.
Принцип работы
При поступлении импульсов от прерывателя или катушки индуктивности, используемой в стробоскопе, конденсатор С1 через диод VD1 и резистор R1-R2 перезаряжается, создавая на базе транзистора VT1 импульсы, открывая его. В результате на коллекторе транзистора, включенного в ключевом режиме, образуются короткие положительные импульсы, длительность которых определяется емкостью конденсатора С1. VT2 служит для инвертирования импульсов, перед подачей на вход DA1. Форма импульсов приведена на электрической схеме тахометра с правой стороны, верхняя осциллограмма. На фото ниже структурная схема КР1006ВИ1.
Интегральный таймер КР1006ВИ1 включен по типовой схеме формирователя импульсов. По положительному фронту импульсов, поступающих на вход 2, микросхема формирует на выходе 3 положительные импульсы с шириной, линейно изменяющейся в зависимости от частоты поступающих на вход. Частота выше, импульсы шире. Исходная ширина импульсов зависит от постоянной времени R6, R7 и C3.
Выходящие с вывода 3 микросхемы DA1 импульсы поступают на левое плечо моста тахометра, которое образуют резисторы R8-R9 и R11. На правое плече моста тахометра, которое образуют резисторы R10 и R12, R13 поступает постоянное опорное напряжение +9В с интегрального стабилизатора напряжения К142ЕН8А. Конденсатор С4 исключает дергание стрелки тахометра при измерении низких оборотов двигателя. Стабилизатор также обеспечивает питание всех активных элементов тахометра. В диагональ моста включен микроамперметр.
Благодаря такому схемному решению удалось исключить нелинейные элементы, получить линейное показание миллиамперметра при изменении частоты и обеспечить высокую точность измерений частоты вращения двигателя за счет растянутой шкалы. Так как в тахометре, по соображениям габаритных размеров, применен малогабаритный миллиамперметр от индикатора уровня записи магнитофона, у которого длина шкалы мала, то только благодаря растянутой шкале удалось получить высокую точность показаний.
Микросхемы стабилизаторов серии К142ЕН обеспечивают стабильное выходное напряжение в широком диапазоне температуры, чем и обусловлено применение микросхемы К142ЕН8А в тахометре. Конденсаторы С2, С5 и С6 установлены для сглаживания пульсаций питающего напряжения.
Конструкция и детали
Так как схема простая, то печатную плату я не разрабатывал. Монтаж всех деталей, кроме миллиамперметра, выполнил на универсальной макетной плате размером 30 мм×50 мм. На фотографии видно как размещены элементы схемы.
Для подвода питающего напряжения и входного сигнала применен трехконтактный разъем. Шкала миллиамперметра напечатана на принтере и приклеена сверху на его штатную шкалу.
Плата с деталями закреплена в крышке корпуса стробоскопа на винтах. Миллиамперметр установлен в вырезанном в крышке корпуса прямоугольном окне и закреплен с помощью силикона.
Такая конструкция размещения тахометра обеспечивает удобство доступа к плате стробоскопа, достаточно снять крышку, отсоединить разъем.
Настройка тахометра
Если не допущены ошибки при монтаже деталей и исправны элементы схемы, то тахометр сразу начнет работать. Необходимо будет только подогнать номиналы резисторов моста. Для этого нужно с импульсного генератора подать на вход тахометра прямоугольные импульсы частотой, взятой из нижеприведенной таблицы и откалибровать шкалу.
Таблица перевода оборотов вращения двигателя в частоту | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Обороты двигателя, оборотов в минуту | 700 | 800 | 900 | 1000 | 1100 | 1200 | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 5000 | 6000 |
Частота генератора, Гц | 12 | 13 | 15 | 17 | 18 | 20 | 25 | 33 | 42 | 50 | 58 | 67 | 75 | 83 | 100 |
Частота генератора, 2×Гц | 24 | 26 | 30 | 34 | 36 | 40 | 50 | 66 | 84 | 100 | 116 | 134 | 150 | 166 | 200 |
Так как в автомобилях обычно за один оборот вала двигателя датчик выдает два импульса, то при калибровке тахометра нужно устанавливать частоту на генераторе в два раза больше. Например, при калибровке точки шкалы 800 нужно будет подать на вход тахометра импульсы частотой не 13 Гц, а 26 Гц. Ряд частот для такого случая приведен в нижней строке таблицы.
Для того, чтобы не испытывать трудностей при калибровке шкал тахометра нужно знать принцип работы мостовой схемы. Перед Вами принципиальная схема моста постоянного тока. При равенстве соотношений величин резисторов R1/R2 и R3/R4 напряжения в точках диагонали моста A и B равны, и ток через mA не протекает, стрелка стоит на нуле.
Если, например, уменьшить величину резистора R1, то напряжение в точке А увеличится, а в точке В останется прежним. Через миллиамперметр, находящийся в диагонали моста потечет ток и стрелка отклонится. То есть при постоянном напряжении в точке В и изменении напряжения в точке А стрелка прибора будет двигаться относительно шкалы.
В схеме тахометра функцию резистора R1 выполняет резистор R9, и так далее. При увеличении оборотов двигателя, частота и ширина импульсов с выхода микросхемы увеличивается и таким образом увеличивается напряжение в левой точке подключения миллиамперметра, протекающий ток увеличивается и стрелка отклоняется. Резисторы в плечах моста подобраны в таком соотношении, чтобы мост был изначально разбалансирован, и равенство напряжений в точках подключения миллиамперметра наступало при 700 оборотов двигателя.
Номиналы резисторов на схеме указаны при сопротивлении рамки миллиамперметра 1,2 кОм. Если использовать прибор, имеющий другое сопротивление рамки, то придется подбирать номинал резисторов R8, R9 и R12, R13, временно заменив их переменными. После калибровки прибора, измеряется сопротивление переменных резисторов, и они заменяется постоянными.
Переключатель S1 можно не устанавливать и настроить прибор для измерения в требуемом диапазоне по одной шкале. В таком случае точность измерений снизится в два раза. При растянутой шкале прибора такой точности тоже будет достаточно.
Тахометр, выполненный по предложенной схеме, является законченным прибором и его можно применять для измерения частоты вращения любых валов, например, двигателя моторной лодки, электродвигателей. В качестве датчиков могут использоваться датчики холла, фото и электромагнитные датчики. Достаточно доработать схему входного формирователя импульсов.
Тахометр — это устройство для преобразования неэлектрического параметра (частоты вращения) в электрический (импульсы, напряжение, сила тока). С его помощью можно определить количество оборотов за определенную единицу времени (чаще всего интервал равен 1 минуте).
Самодельный тахометр может основываться на практически любом считывающем устройстве. Очень часто применяют датчики:
- индуктивные;
- Холла;
- емкостные;
- резистивные;
- фоторезистивные;
- концевые.
Принцип работы тахометра на микроконтроллере
Если взять за основу современную элементную базу, то можно с использованием нескольких микросхем построить вполне рабочий самодельныйтахометр на светодиодах или с использованием ЖК-дисплея. Причем вариантов считывающих устройств может быть великое множество. Предусмотреть можно как подключение индуктивного, так и датчика Холла. Процесс преобразований в тахометре на микроконтроллерах:
- На оси вращения располагается диск, на краю которого имеется выступ — один зуб небольшой высоты. Размер диска может быть абсолютно любым. Главное, чтобы скорость срабатывания датчика позволяла зафиксировать один оборот.
- Напротив зуба диска устанавливается датчик. Срабатывает он лишь во время прохождения зуба возле него.
- Со считывающего устройства тахометра поступает сигнал на преобразователь, в случае если уровень сигнала маленький. Преобразователь состоит из операционного усилителя, который повышает уровень сигнала в несколько раз.
- Сигнал от операционного усилителя поступает на счетчик импульсов. Выполнен он может быть на простом микроконтроллере. Только в нем обязательно должно быть заложено программное обеспечение.
- Число импульсов, сосчитанное контроллером, подается на устройство, которое выполняет расчет данных. Это такой же микроконтроллер, но в нем заложен иной алгоритм. Устройство по определенной схеме, которая заложена в нем, считает число оборотов за некоторый промежуток времени.
- Следующий этап — это преобразование цифрового сигнала в визуальный вид. С этой задачей справляется ЖК-индикатор с микросхемой, которая им управляет.
Простое устройство для замеров скорости вращения
Но построить тахометр можно не только с микроконтроллерами. За неимением элементной базы выйти из положения поможет даже простой микрокалькулятор. Самодельный тахометр на его основе не будет обладать высокой точностью, а также выводить на дисплей число оборотов в минуту не получится. Зато калькулятор послужит неплохим счетчиком импульсов. В качестве сигнального устройства (датчика) допускается использовать индуктивные датчики, а также многие другие. При вращении диска должен появляться на датчике всего один импульс за один оборот. Причем контакты датчика должны быть нормально разомкнуты, а в момент прохождения зуба диска они замыкаются.
Это идеально, если решите использовать самодельный простой тахометр на основе калькулятора. Но такое устройство будет полезным, если измерение нужно проводить очень редко. Если же требуется постоянный мониторинг скорости, то лучше воспользоваться более надежными устройствами. Контакты просто припаиваются параллельно кнопке сложения микрокалькулятора. При проведении замера скорости вращения выполняются следующие действия:
- Включается калькулятор.
- Нажимаются кнопки «+» и «1».
- Запускается устройство, на котором необходимо провести замер скорости вращения. Одновременно с этим включается секундомер.
- Производится отсчет 30 секунд, после чего фиксируется значение на экране микрокалькулятора.
- Это число оборотов за 0,5 минуты. Удвоив его, получаете значение за 1 минуту.
Аналоговые и цифровые тахометры
Самодельный тахометр может быть двух типов:
- Аналоговым.
- Цифровым.
Различия видны из названий. Первые преобразуют электронный сигнал и выдают его на устройство индикации — вольтметры, амперметры, светодиоды. Вторые же преобразовывают аналоговый сигнал в последовательность нулей и единиц, которые с легкостью распознаются микроконтроллерами. Последние работают с такими сложными комбинациями, преобразуя в конечном счете исходную величину в числа на дисплее.
Аналоговые тахометры состоят из следующих основных узлов:
- электронной микросхемы, выполняющей роль усилителя и преобразователя аналогового сигнала;
- проводки, соединяющей все элементы тахометра;
- шкалы с определенной градуировкой, которая наносится при помощи одновременного замера скорости вращения эталонным тахометром (вместо шкалы могут использоваться светодиоды, смонтированные друг за другом);
- стрелки, указывающей текущее значение искомой величины;
- электромагнитной катушки, на которой расположена ось для стрелки;
- считывающего устройства — прерывателя (в его качестве нередко выступает индуктивный датчик).
Цифровые тахометры выполняют подобную функцию, но состоят из других узлов:
- АЦП, имеющая 8 разрядов;
- центральный процессор, выполняющий функцию преобразования аналогового сигнала в последовательность 1 и 0;
- ЖК-дисплей для отображения текущего значения определенной величины;
- датчик оборотов — прерыватель, должен использоваться либо с усилителем, либо с шунтами, в зависимости от конструкции;
- специальная микросхема, позволяющая сбрасывать текущие значения на ноль;
- в автомобилях к ЦП могут быть подключены датчики температуры жидкости, в салоне, давления масла, скорости, и многие другие.
Тахометр с использованием микроконтроллера должен обязательно иметь программное обеспечение.
В «сердце» микросхемы при помощи персонального компьютера закладывается определенный алгоритм, по которому происходит работа. В процессоре происходит расчет математических формул, которые зависят от того, какой параметр необходимо измерять. При мониторинге одной величины алгоритм будет самым простым.
Но цифровой тахометр в автомобиле можно использовать и как регистратор температур, давления, скорости. Микроконтроллер имеет несколько входов и выходов. К ним производится подключение считывающих устройств посредством буферных каскадов — преобразователей и усилителей сигнала. Но стоит отметить, что при введении в конструкцию тахометра дополнительного оборудования необходимо учитывать это в алгоритме и программном обеспечении микроконтроллера.
Чтобы изготовить самодельный цифровой тахометр, вам потребуется знание персонального компьютера и языка программирования. Окажется полезным и умение составлять алгоритмы. Поэтому более простым окажется использование обычных микросхем, которые усилят сигнал прерывателя и выдадут его на полосу из светодиодов или стрелочный индикатор. Если имеется ряд светодиодов, состоящий из 10 штук на каждую тысячу оборотов, то можно определить текущее значение с точностью до ста.
Читайте также: