Не работает датчик света мазда 6 gj
Мазда 6 (2008+). Не работает свет в салоне
Основные причины, которые могут вызвать отказ салонного освещения
Причина №1: Перегоревшая лампочка
Проверьте лампу. Можно просто посмотреть на нить, а можно и прозвонить тестером. Последний вариант гораздо точнее поможет определить перегоревшую лампочку – иногда сгорает не спираль, а контакт внутри цоколя и с виду все выглядит вполне исправно.
Причина №2: Перегоревший предохранитель
Вторая причина, по которой может не работать свет в салоне – сгоревший предохранитель. Практически всегда салонное освещение «делит» предохранитель с другими устройствами. Поэтому если вместе со светом перестали работать, например, часы или магнитола, то вероятность сгоревшего предохранителя крайне велика.
Найдите нужный предохранитель в соответствующем блоке и убедитесь в его целости. Если предохранитель все же сгорел, вероятно, для этого есть причина – короткое замыкание. Поэтому, не факт, что после вставки нового предохранителя все заработает. Вполне возможно, что он тут же сгорит. Если это произошло – замыкание точно есть. Нужно узнать, как найти короткое замыкание в автомобиле.
В то же время не всегда перегорание предохранителя происходит по причине «коротыша». Его перемычка может быть просто старой (уставшей) или сделанной из некачественного материала.
Причина №3: Окислившийся контакт
Контактов в цепях освещения салона предостаточно. Но больше всего окислению подвержены контакты внутри плафона и концевики дверей. Концевики очень часто окисляются во многих российских автомобилях, так как не имеют резинового кожуха.
Определить окислившийся контакт очень просто – достаточно на него посмотреть. Снимите плафон, разберите его и убедитесь в чистоте контактов. Если есть окислы, почистите их небольшой плоской отверткой или мелкой шкуркой. То же самое проделайте и с концевиками – каждый такой выключатель нужно снять и осмотреть. Перед тем, как снимать концевики, лучше отключить аккумулятор, потому что очень часто при снятии происходит замыкание плюсового провода выключателя о кузов.
Причина №4: Перебитый провод
Причиной, почему не работает свет в салоне, может быть и перебитый провод. Особенно подвержены повреждениям провода, которые вынуждены гнуться из-за места своего расположения. Так, часто переламываются провода, проведенные в крышку багажника или двери. Это происходит из-за частых скручиваний или изгибов провода при открытии данных элементов кузова. По идее проводка салонного освещения ни в двери, ни в багажник не заходит, но общий смысл одинаковый – провод может быть перебит, передавлен или разорван.
Чтобы найти место перебоя провода, потребуется тестер. С его помощью проверьте нужно прозвонить каждый участок электрической цепи, начиная от плафона к блоку предохранителей.
На автомобилях применяются блок-фары, объединяющие в себе фары ближнего и дальнего света (с галогеновыми и газоразрядными ксеноновыми лампами) и указатели поворота. Кроме того, в фарах находятся лампы габаритного огня, которые могут использоваться и как фонари стояночного света
Ближний и дальний свет фар включают левым подрулевым переключателем наружного освещения с помощью реле, расположенных в монтажном блоке в моторном отсеке.
В зависимости от комплектации на автомобили устанавливают блок-фары трех типов.
В фарах обычного типа установлены галогеновые лампы накаливания дальнего (Н9) и ближнего (Н11) света, а также габаритные огни и указатели поворота. Изменяют конфигурацию луча света фар в зависимости от национальных правил дорожного движения (право- или левостороннее движение) приклеиванием на специфические места рассеивателей специальной ленты с насечками.
В статье показаны несколько схем, основная часть схем в статье "Схемы электрооборудования автомобиля Мазда 6"
В фарах с системой бокового освещения при повороте (AFS) используются газоразрядные ксеноновые лампы (D2S) для ближнего и дальнего света и галогеновые лампы накаливания (Н11) для бокового освещения в повороте. Причем при движении в повороте поток света лампы бокового освещения с помощью проекционной линзы поворачивается в сторону поворота автомобиля.
В фарах без системы бокового освещения при повороте используются газоразрядные ксеноновые лампы (D2S) для ближнего света и галогеновые лампы накаливания (Н9) для дальнего света.
Во всех фарах при постановке автомобиля на стоянку в плохо освещенном месте можно включить габаритные огни в режиме стояночного света только с одной стороны (стороны возможного проезда других транспортных средств).
Режим стояночного света включают поворотом в соответствующую сторону рычага переключателя указателей поворота, если ключ в замке (выключателе) зажигания находится в положении «О».
Противотуманные фары
На автомобили в нижней части переднего бампера установлены противотуманные фары.
Их можно включить только при включенном наружном освещении.
Задние фонари
В них установлены светодиоды стоп-сигналов и габаритных огней, лампы указателей поворота, света заднего хода, противотуманного фонаря.
Задний противотуманный свет
Лампу противотуманного света в заднем фонаре включают поворотом переключателя, установленного на рычаге переключателя наружного освещения и указателей поворота.
Указатели поворота
Лампы указателей поворота установлены в блок-фарах, задних и боковых фонарях. Указатели правого или левого указателей поворота включаются левым подрулевым переключателем.
В режиме аварийной сигнализации выключателем аварийной сигнализации включаются все указатели поворота. Мигание ламп обеспечивается реле-прерывателем аварийной сигнализации.
Электрокорректор света фар
На автомобили устанавливают электрокорректор света фар, позволяющий изменять направление пучка света фар в вертикальной плоскости в зависимости от нагрузки автомобиля.
На автомобилях с газоразрядными ксеноновыми фарами установлен автоматический корректор света фар второго поколения с динамической системой управления, учитывающей не только изменение угла наклона в зависимости от нагрузки автомобиля, но и изменение угла наклона во время движения, вызванное действием аэродинамических сил (при длительной езде с большой скоростью).
Во избежание ненужных колебаний пучка света фар система не реагирует на колебания кузова, вызванные дорожными неровностями и изменением его положения при разгоне и торможении.
Дополнительный стоп-сигнал на автомобилях с кузовом седан или хэтчбек установлен соответственно в крышке багажника или двери задка, а на автомобилях с кузовом универсал - в верхней части стекла двери задка.
Проверка и регулировка света фар
Проверку и регулировку света фар проводите на снаряженном автомобиле (с полностью заправленным топливным баком, комплектом инструментов и запасным колесом).
Применением размеченного экрана можно регулировать свет только фар с галогеновыми лампами накаливания. Для регулировки света фар с газоразрядными лампами обращайтесь на специализированный сервис, располагающий оптическими стендами.
Вам потребуются: отвертка с крестообразным лезвием, ключ «на 10».
Предварительно проверьте и при необходимости доведите до нормы давление воздуха в шинах.
Установите автомобиль перпендикулярно гладкой стене (например, в гараже) на расстоянии 3 м. Положите на сиденье водителя груз массой 75 кг.
Размечаем на стене экран, как показано на рисунке
Продольная плоскость симметрии автомобиля должна проходить по линии 0 на экране. Качните автомобиль сбоку, чтобы самоустановились пружины подвесок.
Измерьте на вашем автомобиле высоту центров фар от земли. Это будет расстояние h (650 мм) на экране.
Установите регулятор электрокорректора света фар на панели приборов в положение, соответствующее нагрузке автомобиля с одним водителем.
Включите ближний свет.
Рекомендуется регулировать направление светового пятна для каждой фары в отдельности. Вторую фару во время регулировки закройте непрозрачным материалом.
Откройте капот и, вращая регулировочные винты, отрегулируйте (если расположение световых пятен не соответствует рисунку) положение на экране светового пятна для каждой фары по горизонтали и вертикали.
Фары считаются отрегулированными, когда верхние границы левых частей световых пятен совпадают с линией 4, а вертикальные линии 1 и 2 проходят через точки Е1 и Е2 пересечения горизонтальных и наклонных участков световых пятен.
Если на автомобиле установлены противотуманные фары, то направление их пучка света необходимо отрегулировать только по высоте.
Вращая регулировочный винт (показан на фото стрелкой), добейтесь, чтобы верхние границы световых пятен находились на линии 4 или чуть ниже ее.
Возможные неисправности освещения и световой сигнализации и способы устранения
Не горят отдельные лампы фар и фонарей
Проверьте цепь и замените предохранители
- перегорели нити ламп
- повреждение проводов, окисление их наконечников или ослабление соединений проводов
Проверьте, замените поврежденные провода, зачистите наконечники
Указатели поворотов не выключаются автоматически после прохождения поворота
- повреждение механизма возврата в исходное положение рычага переключателя указателей поворота
Замените блок переключателей
Не включается ближний или дальний свет фар
- перегорели нити ламп
Замените подрулевые переключатели
Не работает стоп-сигнал
- неисправен выключатель стоп-сигнала
Не фиксируются рычаги подрулевого переключателя
- разрушение фиксаторов рычагов
Замените блок переключателей
Сигнализатор включения указателей поворота мигает с удвоенной частотой
p, blockquote 1,0,0,0,0 -->
p, blockquote 2,0,0,0,0 -->
Возможно различное исполнение блоков, поэтому сверяйте описание со своими схемами на обратной стороне защитной крышки.
Блок в салоне
Он находится на стойке около левой ноги водителя, за защитной крышкой.
p, blockquote 4,0,0,0,0 -->
p, blockquote 5,0,0,0,0 -->
Схема
p, blockquote 6,0,1,0,0 -->
p, blockquote 7,0,0,0,0 -->
Описание
Предохранители прикуривателя обозначены как OUTLET на 15А и расположены под номерами 3, 9 и 11. Так же в блоке под капотом может крепится ещё одни предохранитель и одно реле отвечающие за работу розеток питания.
Блок под капотом
Устанавливается в левой части моторного отсека, рядом с аккумулятором.
p, blockquote 10,0,0,0,0 -->
p, blockquote 11,0,0,0,0 -->
p, blockquote 12,1,0,0,0 -->
p, blockquote 13,0,0,0,0 -->
Пример схемы с крышки блока
p, blockquote 14,0,0,0,0 -->
p, blockquote 15,0,0,0,0 -->
Схема предохранителей
p, blockquote 16,0,0,0,0 -->
p, blockquote 17,0,0,0,0 -->
Назначение предохранителей
Что бы отключить работу омывателя фар, надо достать предохранитель под номером 29 на 20А обозначенный как H/CLEAN.
Схема реле
p, blockquote 20,0,0,0,0 -->
p, blockquote 21,0,0,0,0 -->
Обозначение реле
p, blockquote 22,0,0,0,0 -->
TNS RELAY (TAIL) | РЕЛЕ TNS (ГАБАРИТОВ) |
A/C RELAY | РЕЛЕ КОНДИЦИОНЕРА |
FUELINJECTOR RELAY | РЕЛЕ ТОПЛИВНОГО ИНЖЕКТОРА |
ELECTRIC AT OR OIL PUMP RELAY | РЕЛЕ ЭЛЕКТРИЧЕСКОЙ ТРАНСМИССИИ ИЛИ РЕЛЕ МАСЛЯНОГО НАСОСА ТРАНСМИССИИ |
HEADLIGHT HI RELAY | РЕЛЕ ПЕРЕДНИХ ФАР |
STARTER RELAY | РЕЛЕ СТАРТЕРА |
BLOWER RELAY | РЕЛЕ ВЕНТИЛЯТОРА |
ELECTRIC VARIABLE VALVE TIMING RELAY | РЕЛЕ ЗАРЯДКИ ЭЛЕКТРИЧЕСКОГО КЛАПАНА |
REAR WINDOW DEFROSTER RELAY | РЕЛЕ РАЗМОРАЖИВАНИЯ ЗАДНИХ ОКОН |
FUEL PUMP RELAY | РЕЛЕ ТОПЛИВНОГО НАСОСА |
OUTLET RELAY | РЕЛЕ ЭЛЕКТРИЧЕСКИХ РОЗЕТОК |
HEADLIGHT LO RELAY | РЕЛЕ ФАРЫ (БЛИЖНИЙ) |
IG1 RELAY | РЕЛЕ ЗАЖИГАНИЯ |
FRONT FOG LIGHT RELAY | РЕЛЕ ПЕРЕДНИХ ПРОТИВО ТУМАННЫХ ФАР |
COOLING FAN RELAY NO.2 | РЕЛЕ ОХЛАЖДАЮЩЕГО ВЕНТИЛЯТОРА № 2 |
MAIN RELAY | ГЛАВНОЕ РЕЛЕ |
COOLING FAN RELAY NO. 3 | РЕЛЕ ОХЛАЖДАЮЩЕГО ВЕНТИЛЯТОРА № 3 |
DRL RELAY | РЕЛЕ ДХО |
HORN RELAY | РЕЛЕ СИГНАЛА |
COOLING FAN ACC RELAY | РЕЛЕ ВЕНТИЛЯТОРА ОХЛАЖДЕНИЯ |
p, blockquote 23,0,0,0,0 --> p, blockquote 24,0,0,0,1 -->
Известно, что официальные дилеры зачастую грешат своей склонностью списывать неполадки с двигателем (а порой вообще все проблемы с автомобилем) на некачественное топливо, которое хотя бы раз использовал владелец при заправке своего авто. Сегодня как раз такой случай.
Здесь дублирую просто тщеславия ради.
В нашу мастерскую обратился владелец Mazda 6 2017 года выпуска с бензиновым двигателем объемом 2,0 литра. Изначальный повод для обращения — замена свечей зажигания. Учитывая год выпуска и пробег около 17 000 км, мы удивились и спросили, чем вызвана эта необходимость. Оказалось, изначальная проблема у владельца — горящая лампа Check engine и иногда заводящийся не с первого раза двигатель. Машина еще на гарантии, поэтому сначала владелец обратился к официальному дилеру. Тот провел диагностику, результат которой был приведен в заказ-наряде:
«Подключение MMDS. Считывание кодов неисправностей. Код Р0171 (РСМ) — система слишком обеднена. Выполнена проверка показателей работы ДВС в регистраторе данных. Обнаружены завышенные подстройки топливоподачи в сторону обогащения — бедная смесь. Выполнена проверка состояния свечей зажигания — присутствует нагар светло-бурого цвета — признак использования топлива низкого уровня качества. Выполнена проверка системы впуска и систем PCV, EVAP — норма. Для дальнейшей диагностики требуется выполнить демонтаж и осмотр топливных форсунок с дальнейшей чисткой. Рекомендуется смена постоянно используемой АЗС».
Циничные работники независимых СТО такие диагнозы переводят следующим образом: «мы проверили — подсосов неучтенного воздуха нет, вероятно, забились форсунки из-за некачественного топлива, поэтому мы не хотим согласовывать работы по гарантии. Дальше надо помыть форсунки. Это может не помочь, тогда будем разбираться дальше».
Для полноты картины: эта «диагностика» обошлась владельцу в 4000 рублей. Помыть форсунки предлагали за 38 000 рублей. Это довольно неожиданная цена, учитывая стоимость неоригинальных новых форсунок в районе 5000 рублей за штуку.
Что ж, начнем работать. Как показывает практика, любой диагноз от сторонней мастерской или от автовладельца требует обязательной перепроверки. Хотя бы потому, что, знай они точный диагноз, — к нам бы нипочем не обратились.
Чтение ошибок
Подключаемся сканером. По счастью, для диагностики систем впрыска обычно достаточно тех параметров, которые выдаются по стандартному протоколу OBD, без применения заводских протоколов. Это значит, что не надо расчехлять мультимарочный сканер с ноутбуком, а достаточно взять простую «читалку ELM327», которая, как правило, работает несколько быстрее.
Ошибка действительно есть — P0171 — слишком бедная смесь (рис. 1).
Здесь же мы видим и значение долговременной топливной коррекции 20,3 %. Для дальнейшего обсуждения необходимо явно проговорить, как это работает.
1. Блок управления по датчику массового расхода воздуха, датчику давления во впуске и датчику температуры воздуха во впуске понимает, сколько воздуха попадает в цилиндр.
2. Исходя из стехиометрического соотношения, а также с учетом показаний датчика положения педали газа рассчитывает, сколько топлива надо впрыснуть. Количество топлива регулируется временем открытия форсунки, оно же — время впрыска.
3. Блок управления также учитывает показания датчика кислорода в выхлопе — по нему можно понять, была ли смесь на предыдущем такте сгорания бедной или богатой. Если смесь была бедной, блок управления увеличивает время впрыска, если богатой — уменьшает. Это изменение и называется коррекцией, или кратковременной коррекцией (short term fuel trim).
4. Если кратковременная коррекция долгое время находится в значениях выше определенного порога, блок управления увеличивает так называемую долговременную коррекцию (или адаптацию, или long term fuel trim), при этом уменьшая кратковременную коррекцию.
При штатно работающей системе адаптация имеет постоянное значение, близкое к нулю, коррекция постоянно изменяется в пределах ±2 % от нуля, и никаких вопросов не возникает. Ошибка P0171 возникает, если по какой-то причине смесеобразование нарушено так, что адаптация достигает некоего порогового значения. У разных производителей этот порог разный. У Mazda, как мы видим, это 20 %, у Toyota/Lexus — 50 %, у Opel — около 30 % и так далее. Конкретные цифры уже не столь важны. Главное — причина возникновения ошибки именно в превышении данной величины.
Эта ошибка относится к категории системных. То есть она свидетельствует о неправильной работе системы в целом, без указания на конкретный элемент (в отличие, например, от ошибки по какому-то датчику).
В данном случае проблема может быть вызвана:
- подсосом неучтенного воздуха через неплотности во впуске или через системы EVAP (рециркуляция паров топлива) и PCV (вентиляция картерных газов). В этом случае смесь всегда формируется без учета дополнительного воздуха, вызывая необходимость постоянной коррекции;
- неправильными показаниями датчиков на впуске (ДМРВ, etc). Ситуация аналогична предыдущей, только здесь количество воздуха занижается расходомером из-за его неисправности;
- неправильными показаниями лямбда-зонда. В этой ситуации количество топлива рассчитывается верно, но неправильно оценивается состав смеси, сгоревшей в предыдущем такте;
- забитыми форсунками. В данном случае проблема вызвана тем, что их производительность ниже расчетной, то есть фактически впрыскивается меньше топлива, чем изначально «хочет» блок управления;
- проблемами с ТНВД или некорректными показаниями датчика давления. Проблема сводится к предыдущей, то есть к несоответствию фактического и расчетного количества впрыснутого топлива.
Теперь каждую из теорий необходимо рассмотреть и проверить. Первый вариант уже проверен дилером, но это не избавляет от необходимости перепроверки.
Проверка диагноза от дилера
Если свести к простому, то системы EVAP и PCV сводятся к дополнительным трубкам, подключенным ко впуску в обход расходомера. Если оттуда подается слишком много воздуха, когда блок управления рассчитывает на меньшее, — смесь формируется неправильно. Значит, самая простая проверка — сдернуть все эти трубки, заткнуть их во впуске, завести двигатель и посмотреть на значение адаптации. Увы, чуда не произошло — адаптация осталась на том же уровне.
Вторая проверка – герметичность впуска. Конечно, по-хорошему ее надо проверять с помощью дымогенератора. За неимением такового проверять приходится кустарно, с помощью баллончика очистителя карбюратора, брызгая им во все подозрительные стыки на впуске. В случае неплотности очиститель засосет в камеру сгорания, где он и сгорит вместе с подаваемым бензином, вызвав кратковременное повышение оборотов двигателя. В нашем случае обнаружить неплотности не удалось, так что версию о подсосах воздуха решено исключить.
Итак, первичные проверки дилеров подтверждены и нареканий (кроме стоимости) не вызывают.
А что там с некачественным топливом? Там же на свече должен быть какой-то ужас? Ну-ка, посмотрим!
А вот здесь (рис. 2) к дилерам есть ряд вопросов. Например, как, по мнению дилеров, должна выглядеть свеча при работе двигателя на «топливе высокого уровня качества». В общем, после этого заключение от дилера остается только нервически скомкать и выбросить в мусор.
Рассмотрение собственных предположений
Неправильные показания датчиков на впуске исключаем, основываясь на двух пунктах:
1) показания на холостом ходу похожи на правильные;
2) вообще, случаи «уставших» расходомеров известны, но не с таким возрастом и пробегом.
Неправильные показания лямбда-зонда тоже отметаем, так как «уставшая» лямбда обычно просто медленно реагирует на изменение состава смеси, а вот постоянного занижения или завышения показаний не наблюдается. Разумеется, предварительно посмотрели и на показания лямбды в графическом виде, не ограничиваясь теорией.
Следующая теория — о давлении топлива. Поскольку у нас система с непосредственным впрыском, блок управления отслеживает давление в топливной системе с помощью отдельного датчика, показания которого доступны сканеру. Видно, что давление в норме и быстро растет при прогазовке (рис. 3).
О неисправностях датчиков давления, занижающих показания, слышать тоже не доводилось, а с ТНВД, судя по графику, все в норме. Конечно, возможно, это наша персональная неквалифицированность, но пока эту версию тоже отметаем.
Пока все ведет нас к теории о забитых форсунках. Однако прежде, чем снимать их, сделаем еще один шаг. Вообще-то, обычно такой шаг считают признаком отсутствия квалификации, но нам в конце концов надо машину починить, а не имидж крутых диагностов строить. Поэтому уверенно открываем поисковик и вводим в него что-то типа «Mazda 6 p0171 skyactiv». И результат нас радует: в выдаче куча ссылок на форумы владельцев, где разные люди жалуются на такую проблему и обсуждают ее. Из всего этого изобилия информации важны два пункта:
1) проблема действительно часто возникает на свежих Mazda 6 с этим двигателем;
2) проблема действительно уходит после промывки форсунок.
План действий
Хорошо, форсунки надо снять и промыть. Снять мы можем, а вот с промывкой есть вопросы — стенда у нас нет. Можно, конечно, обратиться в стороннюю организацию, но это долго. А главное — с трудом верится в то, что это «топливо низкого уровня качества» умудряется забить форсунки изнутри — как-то же ездят по стране десятки и сотни тысяч автомобилей с системами FSI, TSI, GDI и прочих синонимов непосредственному впрыску.
А вот что еще попадает на форсунки непосредственного впрыска — так это нагар. Это дело нешуточное. Он и при сгорании идеального топлива появится, и при идеальном составе смеси, и вообще ДВС без него практически не бывает. А форсунка ведь торчит наконечником прямо в камеру сгорания. Теоретически при неудачной конструкции форсунки или ее неудачном расположении в камере сгорания возможна ситуация, когда нагар будет препятствовать нормальному распылу топлива. Учитывая количество обсуждений проблемы в сети, выглядит вполне реально. В этом случае загрязнения вполне возможно промыть снаружи без стенда и ультразвука.
Поэтому в итоге с клиентом согласовывается такой план действий: форсунки снимаются, промываются снаружи, ставятся на место и, если это не поможет, снимаются повторно, с визитом в стороннюю организацию на полноценную промывку.
Ход работ
Снять форсунки на этом моторе несложно. Впуск хоть и громоздкий, но держится всего на шести болтах. Куда больше проблем доставляет необходимость снятия всех клипс крепления проводки (рис 4).
Рампу с форсунками тоже снять несложно — четыре болта крепления и гайка топливной трубки (рис. 5).
Внешний осмотр форсунок настраивает на оптимизм. В смысле на подтверждение выдвинутой теории: отверстия, через которые впрыскивается топливо, расположены на форсунке в районе, обведенном на фотографии красным (рис. 6).
Там же наблюдается и максимальная концентрация нагара. В одном из материалов в Интернете говорилось также об изобилии нагара в канале ГБЦ, в который устанавливается форсунка. Туда тоже заглядываем, но никакого «криминала» не видим (рис. 7).
Очистителем карбюратора в канал, правда, все же брызгаем, смывая все это, но очевидно, что самое главное — в промывке форсунок. Стенда, как уже говорилось, у нас нет, поэтому действуем кустарными способами. В качестве чистящего средства берем жидкость для раскоксовки как достаточно активную, чтобы размыть отложения, и в то же время достаточно щадящую, чтобы не навредить. Для промывки наливаем жидкость в подходящую емкость и ставим форсунку наконечником в эту жидкость (рис. 8).
«Отмачивались» форсунки около 40 минут, по причине не слишком большого количества свободного времени. После извлечения из жидкости и смыва ее очистителем получили результат (рис. 9) – неидеально, но явно лучше, чем было.
Так и тянет пройтись еще тряпочкой, но страшновато затолкать нагар в отверстия еще сильнее. Он и так не вышел из отверстий до конца. Остается только надеяться на то, что от воздействия жидкости нагар стал мягким и вымоется бензином при работе двигателя. С этой мыслью и ставим форсунки на место.
Результат и выводы
После установки форсунок автомобиль завелся не с первого раза, добавив пару седых волос, но на второй раз завелся, первое время подымив белым дымом с характерным запахом сгорающего реагента для раскоксовки. Зато после прогрева и подключения сканера результат обнадежил: долговременная коррекция (адаптация) установилась на отметке 11,5 %, кратковременная коррекция при этом колебалась в пределах ±2 % от нуля. А после тестовой поездки адаптация и вовсе пришла к цифре 5,5 % (рис. 10).
Мы этим не ограничились и поймали клиента еще через пару дней — он как раз проехал пару сотен километров. Результат удивил в хорошем смысле — за это время адаптация упала до 3,9 % (рис. 11). В итоге довольный клиент отправился ездить дальше, дав напоследок обещание непременно заехать на проверку показаний адаптации через несколько тысяч километров пробега.
Так что проблема подтверждена, решение, вроде бы, найдено. Осталось продумать методику — стоит ли увеличить длительность «отмачивания» форсунок, а также имеет ли смысл в подобных случаях выполнять очистку камеры сгорания с применением соответствующих жидкостей. Ну и где-то в глубине души надеяться на отзывную кампанию от Mazda по решению этой проблемы — все лучше, чем дилерам штамповать заказ-наряды с отказами в гарантии по причине «топлива низкого уровня качества».
UPD: 10.01.2020 подключался к автомобилю и повторно смотрел коррекции. За это время автомобиль проехал что-то около 7000 км. Долговременная коррекция осталась в районе 3-4%. Учитывая предыдущий пробег, ожидал роста коррекций. С чем связано отсутствие — неясно. Известные изменения — владелец сменил заправку (тоже сетевая и из числа солидных брендов). Говорит ли это что-то о качестве бензина? Не знаю.
Для обеспечения безопасного движения в Мазда 6 предусмотрены различные функции. Одни выполняют роль активной, а другие пассивной безопасности. Каждая имеет конкретные зоны ответственности. Рассмотрим DSC OFF Mazda 6, что это за система и как она работает.
Мануал о том, что такое DSC OFF на Мазда 6
DSC OFF Mazda 6 работает в тесной связи с антиблокировочной и пробуксовочной системой.
Разберемся, что это за функция.
DSC OFF Мазда 6 – это противозаносная программа, которая в автоматическом режиме корректирует величину крутящего момента силового агрегата, и воздействует на силу торможения колес. Это приводит к предотвращению скольжения автомобиля в сторону, потери поперечной устойчивости и заноса при движении по скользкому дорожному полотну или в момент резких маневров. Также отмечается увеличение эффективности активной безопасности.
Рассмотрим на примере взаимодействие управляющих программ. При попытках старта с дорожного полотна покрытого снегом, первым делом в работу включится противобуксовочная функция. В то же время противозаносная будет блокировать набор двигателем оборотов в момент нажатия педали акселератора. В данном случае для старта с места, следует временно отключить комплекс предотвращения заносов.
Программа против заносов активируется при наборе скорости более двадцати километров в час.
Не стоит полагаться на ее функционирование, если используется агрессивная манера вождения. Это способствует возникновению аварийной ситуации.
Световой индикатор, сигнализирующий о неисправности или об отключенном состоянии DSC.
На приборной панели Mazda 6 предусмотрен световой индикатор, который сигнализирует о неисправности комплекса предотвращения заносов или об отключенном состоянии. Для вывода из работы функции, следует нажать кнопку с надписью OFF и картинкой в виде скользящего автомобиля. Ввод в работу осуществляется автоматически после включения зажигания или повторного нажатия кнопки.
Для отключения функции, нужно нажать кнопку со скользящим автомобилем и надписью OFF.
Для обеспечения устойчивости Mazda 6 не рекомендуется отключать комплекс предотвращения заносов. При необходимости можно выполнить диагностику кнопки управления противозаносного комплекса, зажав ее на десять секунд. В дальнейшем программа запустится автоматически.
Когда DSC может работать не корректно
В следующих случаях отмечается некорректная работа системы DSC OFF Mazda 6:
- использование шин различных размеров;
- применение резины от различных производителей, которые отличаются рисунком протектора, размерностью, годом выпуска;
- отмечается отличие в износе покрышек;
- на колеса Мазда 6 установлены противоскользящие цепи;
- произведена вынужденная установка докатки.
Индикатор противозаносной системы Mazda 6
Световой сигнализатор DSC OFF загорается на приборной панели Mazda 6 в следующих случаях:
- на несколько секунд в момент поворота ключа в замке зажигания в положение ON;
- в случае принудительного отключения системы посредством нажатия кнопки управления.
В остальных случаях свечение индикатора противозаносной системы Мазда 6 отмечается при фиксации неполадок в программе активной безопасности.
Общая информация о системе DSC
Аббревиатура DSC – Dynamic Stability Control, что в переводе контроль динамической устойчивости.
Как уже говорилось ранее, вспомогательная программа управления Мазда 6 называется противозаносной системой. Что соответствует назначению DSC OFF в Mazda 6. Программа является проработанной модификацией курсовой устойчивости автомобиля ESP. При этом задачи остались прежними: предотвращение заносов и опрокидывания, срывов в боковое скольжение. Для их своевременного решения противозаносная система отслеживает информацию с различных датчиков. После анализа данных устанавливается интенсивность торможения, а также крутящий момент отдельных колес. Это позволяет водителю Мазда 6 чувствовать себя уверенно на дорожном покрытии любого типа.
Подробно о работе DSC
Итак, что такое DSC OFF на Мазда 6, установили. Теперь разберемся, как функционирует программа.
С каких датчиков ЭБУ противозаносного комплекса анализирует информацию?
Для контроля движения Mazda 6 и действий водителя ЭБУ противозаносного комплекса анализирует информацию со следующих датчиков:
- угла поворота рулевого колеса;
- угловой скорости – берется с четырех активных контроллеров;
- стоп-сигнала;
- скорости при заходе в поворот;
- продольного и поперечного ускорения;
- показателя давления жидкости в тормозном контуре и другие.
Это позволяет выявить признаки заноса Мазда 6 на ранних этапах. Что обеспечивает эффективность отработки DSC OFF независимо от покрытия дорожного полотна и манеры вождения. Также программа контролирует скорость автомобиля. При достижении установленного максимума, направляется сигнал на снижение крутящего момента в электронный блок управления ДВС.
Включение противозаносного комплекса в работу осуществляется по факту отклонения от установленных идеальных параметров движения. Они заложены в память устройства. Для стабилизации курса машины ЭБУ функции предотвращения заносов отдает команды на выполнение следующих операций:
- изменение крутящего момента силового агрегата;
- регулирование степени интенсивности торможения отдельных колес;
- корректировка угла положения колес;
- изменение демпфирования в стойках.
Процесс изменения крутящего момента ДВС комплексом против заносов включает в себя следующие операции:
- Корректировка положения дроссельной заслонки;
- Регулировка периодичности впрыска топлива и передачи импульсов со свечей зажигания;
- Блокировка переключения передач на моделях с автоматической трансмиссией;
- Изменение величины угла опережения зажигания на некоторое время;
- На версиях с 4WD выполняется распределения крутящего момента между осями.
DSC OFF Mazda 6, что это за функция разобрались. Она облегчает управление автомобилем в критических ситуациях. При этом повышается общая безопасность водителя и пассажиров. Поэтому не рекомендуется отключать функцию, а при появлении сигнала неисправности сразу обратиться за помощью.
Читайте также: