Установка аргонной сварки удг 501 1 byd
I техническое описание 1 1 назначение установки
1.1.1. Установка УДГ-301-1 и установка УДГ-501-1 (рис.1), (именуемая в дальнейшем "установка") предназ-начены для ручной дуговой сварки алюминия и его сплавов. Установка может применяться также в качестве источника питания для автоматической сварки.
1.1.2. Сварка осуществляется на переменном токе неплавящемся вольфрамовым электродом марки BA-1А в среде аргона. Для сварки должен использоваться чистый газообразный аргон марки Б, ГОСТ 10157-73.
1.1.3. Установка стационарная ,предназначена для работы в закрытых помещениях, на высоте до 1000 м над уровнем моря , в районах с умеренным климатом (УХЛ4) , при температуре воздуха oт +lC до +35°С и отно-сительной влажности воздуха до 80% (при +25С), а также в районах с тропическим климатом (T4) при тем-пературе окружающего воздуха от +1С до +45°С в относительной влажности воздуха до 98% (при +35 С). Воздух в помещении не должен содержать примесей, разрушающих изоляцию и вызывающих коррозию ме-таллических частей.
1.1.4. Охлаждающая вода должна удовлетворять следующим требованиям :
жесткость не более 3,566 мг/экв;
электрическое сопротивление не менее 2 кОм/см 2 ;
нерастворимых осадков не более 0,05 мг/л.
1.2. Технические характеристики.
1.2.1. Основные параметры установок приведены в табл.1.
Таблица 1
Номинальное напряжение питающей сети , В
Номинальная частота питающей сети , Гц
Номинальный сварочный ток , А
Номинальная потребляемая мощность:
силовой цепью ( однофазная ) , кВА
трехфазной цепью , кВт
Номинальное напряжение холостого хода , В
Пределы рабочего напряжения , В
Отношение продолжительности рабочего периода к продолжительности цикла сварки, ПР%
Продолжительность цикла сварки , мин.
Пределы регулирования сварочного тока, А
Диаметр вольфрамовых электродов, мм
Расход охлаждающей воды при давлении на входе 245 кПа (2,5 кг/см 2 ) , л/ч. не менее
Расход защитного газа , л/мин
1.2.2. Габаритные размеры и масса составных частей установок приведены в табл.2.
Таблица 2
Габаритные размеры не более, мм
Шкаф управления УДГ-301-1
Шкаф управления УДГ-501-1
Горелка малая (ГР-4)
Горелка средняя (ГР-6)
Горелка большая (ГР-10)
1.2.3. Максимальные расстояния между составными частями установки (длины соединительных проводов и шлангов) составляют:
от шкафа управления до переносного блока управления - 10 м;
от переносного блока поджигания до горелки (шланг сварочной горелки) –3 м.
1.3. Состав изделия.
1.3.1. Каждая установка состоит из шкафа управления, переносного блока поджигания, сварочной горелки, турели, соединительных проводов и шлангов.
Турель устанавливается на источнике питания, служит опорой для выносного блока поджигания и обеспе-чивает возможность его поворота вокруг вертикальной оси.
Каждая установка снабжается комплектом запасных частей и технической документации.
1.3.3. Установка УДГ-301-1 комплектуется двумя сварочными горелками: малой и средней (установка УДГ-501-1 - тремя сварочными горелками: малой, средней и большой).
1.3.4. Провода для подключения установки к сети, а также баллон для защитного газа в комплект поставки не входят.
1.4. Устройство и работа установки.
1.4.1. Принципиальная электрическая схема установки (рис.2) обеспечивает:
зажигание дуги пробоем дугового промежутка высокочастотной искрой импульсного осциллятора;
для снижения помех радиоприему и телевидению осциллятор работает по следующему циклу: 0,9 с - работа, 10 с – пауза;
поддержание горения дуги о помощью импульсного стабилизатора;
компенсацию постоянной составляющей сварочного тока„ осуществляемую специальным полупроводниковым блоком;
плавное регулирование сварочного тока с помощью тиристорного регулятора напряжения путем подмагничивания шунта сварочного трансформатора;
плавное снижение сварочного тока специальным устройством для заварки кратера;.
защиту элементов установки от напряжения высокой частоты, создаваемого осциллятором, с помощью индуктивно-емкостного фильтра;
подачу защитного газа - аргона за 1-5 с до начала сварки и прекращение подачи газа через 5-30 с после ее окончания;
включение и отключение сварки с помощью выключателя, установленного на горелке;
возможность подключения установки к автомату для
отключение напряжения холостого хода сварочного трансформатора за время не более 1 с после обрыва сварочного тока.
1.4.2. Электрическая схема включает в себя осциллятор-стабилизатор, устройство для заварки кратера и ре-гулирования величины сварочного тока (плата Е1), схему управления сварочным циклом (плата Е2), схему ог-раничения работы осциллятора и напряжения холостого хода при обрыве сварочной дуги (плата ЕЗ), полупро-водниковый узел компенсации постоянной составляющей сварочного тока (V3,V4), схему управления узлом компенсации постоянной составляющей (плата Е4), схему управления осциллятором-стабилиэатором (плата Е5).
1.4.3. Для подготовки установки к работе необходимо включить автоматический выключатель Q1, а затем, нажатием кнопки и S2 включить двигатель вентилятора.
Включение установки на сварку производится нажатием кнопки S6, расположенной на сварочной горелке. При этом на управляющий электрод тиристора VE3.Е2 поступает отпирающий импульс по цепи мост V3.E4, S6, V5, С2, R6, V4 (Е2). При открывании тиристора VE3.Е2, включается реле КЗ (через S6, V6.Е2). Реле К3 контактом К3.1 включает газовый клапан Y1; контактом К3.2 через К4.2 подготавливает цепь для самоблоки-ровки на время , отсчета выдержки временя "Газ после сварки". Одновременно с включением реле К3 через резистор R9.Е2 подается питание на стабилитрон V9 и включается отсчет выдержки времени "Газ до сварки".
Выдержка времени "Газ до сварки" выполнена на пороговом элементе - однопереходном транзисторе VE1.E2,
между эмиттером которого и общим проводом схемы (провод 31) включен конденсатор С1.
Заряд конденсатора осуществляемся от стабилизированного напряжения , снимаемого со стабилитрона V9.Е2 через резистор R1 и переменный резистор R24, установленный на блоке управления. После того, как напряже-ние на конденсаторе С1 достигнет порога срабатывания однопереходного транзистора VЕ1, последний откры-вается и конденсатор С1 разряжается по цепи управлявшего электрода тиристора VE3.E2. Тиристор открыва-ется и включает реле К2, которое контактом К2.1 включает пускатель К6.
Пускатель К6 подключает сварочный трансформатор Т1 к сети. Вторичное напряжение трансформатора по проводам 81 и 92 подается на плату Е5. Через потенциометр R13, стабилитрон V2, резистор R1 платы Е5 про-исходит заряд кондонсатора СЗ.
После срабатывания однопереходного транзистора VЕ1 импульс разряда конденсатора С3 через согласующий транзистор VЕ2 и развязывающий импульсный трансформатор Т1D поступает на управляющий электрод ти-ристора V3. Диод V3.Е5 позволяет заряжать конденсатор С3.E5 только в тот полупериод, когда на изделии отрицательная полярность. Открываясь, тиристор V8.Е5 замыкает цепь разряда конденсатора С3, предвари-тельно заряженного через диод V10.Е3 до напряжения 520 В.
Так как реле К1 включено вторичным напряжением сварочного трансформатора, и его контакт К1.1, шунти-рующий резистор R15 с которого подается напряжение на вход повышающего автотрансформатора L3, разом-кнут, то разряд конденсатора C8 приводит к появлению на зажимах L3 высоковольтного импульса. Этот им-пульс эаряжает конденсатор С6 до напряжения пробоя разрядника F7. С пробоем разрядника возникает высо-ковольтный высокочастотный затухающий импульс, который, прикладываясь к дуговому промежутку, иони-зирует его и помогает возбудиться дуговому процессу.
При возбуждении дуги, вторичное напряжение сварочного трансформатора падает и рела К1 выклзючается, контакт К1.1 шунтирует вход высоковольтного автотрансформатора L3, при этом осцилляторный режим прекращается. В дальнейшем разряд конденсатора С8 происходит на дуговой промежуток, обеспечивая ста-бильное поджигание дуги при положительной полярности на электроде с некоторым сдвигом во времени от-носительно нулевого значения сварочного тока. Время сдвига регулируется потенциометром R13.
Возникающая в процессе сварки алюминия и его сплавов постоянная составляющая сварочного тока компен-сируется полупроводниковым узлом, состоящим из силового диода VЗ и тиристора V4. Величину постоянной составляющей регулируют потенциометром R6 , изменяя момент открывания тиристора V4.
Регулирование сварочного тока и времени заварки кратера осуществляется следующим образом : при вклю-чении кнопки на сварочной горелки, происходит заряд конденсатора С3 платы Е1 через R12 и V10 платы Е1. Напряжение заряда ограничивается стабилитроном V11.E1. Срабатывает реле К1.Е1, включенное в эмиттер-ную цепь транзистора VE3.E1. Контакт К1.1 (E1) подготавливает цепь питания реле К2 на время заварки кратера.
Через подстроечный резистор R4 подается напряжение на регулятор сварочного тока RЗ, Напряжение задания с RЗ подается через цепочку R3V1(платы E1) на заряд конденсатора С1.E1. При достижении напряжения на конденсаторе С1.Е1 порога срабатывания VЕ2.Е1 подается импульс на тиристоры VЕ1.Е2 через импульсный трансформатор Т4D.===============
При регулировании напряжения задания, снимаемого с потенциометра R3, осуществляется управление углом открывания тиристоров VE1,VE2 и, соответственно, средним значением напряжения и тока в обмотке подмаг-ничивания шунта сварочного трансформатора, а следовательно, и сварочным током.
Транзистор VE1 платы E1 является: синхронизирующим, и, открываясь, разряжает конденсатор С1.Е1 в конце каждого полупериода, с тем, чтобы заряд С1.Е1 в каждый полупериод начинался с нуля.
При отключении кнопки S6 на сварочной горелке начинает разряжаться конденсатор С3 платы Е1 через ре-зистор R11.Е1 и переменный резистор R5. По мере разряда конденсатора уменьшается напряжение зада-ния,снимаемое с регулятора сварочного тока R3, а, следовательно, и сварочный ток.
При снижении напряжения на эмиттере VE3.Е1 до величины отпускания реле К1.Е1 последнее отключается и контакт К1.1 (Е1) отключает реле К2, которое в свою очередь отключает катушку контактора К6, а через него сварочный трансформатор от питающей сети.
Время заварки кратера регулируется переменным резистором R5. При выключении кнопки S6 схема платы Е2 питается только через контакты К4.2 и К3.2 . По истечении времени "Заварка кратера" реле К1.Е1 отключается и транзистор VE6.Е2 закрывается, т.к. перестает поступать с 35 провода положительное напряжение на его базу. Начинается заряд конденсатора С6.Е2 по цепи R20; R13.E2.
Время заряда регулируется переменным резистором R20 "Газ после сварки". При пороговом значении напря-жения не конденсаторе С6 , открывается однопереходный транзистор VЕ4.E2 и подается управляющий им-пульс на тиристор VЕ5.Е2. Тиристор открывается и напряжение конденсатора С3.Е2 через резистор R16.Е2 прикладывается к тиристору VЕ3.Е2, запирая его. Реле К3 при этом выключается. Контакт К3.2 снимает со всей схемы напряжение.
Если при включении сварочного трансформатора дуга не возбудится в течение времени 0,9 с, то успевает заря-диться конденсатор С1.Е3 до пороге срабатывания VЕ1.Е3, при этом открывается тирстор VЕ2.Е3. Реле К4 включается и отключает реле К2, которое в свою очередь отключает сварочный трансформатор.
Включение сварки возможно по истечении времени, определяемого зарядом конденсатора С5.Е3 (9с). При этом открывается тиристор VE4.Е3, а тиристор VЕ2.Е3 запирается. Реле К4 отключается и сварочной цикл возобновляется.
1.5. Устройство и работа составных частей
Шкаф управления состоит из силового трансформатора ТРПШ-300-3 для установки типе УДГ-301-1 или ТРПШ-500-3 для установки типа УДГ-501-1, дросселя (только для УДГ-301-1), вентилятора, выключателя автоматического, двух блоков управления, блока вентилей.
Схемы электрические соединений шкафов управления приведены на рис.12 и 13.
1.5.2. Все составные части шкафа управления смонтированы на тележке и защищены кожухом. Шкаф имеет два рым-болта для подъема.
Зажим для заземления шкафа управления находится на тележке со стороны задней решетки.
Для подключения питающей сети к шкафу со стороны задней решетки имеется штепсельный разъем.
Включение установки в сеть и защита ее от коротких замыканий осуществляется автоматическим вы-ключателем Q1 , расположенным на задней стенке шкафа управления.
Трансформатор ТРПШ - однофазный понижающий , с подмагничиваемым шунтом - установлен на днище шкафа.
Дроссель L2 (только для УДГ-300-1 ), служащий для расширения диапазона регулирования сварочного тока в сторону малых токов, представляет собой линейную нерегулируемую индуктивность. При его включе-нии последовательно со вторичной обмоткой сварочного трансформатора сварочный ток может регулировать-ся в пределах от 15 до 25 А.
1.5.8. Переключатель S3, установленный на задней стенке шкафа управления, служит для переключения об-моток сварочного трансформатора.
1.5.10. Блоки управления устанавливаются в шкафу управления с лицевой стороны и соединяются со схемой шкафа управления через штепсельные разъемы.
1.5.11. Блок вентилей предназначен для компенсации постоянной составляющей и устанавливается на боко-вине шкафа управления.
1.5.12. Наличие переносного блока поджигания позволяет максимально приблизить его к сварщику, что зна-чительно облегчает зажигание дуги и настройку величины сварочного тока. С лицевой стороны блока имеются разъемы для подключения горелки, а с задней стороны - разъемы для подключения шкафа управления.
Действия органов управления обозначены символами, расшифровка которых приведена на рис.14.
1.5.13. Сварочная горелка предназначена для сварки неплавящимся вольфрамовым электродом марки ВА-1А.
Горелка осуществляет закрепление электрода, подачу эащитного газа, подвод сварочного тока и воды. Ма- лая горелка (рис.3) служит для сварки на токах до 200А и обеспечивает эакрепление вольфрамовых электро-дов диаметром 0,8; 1,0; 1,2; 1,6; 2,0; 3,0 и 4,0 мм. Средняя горелка (рис.4) используется для сварки на токах до 400А и обеспечивает закрепление вольфрамовых электродов диаметром 3,4; 5,6 мм. Большая горелка (рис.5) предназначена для сварки на токах до 500А и обеспечивает закрепление вольфрамовых электродов диаметром 5,6; 8 и 10 мм. Сварка на токе, большем номинального для горелки, недопустима.
Каждая горелка состоит из корпуса 3, рукоятки 6, сменкой цанги 2, тыльного колпачка 4, сопла 1, выключа-теля 5, токоподвода 7, трубки 8 для подвода газа, трубки 9 для подвода воды и проводов для управления 10 от выключателя. У малой и средней горелок сопла керамические, у большой - медное сопло, охлаждаемое водой.
Каждая сварочная горелка комплектуется запасными и сменными соплами и цангами соответствующих диа-метров. Для смены цанги 2 следует отвернуть тыльный колпачок 4 в вынуть цангу со стороны сопла, а на ее место установить цангу соответствующего диаметра. Вольфрамовый электрод вставляется со стороны сопла и затягивается в цанге при помощи тыльного колпачка.
1.6. Контрольно-измерительные приборы.
1.6.1. Для контроля величины сварочного тока на шкафу управления установлен амперметр; на баллоне долж-ны размещаться редуктор с манометром для измерения давления газа и расходомером для определения рас-хода газа.
Аргонно-дуговая сварка деталей из алюминиевых сплавов
Повреждения в деталях из алюминиевых сплавов лучше всего устранять ручной аргонно-дуговой сваркой неплавящимся электродом. По сравнению с другими видами сварки аргонно-дуговая обеспечивает более высокое качество сварных соединений, процесс легче освоить.
Оборудование для аргонно-дуговой сварки
Для осуществления аргонно-дуговой сварки используют установки УДГ-301 и УДГ-501. Они позволяют выполнять сварку при силе сварочного тока соответственно 15-315 и 40-500 А. Одной из последних разработок для аргонно-дуговой сварки является установка УДГУ-301.
Установка УДГ-301 комплектуется двумя сварочными горелками, установка УДГ-501 — тремя. Малую горелку применяют для сварки на токах до 200 А, среднюю — до 400 А, большую — на токах до 500 А.
В качестве неплавящегося электрода при аргонно-дуговой сварке применяют вольфрамовые прутки марки ВА-1А или ВЛ-10. Диаметр вольфрамового электрода выбирают в зависимости от сварочного тока.
Присадочный материал и защитные газы
В качестве присадочного материала при сварке алюминиевых сплавов применяют проволоку марки Св-АК5 или Св-АК10. Возможно также применение «лапши», нарезанной из листового алюминиевого сплава АМг или АМц толщиной 4-5 мм. Присадочный материал перед применением следует тщательно очистить от окисной пленки и масла погружением на несколько минут в слабый раствор ортофосфорной кислоты с последующей промывкой в горячей воде и просушкой. Непосредственно перед сваркой проволоку зачищают шлифовальной шкуркой.
Для защиты сварочной ванны от воздействия воздуха при сварке алюминиевых сплавов применяют аргон чистый марки А. Аргон поставляют в баллонах 40 л под давлением 15 МПа.
Техника и режимы аргонно-дуговой сварки
Аргонно-дуговой сварке алюминиевых сплавов присущи некоторые особенности, без учета и освоения которых невозможно получение качественных сварных соединений.
Перед тем как приступить к сварке, необходимо как можно точнее определить режимы сварки. В основном они зависят от толщины металла в зоне повреждения. Установку включают за 3-5 мин до начала сварки, продувают шланг газом, устанавливают принятую силу сварочного тока и давление газа.
Возбуждение дуги и разогрев электрода осуществляют на графитной пластинке, которую располагают рядом с точкой начала сварки. О готовности электрода к сварке свидетельствует образование на его конце раскаленного докрасна шарика. В дальнейшем на протяжении всей сварки до обрыва дуги электрод должен сохранять такую форму.
К месту сварки горелку переводят быстрым движением. При некотором практическом навыке дугу возобновляют, не прикасаясь электродом к металлу. Наоборот, этого следует избегать, так как касание раскаленного электрода с металлом приводит к загрязнению вольфрама, нарушению устойчивости дуги и ухудшению формируемого шва. Если все же случайно произойдет соприкосновение раскаленного электрода с металлом, сварку следует прекратить, а конец электрода очистить от прилипших к нему частиц алюминиевого сплава. Для этого дугу зажигают на графитовой пластинке и выдерживают ее в течение 20-30 с, пока испарятся посторонние включения и на конце электрода вновь появится чистый раскаленный шарик.
Подачу присадочного металла в зону дуги начинают лишь после того, как образуется сварочная ванна с чистой поверхностью. Если сварочная ванна имеет матовый оттенок, а вокруг нее откладывается копоть, то необходимо несколько увеличить подачу аргона. Если же дуга горит неустойчиво, то наоборот, расход газа необходимо несколько уменьшить.
На формирование шва большое влияние оказывает взаиморасположение электрода и присадочной проволоки по отношению друг к другу и к поверхности сварки. Чем толще свариваемый металл, тем большим должен быть угол между поверхностью детали и осью вольфрамового электрода.
Длина дуги должна быть стабильной на протяжении всей сварки и поддерживаться на расстоянии 4-5 мм от поверхности сварочной ванны. При увеличении этого расстояния уменьшается тепловая мощность дуги, увеличивается ширина зоны расплавления, деталь сильнее нагревается, отчего увеличивается ее коробление.
В зависимости от толщины свариваемого металла и характера повреждения движение конца проволоки и электрода во время сварки может быть прямолинейно-поступательным или серповидным. Серповидные движения применяют в тех случаях, когда требуется наложить широкий шов, при наплавке второго слоя, при заварке небольшой пробоины.
При заварке трещины присадочную проволоку и вольфрамовый электрод располагают вдоль трещины. Конец проволоки не должен во время сварки выходить из зоны газовой защиты и попадать в столб дуги.
Для лучшей видимости процесса сварку ведут справа налево, а присадочную проволоку подают спереди. Шов, наложенный на трещину, должен быть слегка выпуклым и возвышаться над основной поверхностью на 2-3 мм. Поверхность шва должна быть светлой с четко выраженной мелкой чешуйчатостью. Затемненная матовая поверхность или закопченность шва свидетельствует о ненормальной газовой защите, низком качестве аргона, подсосе воздуха вследствие неплотностей газового тракта. Плохое формирование шва происходит по причине неправильно выбранных режимов сварки или неправильной техники ведения процесса.
Сварные соединения, выполненные аргонно-дуговой сваркой, легко обрабатываются любым режущим инструментом, по прочности близки к прочности основного металла. Аргонно-дуговая сварка обеспечивает также высокую герметичность сварных соединений.
Оборудование для аргоно-дуговой сварки
Все аргонодуговые установки независимо от их размеров и мощности, имеют широкую гамму функциональных возможностей, обеспечивающих высококачественную сварку:
- Бесконтактное возбуждение дуги при помощи высокочастотного возбудителя.
- Плавное регулирование сварочного тока.
- Автоматическое нарастание сварочного тока в начале сварки и плавный спад сварочного тока в конце (заварка кратера). Время нарастания тока и его спада плавно регулируется.
- Автоматическая продувка газового тракта до зажигания дуги и задержка отключения газа после окончания сварки с возможностью регулирования их времени.
- При сварке на переменном токе обеспечиваются:
- стабилизация горения сварочной дуги;
- регулирование постоянной составляющей.
Профессиональная аргонодуговая сварка неплавящимся (вольфрамовым) электродом в производственных цехах и ремонтных службах.
УДГУ-302
- на постоянном токе нержавеющих и малоуглеродистых сталей, медно-никелевых и титановых сплавов;
- на переменном токе алюминия и его сплавов. При сварке на переменном токе регулируется соотношение между положительной и отрицательной полуволной сварочного тока. При увеличении положительной полуволны улучшается очистительный эффект, а при увеличении отрицательной полуволны - эффект проплавления. При установлении оптимального соотношения между полуволнами получается хорошо зачищенный шов с необходимым проплавлением.
УДГ-501-1
- Мощная установка для сварки алюминия и его сплавов на переменном токе.
Стабилизация тока при колебаниях напряжения сети обеспечена во всех установках данной серии (УДГ-3010, УДГУ-302 и УДГ-501-1).
Импульсный режим сварки реализован в установках УДГ-3010 и УДГУ-302, а также в модуле АДМ-251. При импульсной сварке ток автоматически меняется между высоким уровнем импульсного сварочного тока и низким уровнем паузы.
В установках плавно регулируются:
Блок разъемов
- величина тока импульса;
- величина тока паузы;
- длительность импульса;
- длительность паузы.
Подключение автоматов ТИГ-сварки возможно для установок УДГУ-302 и УДГ-501-1.
Блок разъемов, которым могут комплектоваться установки УДГУ-302 и УДГ-501-1, позволяет существенно увеличить расстояние от установки до места сварки - 15 м.
УДГУ-302
УДГ-501-1
10 . 315
10 . 315
0,1 . 9,9
0,1 . 9,9
100 пост.
80 перем.
0,5 . 10
0,5 . 10
0,3 . 4
0,4 . 5
1,5 . 5
Установка УДГ-161 для аргонодуговой сварки.
Установка УДГ-161 предназначена для аргонодуговой сварки неплавящимся электродом (режим TIG) на постоянном токе металлов кроме алюминия и его сплавов и для ручной дуговой сварки покрытыми электродами (режим ММА).
Источник установки УДГ-161 имеет широкий диапазон плавного регулирования сварочного тока. Источник имеет тиристорную регулировку сварочного тока.
Установка УДГ-180 для аргонодуговой сварки.
Установка УДГ-180 предназначена для аргонодуговой сварки неплавящимся электродом (режим TIG) на переменном токе алюминия и его сплавов и для ручной дуговой сварки покрытыми электродами (режим ММА).
Источник установки имеет широкий диапазон плавного механического регулирования сварочного тока, обеспечивает легкое возбуждение и устойчивое горение дуги за счет встроенного возбудителя-стабилизатора.
Регулировка тока осуществляется механическим ручным перемещением магнитного шунта вертикального исполнения.
Установка УДГУ-251 AC/DC для аргонодуговой сварки.
Установка УДГУ-251 АС/DC предназначена для аргонодуговой сварки неплавящимся электродом (режим TIG) на постоянном или переменном токе всех металлов и для ручной дуговой сварки покрытыми электродами (режим ММА.
Установка сварочная УДГУ-251 имеет переключение переменный/постоянный ток (АС/DC). Источник установки сварочной УДГУ-251 имеет тиристорное управление, широкий диапазон плавного регулирования сварочного тока, обеспечивает легкое возбуждение и устойчивое горение дуги за счет встроенного возбудителя-стабилизатора повышенной надежности и мощности.
Профессиональная установка УДГУ-302 для сварки неплавящимся электродом в среде инертных газов.
Установка сварочная УДГУ-302 предназначена для аргоно-дуговой сварки на постоянном токе нержавеющих и малоуглеродистых сталей, медноникелевых и титановых сплавов, на переменном токе - алюминия и его сплавов.
Установка сварочная УДГУ-302 обеспечивает плавное регулирование сварочного тока, бесконтактное возбуждение дуги при помощи высокочастотного возбудителя.
Установка УДГУ-351 АС/DC для аргонодуговой сварки.
Установка УДГУ-351 предназначена для аргонодуговой сварки неплавящимся электродом (режим TIG) на переменном токе алюминия и его сплавов и на постоянном токе любых металлов кроме алюминия, также для ручной дуговой сварки покрытыми электродами (режим ММА) на постоянном и переменном токе. Установка сварочная УДГУ-351 имеет переключение переменный/постоянный ток (АС/DC). Источник установки сварочной УДГУ-351 имеет тиристорное регулирование и обеспечивает легкое возбуждение и устойчивое горение дуги за счет встроенного возбудителя - стабилизатора. Наличие регулировок начального тока сварки, величины сварочного тока, времени продувки газа в начале и в конце сварки , времени спада тока в конце сварки позволяет выбрать оптимальный режим сварки.
Установка УДГУ-501 АС/DC для аргонодуговой сварки
Установка УДГУ-501АС/DC предназначена для аргонодуговой сварки неплавящимся электродом (режим TIG) на переменном токе алюминия и его сплавов и для ручной дуговой сварки покрытыми электродами (режим ММА). Имеется переключение переменный/постоянный ток (AC/DC). По спецзаказу выполняется версия установки с плавным регулированием нарастания сварочного тока, устанавливается специальный осциллятор для повышения качества сварного соединения и для работы на длинных кабелях (шлейфах) горелки. Источник установки имеет широкий диапазон плавного регулирования сварочного тока, обеспечивает легкое возбуждение и устойчивое горение дуги за счет встроенного возбудителя-стабилизатора повышенной мощности.
Установка УДГ-501-1: Профессиональная установка для сварки неплавящимся электродом в среде инертных газов:
Установка УДГ-501-1 предназначена для аргоно-дуговой сварки на переменном токе алюминия и его сплавов .
Установка сварочная УДГ-501 обеспечивает плавное регулирование сварочного тока, бесконтактное возбуждение дуги при помощи высокочастотного возбудителя.
Горелки сварочные для аргоно-дуговой сварки (с кабель-шлангами и разъемом)
Оборудование аргоно-дуговой сварки, аргонная сварка (сварка аргоном, аргоновая, аргонодуговая), установки и горелки.
Установки сварочные TIG для дуговой сварки неплавящимся электродом в среде аргона постоянным или переменным током нержавеющих, титановых, медно-никелевых и алюминиевых сплавов.
Установки для дуговой сварки неплавящимся электродом в среде инертных газов
Все аргонодуговые установки независимо от их размеров и мощности, имеют широкую гамму функциональных возможностей, обеспечивающих высококачественную сварку:
- Бесконтактное возбуждение дуги при помощи высокочастотного возбудителя.
- Плавное регулирование сварочного тока.
- Автоматическое нарастание сварочного тока в начале сварки и плавный спад сварочного тока в конце (заварка кратера). Время нарастания тока и его спада плавно регулируется.
- Автоматическая продувка газового тракта до зажигания дуги и задержка отключения газа после окончания сварки с возможностью регулирования их времени.
- При сварке на переменном токе обеспечиваются:
- стабилизация горения сварочной дуги;
- регулирование постоянной составляющей.
Профессиональная аргонодуговая сварка неплавящимся (вольфрамовым) электродом в производственных цехах и ремонтных службах.
УДГУ-302
- на постоянном токе нержавеющих и малоуглеродистых сталей, медно-никелевых и титановых сплавов;
- на переменном токе алюминия и его сплавов. При сварке на переменном токе регулируется соотношение между положительной и отрицательной полуволной сварочного тока. При увеличении положительной полуволны улучшается очистительный эффект, а при увеличении отрицательной полуволны - эффект проплавления. При установлении оптимального соотношения между полуволнами получается хорошо зачищенный шов с необходимым проплавлением.
УДГ-501-1
- Мощная установка для сварки алюминия и его сплавов на переменном токе.
Стабилизация тока при колебаниях напряжения сети обеспечена во всех установках данной серии (УДГ-3010, УДГУ-302 и УДГ-501-1).
Импульсный режим сварки реализован в установках УДГ-3010 и УДГУ-302, а также в модуле АДМ-251. При импульсной сварке ток автоматически меняется между высоким уровнем импульсного сварочного тока и низким уровнем паузы.
В установках плавно регулируются:
- величина тока импульса;
- величина тока паузы;
- длительность импульса;
- длительность паузы.
Подключение автоматов ТИГ-сварки возможно для установок УДГУ-302 и УДГ-501-1.
Блок разъемов, которым могут комплектоваться установки УДГУ-302 и УДГ-501-1, позволяет существенно увеличить расстояние от установки до места сварки - 15 м.
6.6. Возбудитель-стабилизатор установок удг-301 и. Удг-501
Этот стабилизатор работает как в режиме возбуждения дуги, так и в режиме стабилизации при горении дуги. Цепь его коммутатора управляется при сварке напряжением дуги, при возбуждении - напряжением холостого хода. Схема возбудителя-стабилизатора приведена на рис.6.7. Накопитель С2 заряжается от однополупериодного выпрямителя VD1 через резистор R1 и разряжается либо через первичную обмотку автотрансформатора TI (при разомкнутом контакте К -холостом ходе источника питания G), либо непосредственно на дуговой промежуток (через дроссель LI и резистор R2) -при дуге (контакт К замкнут коммутатором VS).
Рис.6.7. Принципиальная электрическая схема возбудителя – стабилизатора дуги установки УДГ-301 и УДГ-501
При холостом ходе импульс, трансформируемый автотрансформатором TI, заряжает конденсатор CI (высоковольтный накопитель). При пробое разрядника FV возникают колебания в контуре, образованном конденсатором СI и дросселем L1. Конденсатор С5 служит для защиты источника питания от высокого напряжения. Тиристор VS управляется or двухбазового диода VT через импульсный трансформатор Т2. На эмиттер двухбазового диода поступает разность напряжений обратной полуволны и стабилитрона VD2 и заряжает конденсатор С4 до срабатывания диода VT. При резкой смене напряжения (в пик зажигания) напряжение поступает через конденсатор СЗ. что обеспечивает своевременное выделение импульса при сварке.
6.7. Возбудитель - стабилизатор всд-01
Возбудитель - стабилизатор (рис. 6.8) спроектирован так, чтобы удовлетворить условиям как начального так и повторного зажигания дуги. Он включается последовательно в цепь вторичной обмотки сварочного источника G. Возбудитель запитывается напряжением сети через трансформатор TI и выпрямительный блок VD1 с фильтром СI.
Рис. 6.8. Упрощенная схема возбудителя-стабилизатора ВСД–01
В первом цикле накопительный конденсатор С2 заряжается по цепи, указанной сплошной линией, такой полярностью, которая изображена + и - без скобок. В начале каждого полупериода сварочного напряжения система управления откроет тиристор VS в результате чего по короткой цепи, показанной сплошной тонкой линией, пройдет мощный импульс разряда конденсатор C2 на первичную обмотку повышающего трансформатора Т2. При этом конденсатор С2 перезарядится полярностью, показанной знаками (+) и (-) со скобками, а тиристор VS к концу перезаряда запрется. В результате потенциалы блока VD1 и конденсатора С2 складываются. Поэтому в следующем цикле конденсатор зарядится до более высокого напряжения. Такой характер перезаряда С2 приводит к тому, что его напряжение вчетверо превысит напряжение питания.
Импульс перезарядки конденсатора С2 трансформируется во вторичную обмотку Т2, что приводит к возбуждению высокочастотного контура Т2-С3-С4.Разряд конденсатора С4 подается на межэлектродный промежуток, возбуждает дугу или (при горящей дуге) стабилизирует ее в начале обоих полупериодов. Частота следования таких серий высокочастотных импульсов 100 Гц. Момент генерации разряда может быть настроен системой управления так, чтобы совместить его с переходом сварочного напряжения через нуль или выполнять с небольшой задержкой.
Сварка tig для начинающих сложный процесс, и человеку самому трудно разобраться. Эта статья поможет ознакомиться с принципами tig сварки, оборудованием, и непосредственно с работой со сварочным аппаратом.
Безопасная работа
Прежде чем начать сварку, надо принять меры по безопасности. Сварщику необходимо иметь защитные средства:
- краги из искростойких материалов;
- маска – тип „Хамелион“ или обычная со светофильтром;
- роба;
- обувь из кожи и войлока;
- очки для защиты глаз от металлических частиц при ошкуривании.
Маска „Хамелион“ с автоматической регулировкой – затемняется только при зажигании дуги. Степень затемнения можно настроить самостоятельно.
При работе следует соблюдать пожарную и электробезопасность. В рабочем помещении необходимо установить вентиляцию, а в гараже или домашней мастерской работать при открытых дверях и окнах.
Необходимое оборудование и расходные материалы
Прежде всего, начинающему надо изучить что это такое tig сварка.
Это процесс сварки металлов в газовой среде неплавящимся электродом. Представляет собой комбинацию дуговой и газовой сварки, т.к. применяются электродуга и газ.
Сначала начинающим важно ознакомиться с необходимым оборудованием и расходниками.
Какой газ применяется
В данной технологии газ нужен для предохранения сварочной зоны от вредного влияния воздуха.
Лучше всего для этой цели подходят инертные газы – аргон и гелий. Аргон тяжелее кислорода воздуха и вытесняет его из рабочей зоны, а на практике сварка проводится в аргоновой среде, реже в смеси аргона с гелием. Чистый гелий применяется крайне редко.
К зоне сварки газ подается из баллона, снабженного манометром, редуктором с ротаметром. Редуктор предназначен для регулирования давления газа на выходе и для автоматического поддержания постоянного рабочего расхода газа. Ротаметр определяет точное количество газа в заданную единицу времени. Манометр показывает давление в баллоне.
Приборы (аппараты) для сварки
Для тиг сварки неопытному сварщику больше всего подойдет инверторный аппарат ММА с функцией tig оснащённый осциллятором. На этом инверторе начинающий сможет учиться tig сварке на нержавейке, низколегированной стали и др., которые не требуют большого мастерства от начинающих.
Для работы с алюминием, магнием и др. нужен более серьезный инвертор, который переключается на переменный ток.
Профессиональные инверторы снабжены дополнительными функциями:
- стабилизация дуги;
- модуляция сварочного тока;
- ускоренный поджиг;
- заварка кратера.
Правильно ими пользоваться и настраивать под силу только квалифицированным сварщикам. О tig сварке алюминия чайнику полезно прочитать на сайте mrmetall.ru.
Сварочная горелка
При работе с малыми токами – 50-150А горелка успевает остыть естественным путем – газоохлаждение. Горелка со встроенным в ручку водяным охлаждением, расчитана на рабочий ток 200-600А. Вода циркулирует через весь кабель-канал от аппарата к горелке.
Сборка горелки происходит следующим образом:
- Устанавливаем цангодержатель;
- вставляем в него цангу;
- закручиваем колпачок (не до края) – для предохранения замыканий об массу;
- вставляем неплавящийся электрод;
- на цангу наворачиваем керамическое сопло;
- настраиваем вылет электрода – минимально возможный;
- накрепко затягиваем колпачок.
Электрод вставляется по центру сопла, а по окружности подается аргон.
Рукоятка горелки закреплена к кабель-шлангу статически или посредством гибкой шейки, что позволяет выполнять тонкую и продолжительную работу в любой плоскости. Кнопка на ручке активирует подачу тока на электрод и газа.
Цангдержатели бывают с линзой и без нее. Газовая линза похожа на фильтрующую сетку, которая обеспечивает равномерный поток газа и более широкую зону защиты. Это особенно полезно для работы с нержавейкой и активными металлами. Без газовой линзы можно работать с алюминием и черной сталью. Начинающим лучше учиться на черной стали и не использовать газовую линзу.
Неплавящиеся электроды
Температура плавления вольфрама более 3400 градусов, поэтому электрод не сгорает и не плавится под действием высокой температуры. Бывают электроды из чистого вольфрама или с легирующими добавками. Кончики окрашены в различные цвета, в зависимости от предназначения.
Для получения надежного шва и стабилизации дуги, рабочий кончик электрода надо периодически затачивать. При работе с переменным током он должен быть округлым, с постоянным – под конус.
Длина заточки составляет примерно 2-3 диаметра электрода. Для стабильности дуги риски от заточного инструмента должны располагаться вдоль острия, а не поперек. Недопустимо при заточке перегревать электрод, т.к. вольфрам становится более хрупким.
Электроды выбираются в зависимости от токовых режимов сварки.
Диаметр электрода, мм | Толщина металла, мм | Сила тока, А |
1,5 | 1 | 45 – 55 |
2 | 2 | 80 – 90 |
3,5 | 3 | 120 – 150 |
5 | 4 | 170 – 190 |
Начинающие чаще всего работают с электродами 1,6 и 2,4 мм в диаметре.
Присадочные расходные материалы
Присадка нужна для создания шва, когда растопленного металла кромок детали не хватает для заполнения сварочной ванны. Присадка – это прутки из сварочной проволоки. По составу они должны быть аналогичны или близки к свариваемому металлу.
Осциллятор
Для бесконтактного поджигания дуги в начале сварки и ее стабильности во время работы, используется высоковольтный высокочастотный генератор – осциллятор. Он может быть как отдельное устройство, так и интегрирован в сварочный аппарат.
С помощью прибора дуга зажигается без соприкосновения электрода с металлом. Это очень удобно для начинающих. В процессе сварки дуга постоянная по отношению к изменяющемуся зазору между электродом и поверхностью металла. В результате работы осциллятора получается равномерный шов.
Подготовка к сварке
Приведение в рабочее состояние состоит в том, чтобы собрать все гибкие связи в одно целое с аппаратом:
- закрепляем редуктор с ротаметром на газовом баллоне;
- шланг подключаем к редуктору;
- байонетный разъем горелки вставляем в минусовое гнездо;
- кабель управления присоединяется к соответствующему гнезду на лицевой панели инвертора;
- кабель массы соединяется с плюсовым гнездом на аппарате.
Обычно кабель горелки, газовый шланг и кабель заземления со всеми соединительными частями поставляется вместе со сварочным аппаратом.
Как правильно работать с горелкой
В сварке tig начинающему очень важно привыкнуть держать горелку и присадочный пруток. Рука должна опираться на рабочую поверхность для стабилизации движения.
Шланг, идущий от горелки, петлей надевается на руку. Горелка помещается между большим и указательным пальцем и ложится на безымянный и мизинец. Очень похоже на положении ручки при письме.
В левой руке находится пруток и регулярно мелкими шагами подается в сварочную ванну перед горелкой. Направление движения горелки справа налево.
Боковой угол должен составлять 90°. Наклон горелки к рабочей поверхности 70° – 80°, а прутка 15° – 30°. Между горелкой и прутком должен поддерживаться постоянный прямой угол, т.е. если горелка меняет положение, то и пруток следует за ней, сохраняя наклон.
Горелка двигается углом вперед в наклонном положении в сторону сварного шва. Вести электрод по оси шва, не отклоняясь. Важно следить, чтобы конец прутка был все время в зоне газовой защиты, иначе произойдет его окисление и загрязнение сварочной ванны.
В интернете есть много видео тиг сварки для начинающих, где наглядно показано, как работать с горелкой.
Сущность сварочного процесса
Сила тока определяет качество сварного шва и производительность, являясь основным и наиболее важным параметром сварки.
Тепло необходимое для надежного соединения, идет от электрической дуги. Она образуется между электродом и свариваемым металлом. Для образования и горения электрической дуги существует прибор – генератор, который подает необходимое количество тока. Выделяют два вида этих приборов.
Генератор переменного тока – трансформатор.
Ток, выходящий из устройства, приобретает форму квадратной волны, которая меняет свою полярность с частотой в зависимости от генератора. В этом случае выпрямитель преобразует ток сети в соответствующий для сварки переменный ток.
Генератор постоянного тока – инвертор или выпрямитель.
Начинающим оба метода, но начинать нужно с постоянного тока. Ток на выходе из прибора имеет вид постоянной волны. В этом случае переменный ток сети преобразуется в постоянный. Различают два варианта соединения полюсов инвертора со свариваемым материалом:
с прямой полярностью – электрод соединяется с отрицательным полюсом инвертора, а деталь – с положительным;
с обратной полярностью – электрод присоединяется к „+“, деталь – к „–“
Особенности сварки с прямой полярностью: повышение количества тепла в изделии и снижение в электроде; зона расплавления металла узкая, но глубокая. Это основной режим tig сварки всех видов сложных металлов и сплавов.
При обратной полярности: ввод тепла в изделие сниженный, а в электрод – повышенный. Сварочная ванна широкая, но не глубокая. Кроме того, присутствует эффект катодной чистки поверхности металла, когда оксидная пленка разрушается. Это улучшает сплавление кромок и формирование шва.
Алюминий и магний, а также их сплавы можно и нужно варить на переменном токе.
Еще существуют генераторы, которые выдают импульсный постоянный ток – импульсные инверторы. Такие генераторы имеют устройства, изменяющие амплитуду тока сварки путем наложения на базовый постоянный ток квадратные волны. Получается периодическая пульсации дуги. При импульсном режиме шов образуется за счет непрерывного накладывания друг на друга сварочных точек.
В основном применяется на тонких изделиях, когда необходимо поддерживать необходимую температуру во избежание прожига металла и, в то же время, не нарушать глубину провара.
Регулировка параметров процесса на сварочном аппарате
Перед началом работы необходимо настроить значения показателей так, чтобы шов получился нужного размера и хорошего качества. Аппарат настраивают в зависимости от вида металла, его толщины и рабочего газа.
К каждому сварочному аппарату дается таблица настройки параметров сварки. Ориентируясь на таблицу, на лицевой панели выставляем режим tig и основные показатели:
- величина силы тока;
- время продувки газом перед началом – 0,5, и в конце – 1,5 сек;
- величина тока для поджига дуги – 25% от рабочего тока;
- период нарастания до значения рабочего тока 0,2 –1,0 сек;
- время спада тока и его значение для заварки кратера выбирается в зависимости от толщины металла.
Начинать варить надо на аналогичной пробной детали. Если дуга не стабильная и гаснет, то ток надо увеличить. При прожиге металла или образовании наплывов, ток уменьшить.
Увеличиваем подачу газа, если дуга нестабильна и шов кривой. После окончания, когда дугу угасили, еще какое-то время обдуваем сварочную зону, во избежание окисления шва и электрода. Современные аппараты снабжены многими функциями и, если нет, например, время продувки или еще чего-то, то сварщик контролирует процесс самостоятельно.
Подготовка деталей
В отличие от других видов сварки, tig очень чувствительна к загрязнениям. Это нужно учитывать всем начинающим. Поэтому детали следует очищать особенно тщательно: обезжирить растворителем и зашкурить до блеска свариваемую поверхность.
Пруток перед самой сваркой, если есть необходимость зашкурить, и обязательно протереть спиртом.
Толстые детали разделывают, снимая фаску под углом 45°. Это обеспечит хороший провар. Зафиксировать положение деталей относительно друг друга с помощью прихваток или струбцин.
Обучающие тренировки для начинающих
Упражнение 1
После изучения теории tig сварки начинающему можно приступать к практике. Главное – это привыкнуть держать горелку и присадочную проволоку, „набить руку“.
Первоначально начинающему сварщику надо тренироваться на листе черной стали. На нем шлифмашинкой или другим инструментом обозначить небольшие прямые линии, чтобы по ним вести сварку. Начинать варить надо без присадки. Внимательно и плавно ведем горелкой прямо вдоль линии, не разжигая дугу. После этого зажигаем дугу и ведем горелку от одного края линии до другого. Ведем ровный ниточный шов, приучая руку правильно держать ванну и не прожигать металл.
Упражнение 2
После освоения ведения шва, переходим к работе с присадочной проволокой. Сначала тренируемся приваривать сам пруток. Разожгли дугу и, когда металл листа расплавился, подаем в сварочную ванну пруток. Останавливаем процесс, подождем, чтобы металл немного застыл и отрываем пруток. Повторяем упражнение несколько раз. После того, как появилась уверенность, начинаем тренировки выполнения сварочного шва с присадкой.
Сварка tig широко распространенный метод соединения металлов. Его освоение вполне возможно начинающему сварщику. С практикой и постоянством придут опыт и мастерство.
Читайте также: