Тепловая машина работает по циклу карно и рабочим веществом является идеальный газ каково отношение
Физика
Второе начало термодинамики возникло из анализа работы тепловых двигателей (машин). В формулировке Кельвина оно выглядит следующим образом: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу.
Схема действия тепловой машины (теплового двигателя) представлена на рис. 6.3.
Цикл работы теплового двигателя состоит из трех этапов:
1) нагреватель передает газу количество теплоты Q 1 ;
2) газ, расширяясь, совершает работу A ;
3) для возвращения газа в исходное состояние холодильнику передается теплота Q 2 .
Из первого закона термодинамики для циклического процесса
где Q — количество теплоты, полученное газом за цикл, Q = Q 1 − Q 2 ; Q 1 — количество теплоты, переданное газу от нагревателя; Q 2 — количество теплоты, отданное газом холодильнику.
Поэтому для идеальной тепловой машины справедливо равенство
Когда потери энергии (за счет трения и рассеяния ее в окружающую среду) отсутствуют, при работе тепловых машин выполняется закон сохранения энергии
где Q 1 — теплота, переданная от нагревателя рабочему телу (газу); A — работа, совершенная газом; Q 2 — теплота, переданная газом холодильнику.
Коэффициент полезного действия тепловой машины вычисляется по одной из формул:
η = A Q 1 ⋅ 100 % , η = Q 1 − Q 2 Q 1 ⋅ 100 % , η = ( 1 − Q 2 Q 1 ) ⋅ 100 % ,
где A — работа, совершенная газом; Q 1 — теплота, переданная от нагревателя рабочему телу (газу); Q 2 — теплота, переданная газом холодильнику.
Наиболее часто в тепловых машинах используется цикл Карно , так как он является самым экономичным.
Цикл Карно состоит из двух изотерм и двух адиабат, показанных на рис. 6.4.
Участок 1–2 соответствует контакту рабочего вещества (газа) с нагревателем. При этом нагреватель передает газу теплоту Q 1 и происходит изотермическое расширение газа при температуре нагревателя T 1 . Газ совершает положительную работу ( A 12 > 0), его внутренняя энергия не изменяется (∆ U 12 = 0).
Участок 2–3 соответствует адиабатному расширению газа. При этом теплообмена с внешней средой не происходит, совершаемая положительная работа A 23 приводит к уменьшению внутренней энергии газа: ∆ U 23 = − A 23 , газ охлаждается до температуры холодильника T 2 .
Участок 3–4 соответствует контакту рабочего вещества (газа) с холодильником. При этом холодильнику от газа поступает теплота Q 2 и происходит изотермическое сжатие газа при температуре холодильника T 2 . Газ совершает отрицательную работу ( A 34 < 0), его внутренняя энергия не изменяется (∆ U 34 = 0).
Участок 4–1 соответствует адиабатному сжатию газа. При этом теплообмена с внешней средой не происходит, совершаемая отрицательная работа A 41 приводит к увеличению внутренней энергии газа: ∆ U 41 = − A 41 , газ нагревается до температуры нагревателя T 1 , т.е. возвращается в исходное состояние.
Коэффициент полезного действия тепловой машины, работающей по циклу Карно, вычисляется по одной из формул:
η = T 1 − T 2 T 1 ⋅ 100 % , η = ( 1 − T 2 T 1 ) ⋅ 100 % ,
где T 1 — температура нагревателя; T 2 — температура холодильника.
Пример 9. Идеальная тепловая машина совершает за цикл работу 400 Дж. Какое количество теплоты передается при этом холодильнику, если коэффициент полезного действия машины равен 40 %?
Решение . Коэффициент полезного действия тепловой машины определяется формулой
где A — работа, совершаемая газом за цикл; Q 1 — количество теплоты, которое передается от нагревателя рабочему телу (газу).
Искомой величиной является количество теплоты Q 2 , переданное от рабочего тела (газа) холодильнику, не входящее в записанную формулу.
Связь между работой A , теплотой Q 1 , переданной от нагревателя газу, и искомой величиной Q 2 устанавливается с помощью закона сохранения энергии для идеальной тепловой машины
Уравнения образуют систему
η = A Q 1 ⋅ 100 % , Q 1 = A + Q 2 , >
которую необходимо решить относительно Q 2 .
Для этого исключим из системы Q 1 , выразив из каждого уравнения
Q 1 = A η ⋅ 100 % , Q 1 = A + Q 2 >
и записав равенство правых частей полученных выражений:
A η ⋅ 100 % = A + Q 2 .
Искомая величина определяется равенством
Q 2 = A η ⋅ 100 % − A = A ( 100 % η − 1 ) .
Расчет дает значение:
Q 2 = 400 ⋅ ( 100 % 40 % − 1 ) = 600 Дж.
Количество теплоты, переданной за цикл от газа холодильнику идеальной тепловой машины, составляет 600 Дж.
Пример 10. В идеальной тепловой машине от нагревателя к газу поступает 122 кДж/мин, а от газа холодильнику передается 30,5 кДж/мин. Вычислить коэффициент полезного действия данной идеальной тепловой машины.
Решение . Для расчета коэффициента полезного действия воспользуемся формулой
η = ( 1 − Q 2 Q 1 ) ⋅ 100 % ,
где Q 2 — количество теплоты, которое передается за цикл от газа холодильнику; Q 1 — количество теплоты, которое передается за цикл от нагревателя рабочему телу (газу).
Преобразуем формулу, выполнив деление числителя и знаменателя дроби на время t :
η = ( 1 − Q 2 / t Q 1 / t ) ⋅ 100 % ,
где Q 2 / t — скорость передачи теплоты от газа холодильнику (количество теплоты, которое передается газом холодильнику в секунду); Q 1 / t — скорость передачи теплоты от нагревателя рабочему телу (количество теплоты, которое передается от нагревателя газу в секунду).
В условии задачи скорость передачи теплоты задана в джоулях в минуту; переведем ее в джоули в секунду:
- от нагревателя газу —
Q 1 t = 122 кДж/мин = 122 ⋅ 10 3 60 Дж/с ;
- от газа холодильнику —
Q 2 t = 30,5 кДж/мин = 30,5 ⋅ 10 3 60 Дж/с .
Рассчитаем коэффициент полезного действия данной идеальной тепловой машины:
η = ( 1 − 30,5 ⋅ 10 3 60 ⋅ 60 122 ⋅ 10 3 ) ⋅ 100 % = 75 % .
Пример 11. Коэффициент полезного действия тепловой машины, работающей по циклу Карно, равен 25 %. Во сколько раз увеличится коэффициент полезного действия, если температуру нагревателя увеличить, а температуру холодильника уменьшить на 20 %?
Решение . Коэффициент полезного действия идеальной тепловой машины, работающей по циклу Карно, определяется следующими формулами:
- до изменения температур нагревателя и холодильника —
η 1 = ( 1 − T 2 T 1 ) ⋅ 100 % ,
где T 1 — первоначальная температура нагревателя; T 2 — первоначальная температура холодильника;
- после изменения температур нагревателя и холодильника —
η 2 = ( 1 − T ′ 2 T ′ 1 ) ⋅ 100 % ,
где T ′ 1 — новая температура нагревателя, T ′ 1 = 1,2 T 1 ; T ′ 2 — новая температура холодильника, T ′ 2 = 0,8 T 2 .
Уравнения для коэффициентов полезного действия образуют систему
η 1 = ( 1 − T 2 T 1 ) ⋅ 100 % , η 2 = ( 1 − 0,8 T 2 1,2 T 1 ) ⋅ 100 % , >
которую необходимо решить относительно η 2 .
Из первого уравнения системы с учетом значения η 1 = 25 % найдем отношение температур
T 2 T 1 = 1 − η 1 100 % = 1 − 25 % 100 % = 0,75
и подставим во второе уравнение
η 2 = ( 1 − 0,8 1,2 ⋅ 0,75 ) ⋅ 100 % = 50 % .
Искомое отношение коэффициентов полезного действия равно:
η 2 η 1 = 50 % 25 % = 2,0 .
Следовательно, указанное изменение температур нагревателя и холодильника тепловой машины приведет к увеличению коэффициента полезного действия в 2 раза.
Тепловые двигатели. Термодинамические циклы. Цикл Карно
Тепловым двигателем называется устройство, способное превращать полученное количество теплоты в механическую работу. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, которое называется рабочим телом. В качестве рабочего тела обычно используются газообразные вещества (пары бензина, воздух, водяной пар). Рабочее тело получает (или отдает) тепловую энергию в процессе теплообмена с телами, имеющими большой запас внутренней энергии. Эти тела называются тепловыми резервуарами.
Как следует из первого закона термодинамики, полученное газом количество теплоты Q полностью превращается в работу A при изотермическом процессе, при котором внутренняя энергия остается неизменной (ΔU = 0):
Но такой однократный акт преобразования теплоты в работу не представляет интереса для техники. Реально существующие тепловые двигатели (паровые машины, двигатели внутреннего сгорания и т. д.) работают циклически. Процесс теплопередачи и преобразования полученного количества теплоты в работу периодически повторяется. Для этого рабочее тело должно совершать круговой процесс или термодинамический цикл, при котором периодически восстанавливается исходное состояние. Круговые процессы изображаются на диаграмме (p, V) газообразного рабочего тела с помощью замкнутых кривых (рис. 3.11.1). При расширении газ совершает положительную работу A1, равную площади под кривой abc, при сжатии газ совершает отрицательную работу A2, равную по модулю площади под кривой cda. Полная работа за цикл A = A1 + A2 на диаграмме (p, V) равна площади цикла. Работа A положительна, если цикл обходится по часовой стрелке, и A отрицательна, если цикл обходится в противоположном направлении.
Круговой процесс на диаграмме (p, V). abc – кривая расширения, cda – кривая сжатия. Работа A в круговом процессе равна площади фигуры abcd
Общее свойство всех круговых процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником. Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q1 > 0 и отдает холодильнику количество теплоты Q2 < 0. Полное количество теплоты Q, полученное рабочим телом за цикл, равно
При обходе цикла рабочее тело возвращается в первоначальное состояние, следовательно, изменение его внутренней энергии равно нулю (ΔU = 0). Согласно первому закону термодинамики,
Работа A, совершаемая рабочим телом за цикл, равна полученному за цикл количеству теплоты Q. Отношение работы A к количеству теплоты Q1, полученному рабочим телом за цикл от нагревателя, называется коэффициентом полезного действия η тепловой машины:
Коэффициент полезного действия указывает, какая часть тепловой энергии, полученной рабочим телом от «горячего» теплового резервуара, превратилась в полезную работу. Остальная часть (1 – η) была «бесполезно» передана холодильнику. Коэффициент полезного действия тепловой машины всегда меньше единицы (η < 1). Энергетическая схема тепловой машины изображена на рис. 3.11.2.
Энергетическая схема тепловой машины: 1 – нагреватель; 2 – холодильник; 3 – рабочее тело, совершающее круговой процесс. Q1 > 0, A > 0, Q2 < 0; T1 > T2
В двигателях, применяемых в технике, используются различные круговые процессы. На рис. 3.11.3 изображены циклы, используемые в бензиновом карбюраторном и в дизельном двигателях. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30 %, у дизельного двигателя – порядка 40 %.
Циклы карбюраторного двигателя внутреннего сгорания (1) и дизельного двигателя (2)
В 1824 году французский инженер С. Карно рассмотрел круговой процесс, состоящий из двух изотерм и двух адиабат, который сыграл важную роль в развитии учения о тепловых процессах. Он называется циклом Карно (рис. 3.11.4).
Цикл Карно совершает газ, находящийся в цилиндре под поршнем. На изотермическом участке (1–2) газ приводится в тепловой контакт с горячим тепловым резервуаром (нагревателем), имеющим температуру T1. Газ изотермически расширяется, совершая работу A12, при этом к газу подводится некоторое количество теплоты Q1 = A12. Далее на адиабатическом участке (2–3) газ помещается в адиабатическую оболочку и продолжает расширяться в отсутствие теплообмена. На этом участке газ совершает работу A23 > 0. Температура газа при адиабатическом расширении падает до значения T2. На следующем изотермическом участке (3–4) газ приводится в тепловой контакт с холодным тепловым резервуаром (холодильником) при температуре T2 < T1. Происходит процесс изотермического сжатия. Газ совершает работу A34 < 0 и отдает тепло Q2 < 0, равное произведенной работе A34. Внутренняя энергия газа не изменяется. Наконец, на последнем участке адиабатического сжатия газ вновь помещается в адиабатическую оболочку. При сжатии температура газа повышается до значения T1, газ совершает работу A41 < 0. Полная работа A, совершаемая газом за цикл, равна сумме работ на отдельных участках:
На диаграмме (p, V) эта работа равна площади цикла.
Процессы на всех участках цикла Карно предполагаются квазистатическими. В частности, оба изотермических участка (1–2 и 3–4) проводятся при бесконечно малой разности температур между рабочим телом (газом) и тепловым резервуаром (нагревателем или холодильником).
Как следует из первого закона термодинамики, работа газа при адиабатическом расширении (или сжатии) равна убыли ΔU его внутренней энергии. Для 1 моля газа
где T1 и T2 – начальная и конечная температуры газа.
Отсюда следует, что работы, совершенные газом на двух адиабатических участках цикла Карно, одинаковы по модулю и противоположны по знакам
По определению, коэффициент полезного действия η цикла Карно есть
С. Карно выразил коэффициент полезного действия цикла через температуры нагревателя T1 и холодильника T2:
Цикл Карно замечателен тем, что на всех его участках отсутствует соприкосновение тел с различными температурами. Любое состояние рабочего тела (газа) на цикле является квазиравновесным, т. е. бесконечно близким к состоянию теплового равновесия с окружающими телами (тепловыми резервуарами или термостатами). Цикл Карно исключает теплообмен при конечной разности температур рабочего тела и окружающей среды (термостатов), когда тепло может передаваться без совершения работы. Поэтому цикл Карно – наиболее эффективный круговой процесс из всех возможных при заданных температурах нагревателя и холодильника:
Любой участок цикла Карно и весь цикл в целом может быть пройден в обоих направлениях. Обход цикла по часовой стрелке соответствует тепловому двигателю, когда полученное рабочим телом тепло частично превращается в полезную работу. Обход против часовой стрелки соответствует холодильной машине, когда некоторое количество теплоты отбирается от холодного резервуара и передается горячему резервуару за счет совершения внешней работы. Поэтому идеальное устройство, работающее по циклу Карно, называют обратимой тепловой машиной.
В реальных холодильных машинах используются различные циклические процессы. Все холодильные циклы на диаграмме (p, V) обходятся против часовой стрелки. Энергетическая схема холодильной машины представлена на рис. 3.11.5.
Устройство, работающее по холодильному циклу, может иметь двоякое предназначение. Если полезным эффектом является отбор некоторого количества тепла |Q2| от охлаждаемых тел (например, от продуктов в камере холодильника), то такое устройство является обычным холодильником. Эффективность работы холодильника можно охарактеризовать отношением
т. е. эффективность работы холодильника – это количество тепла, отбираемого от охлаждаемых тел на 1 джоуль затраченной работы. При таком определении βх может быть и больше, и меньше единицы. Для обращенного цикла Карно
Если полезным эффектом является передача некоторого количества тепла |Q1| нагреваемым телам (например, воздуху в помещении), то такое устройство называется тепловым насосом. Эффективность βТ теплового насоса может быть определена как отношение
т. е. количеством теплоты, передаваемым более теплым телам на 1 джоуль затраченной работы. Из первого закона термодинамики следует:
следовательно, βТ всегда больше единицы. Для обращенного цикла Карно
Газовые циклы, КПД тепловых машин
Так как газ отдает 70 \(\%\) тепоты холодильнику, то только 30 \(\%\) идет на работу цикла.
Следовательно КПД равен \(\eta=30\%\) . \[\eta=1-\dfrac
В цикле Карно абсолютная температура нагревателя в 2,5 раза выше абсолютной температуры холодильника. Какая доля теплоты, полученной рабочим телом от нагревателя, передается холодильнику? (Ответ дайте в процентах.)
Тепловая машина с КПД 40 \(\%\) за цикл работы отдает холодильнику 100 Дж. Какое количество теплоты за цикл машина получает от нагревателя? (Ответ дайте в джоулях, округлив до целых.)
КПД цикла можно найти по формуле: \[\eta=1-\dfrac
Температура холодильника тепловой машины 400 К, температура нагревателя на 600 К больше, чем у холодильника. Каков максимально возможный КПД машины? (Ответ дайте в процентах.)
Тепловая машина за один цикл совершает работу 20 Дж и отдаёт холодильнику количество теплоты 80 Дж. Температура нагревателя этой машины 600 К, а температура холодильника 300 К. Во сколько раз КПД идеальной тепловой машины, работающей при тех же температурах нагревателя и холодильника, больше КПД рассматриваемой тепловой машины?
КПД идеальной тепловой машины в цикле Карно можно найти по формуле: \[\eta_
КПД рассматриваемой тепловой машины: \[\eta=\dfrac
Температура холодильника тепловой машины 800 К, температура нагревателя на 200 К больше, чем у холодильника. Каков максимально возможный КПД машины? (Ответ дайте в процентах.)
V. Идеальная тепловая машина. Цикл Карно.
Во всех реальных тепловых машинах происходят те или иные потери энергии.
Если в машине отсутствуют потери на теплопроводность, лучеиспускание, трение и т.д., т.е. нет необратимых потерь, то тепловая машина называется идеальной.
Анализируя работу тепловых двигателей, французский инженер Сади Карно в 1824 г. нашел, что наивыгоднейшим, с точки зрения КПД, является обратимый круговой процесс, состоящий из изотермических и адиабатных процессов.
Прямой круговой процесс, состоящий из двух изотермических процессов и двух адиабатических, называется циклом Карно.
– контакт рабочего тела с нагревателем
(1-2) – изотермическое расширение, от нагревателя отбирается тепло Q
– прекращение контакта рабочего тела с нагревателем
(2-3) – адиабатическое расширение. Uуменьшается и температура понижаетсяTX<TH
– контакт с холодильником (ТХ)
(3-4) – изотермическое сжатие. Тепло отбирается холодильником от рабочего тела
– прекращение контакта с холодильником
(4-1) – адиабатическое сжатие, Uувеличивается и температура повышается до Тисх
– работа изотермического расширения
– работа изотермического сжатия
По определению КПДтепловой машины – это отношение полезной работы за цикл к затраченной энергии нагревателя.
Используя уравнение адиабаты:
Теорема Карно:
–КПД цикла Карно идеальной тепловой машины
Цикл Карно обратим, т.к. все его составные части являются равновесными процессами.
Поэтому машина, работающая по циклу Карно, может работать не только в качестве тепловой машины (прямой цикл), но и в качестве холодильной (обратный цикл). Отнятие тепла от более холодного тела (фреон) и передача его более нагретому (окружающая среда) совершается за счет работы внешних сил (электрическая энергия). Иногда используют обратный цикл для нагревания тел – эти устройства называется тепловыми насосами.
Т.к. Tx≠ 0, то η < 1. Отметим также, что для работы тепловых машин всегда требуются два тепловых термостата. Конечно, если взять только один термостат, то, пользуясь им, можно изотермическим расширением рабочего вещества получить полезную работу, но в реальных условиях не может быть бесконечного расширения, для работы машины необходимо периодическое возвращение рабочего вещества в начальное состояние.
В циклическом процессе нельзя получить работу, пользуясь одним только тепловым резервуаром.
Цикл Карно - формула, процессы и принципы работы
Николя Леонард Сади Карно, сын высокопоставленного военачальника Лазаря Николая Маргарита Карно, родился в Париже в 1796 году. Его отец ушёл из армии в 1807 году, чтобы обучить Николаса и его брата Ипполита — оба получили широкое домашнее образование, включающее:
- науку;
- искусство;
- иностранные языки;
- музыку.
В 1812 году 16-летний Николас Карно был принят в Высшую политехническую школу в Париже. Его учителями были Джозеф Луи Гей-Люссак, Симеон Дени Пуассон и Андре-Мари Ампер, а сокурсниками — будущие учёные Клод-Луи Навье и Гаспар-Гюстав Кориолис. Во время учёбы в школе Карно проявил особый интерес к теории газов и решению задач промышленной инженерии. После окончания университета он поступил во французскую армию в качестве военного инженера и прослужил до 1814 года.
Освободившись от ограничений военной жизни, Карно начал широкий спектр исследований, которые продолжались, несмотря на многочисленные перерывы, до само́й смерти. В дополнение к частным занятиям он посещал курсы:
- в Сорбонне;
- Коллеж де Франс.
- в Школе шахт;
- в Консерватории искусств.
В последней он стал другом Николаса Клемента, который преподавал курс прикладной химии, а затем занимался важными исследованиями паровых двигателей и теории газов.
Одним из особых интересов Карно было промышленное развитие, которое он изучал во всех его аспектах. Он часто посещал фабрики и мастерские, читал новейшие теории политической экономии и оставлял в своих заметках подробные предложения по таким актуальным проблемам, как налоговая реформа. Помимо этого, его деятельность и способности охватили математику и изобразительное искусство.
В 1821 году Карно прервал учёбу, чтобы провести несколько недель со своим отцом и братом в Магдебурге. По-видимому, именно после этого визита он снова в Париже начал концентрироваться на проблемах парового двигателя. 12 июня 1824 года была опубликована его книга «Отражение в чистоте и весе».
После публикации Карно продолжил исследования, выводы из которых сохранились в его рукописных заметках. Однако реорганизация корпуса Генерального штаба вынудила Карно вернуться на службу в 1827 году в звании капитана. После менее чем годовой работы в качестве военного инженера Карно ушёл в отставку навсегда и вернулся в Париж. Он снова сосредоточил своё внимание на проблемах конструкции двигателя и теории тепла.
В 1831 году Карно начал исследовать физические свойства газов и паров, особенно связь между температурой и давлением. Однако в июне 1832 года он заболел скарлатиной. За этим последовала «мозговая лихорадка», которая настолько подорвала его хрупкое здоровье, что 24 августа 1832 года он стал жертвой эпидемии холеры и умер в течение дня, в возрасте 36 лет. Согласно обычаю, его личные вещи, включая почти все его бумаги, были сожжены.
Работы учёного
Самая ранняя из основных рукописей написана, вероятно, в 1823 году и озаглавлена «Поиск формулы для представления движущей силы водяного пара». Как видно из названия, это была попытка найти математическое выражение для движущей силы, производимой паром. Явно стремясь найти общее решение, охватывающее все типы паровых двигателей, Карно сократил их работу до трёх основных этапов:
- изотермическое расширение при подаче пара в цилиндр;
- адиабатическое расширение;
- изотермическое сжатие в конденсаторе.
Эссе как по методам, так и по целям похоже на многие статьи, опубликованные между 1818 и 1824 годами такими учёными, как Хашетт, Навье, Пети и Комбес. Работа Карно, однако, отличается своим тщательным, чётким анализом используемых единиц и концепций и тем, что он использует как адиабатическую рабочую стадию, так и изотермическую стадию. Отточенный характер, в отличие от его грубых заметок, делало её предназначенной для публикации, хотя она оставалась неизвестной в рукописи до 1966 года.
«Рефлексионы» (единственное произведение, опубликованное Карно за всю его жизнь) появилось в 1824 году как скромное эссе из 118 страниц. После краткого обзора промышленного, политического и экономического значения парового двигателя Карно поднял две проблемы, которые, по его мнению, помешали дальнейшему развитию как полезности, так и теории паровых двигателей:
- Существует ли установленный предел для движущей силы тепла и, следовательно, для улучшения паровых двигателей?
- Есть ли агенты предпочтительнее пара в производстве этой движущей силы?
Обе проблемы были своевременными и, хотя французские инженеры исследовали их в течение десятилетия, не было принято общепринятых решений. В отсутствии чёткой концепции эффективности предлагаемые конструкции паровых двигателей оценивались в основном по практичности, безопасности и экономии топлива.
Некоторые инженеры считали воздух, углекислоту и спирт лучшим рабочим веществом, чем пар. Обычным подходом к этим проблемам было либо эмпирическое исследование расхода топлива и выходной мощности отдельных двигателей, либо применение математической теории газов к абстрактным операциям конкретного типа двигателя. В своём выборе проблем Карно был твёрд в этой инженерской традиции, однако его метод был радикально новым и являлся сутью его вклада в науку о тепле.
Предыдущая работа над паровыми машинами, как видел Карно, провалилась из-за отсутствия достаточно общей теории, применимой ко всем тепловым двигателям и основанной на установленных принципах. В качестве основы своего исследования Карно тщательно изложил три предпосылки. Первой была невозможность вечного движения — принцип, который долгое время предполагался в механике. В своей второй предпосылке Карно использовал калорийную теорию тепла, которая, несмотря на некоторую оппозицию, была принятой и самой развитой, доступной теорией тепла.
Принципы работы цикла Карно
Этот теоретический идеальный круговой термодинамический цикл был предложен французским физиком Сади Карно в 1824 году. Он обеспечивал максимально возможный предел эффективности для любого классического термодинамического двигателя во время преобразования тепла в работу или, наоборот, эффективность системы охлаждения при создании разницы температур при приложении работы к системе. Фактический термодинамический цикл является теоретической конструкцией.
Каждая термодинамическая система существует в определённом состоянии. Когда система проходит через ряд различных явлений и, наконец, возвращается в исходное состояние, говорят, что произошёл термодинамический цикл. В процессе прохождения этого цикла система может выполнять работу, например, перемещая поршень, тем самым действуя, как тепловой двигатель.
Из каких процессов состоит Цикл Карно при работе в качестве теплового двигателя:
- Изотермическое расширение. Тепло передаётся обратимо из высокотемпературного резервуара при постоянной температуре T H (изотермическое добавление или поглощение тепла). На этом этапе газу позволяют расширяться, выполняя работу над окружающей средой, толкая поршень. Хотя давление падает, температура газа не изменяется во время процесса, поскольку он находится в тепловом контакте с горячим резервуаром в момент времени T h и, следовательно, расширение является изотермическим.
- Изоэнтропическое (обратимое адиабатическое) расширение газа. На этом этапе газ теплоизолирован как от горячего, так и от холодного резервуаров. Таким образом, они не получают и не теряют тепло. Газ продолжает расширяться за счёт снижения давления, выполнения работы на окружающую среду и потери количества внутренней энергии, равного проделанной работе. Расширение газа без подвода тепла приводит к его охлаждению до «холодной» температуры. Энтропия остаётся неизменной.
- Изотермическая компрессия. Тепло передаётся обратимо в низкотемпературный резервуар при постоянной температуре (изотермический отвод тепла). Теперь газ в двигателе находится в тепловом контакте с холодным резервуаром. Окружение работает на газе, толкая поршень вниз, в результате чего количество тепловой энергии Q 2 покидает систему в низкотемпературный резервуар, а энтропия системы уменьшается.
- Адиабатическое обратимое сжатие. Ещё раз газ в двигателе теплоизолирован от горячего и холодного резервуаров и предполагается, что двигатель не имеет трения и, следовательно, обратим. На этом этапе окружающая среда воздействует на газ, продвигая поршень вниз, увеличивая его внутреннюю энергию, сжимая и заставляя температуру подниматься обратно, но энтропия остаётся неизменной. В этот момент газ находится в том же состоянии, что и в начале шага 1.
Система, проходящая через этот цикл, называется тепловым двигателем Карно, хотя такой «идеальный» двигатель является лишь теоретической конструкцией и не может быть построен на практике. Тем не менее был разработан и запущен микроскопический тепловой двигатель.
По существу, есть два «тепловых резервуара», образующих часть теплового двигателя при температурах T h и T c (соответственно, горячий и холодный). Они обладают такой большой теплоёмкостью, что их температуры практически не зависят от одного цикла. Поскольку цикл теоретически обратим, энтропия в течение цикла не возникает, но сохраняется.
Во время цикла произвольное количество энтропии S извлекается из горячего резервуара (нагревателя) и осаждается в холодном резервуаре. Поскольку в обоих резервуарах изменения объёма не происходит, они не работают, и в течение цикла количество энергии T h ΔS извлекается из горячего резервуара, а меньшее количество энергии T c ΔS откладывается в холодном резервуаре. Разница в двух энергиях (T h -T c) ΔS равна работе, проделанной двигателем.
Поведение двигателя или холодильника Карно лучше всего понять с помощью диаграммы, в которой координатами являются температура и энтропия. Термодинамическое состояние определяется точкой на графике с энтропией (S) в качестве горизонтальной оси и температуры (T) в качестве вертикальной оси. Для простой замкнутой системы любая точка на графике будет представлять конкретное состояние системы. Термодинамический процесс будет состоять из кривой, соединяющей начальное состояние (A) и конечное состояние (B), и представляющей собой количество тепловой энергии, передаваемой в процессе.
Если процесс движется к большей энтропии, площадь под кривой будет количеством тепла, поглощённого системой. Когда процесс движется к меньшей энтропии, это будет количество отводимого тепла. Для любого циклического процесса есть верхняя часть цикла и нижняя часть. Для цикла по часовой стрелке область под верхней частью будет тепловой энергией, поглощённой в течение цикла, тогда как область под нижней частью будет тепловой энергией, удалённой во время цикла.
Площадь внутри цикла будет тогда разницей между ними, но поскольку внутренняя энергия системы должна вернуться к своему первоначальному значению, эта разница должна быть объёмом работы, которую должна совершать системой за цикл.
Перевёрнутый цикл
Описанный цикл теплового двигателя является полностью обратным циклом Карно. То есть все процессы, из которых он состоит, могут быть обращены вспять, и в этом случае цикл становится холодильным циклом Карно.
На этот раз цикл остаётся точно таким же, за исключением того, что направления любых тепловых и рабочих взаимодействий меняются местами. Тепло поглощается из низкотемпературного резервуара, отбрасывается в высокотемпературный резервуар, и для этого требуется работа. Диаграмма P-V обращённого цикла такая же, как и для цикла Карно, за исключением того, что направления процессов меняются местами.
Если же в цикле возникает передача теплоты при наличии разности температур, а такими являются все технические реализации термодинамических циклов, то цикл становится необратимым. КПД такого цикла будет всегда меньше, чем КПД цикла Карно.
Теорема Карно
Эта теорема является формальным утверждением этого факта: ни один двигатель, работающий между двумя тепловыми резервуарами, не может быть более эффективным, чем двигатель Карно, работающий между этими же резервуарами.
Следствие из теоремы Карно гласит: все реверсивные двигатели, работающие между одними и теми же тепловыми резервуарами, одинаково эффективны. Теоретический максимальный КПД теплового двигателя равён разнице в температуре между горячим и холодным резервуаром, делённой на абсолютную температуру горячего резервуара.
Исходя из этого, становится очевидным интересный факт: понижение температуры холодного резервуара будет иметь большее влияние на потолочную эффективность теплового двигателя, чем повышение температуры горячего резервуара на ту же величину. В реальном мире это труднодостижимо, так как холодный резервуар часто имеет существующую температуру окружающей среды.
Другими словами, максимальная эффективность достигается тогда, когда в цикле не создаётся новая энтропия, что было бы в случае, если, например, трение привело к рассеиванию работы в тепло. В противном случае, поскольку энтропия является функцией состояния, требуемый сброс тепла в окружающую среду для удаления избыточной энтропии приводит к (минимальному) снижению эффективности.
В мезоскопических тепловых двигателях работа за цикл обычно колеблется из-за теплового шума. Если цикл выполняется квазистатически, флуктуации исчезают даже на мезомасштабах. Но если цикл выполняется быстрее, чем время релаксации рабочего тела, колебания работы неизбежны. Тем не менее когда учтены рабочие и тепловые колебания, существует точное равенство, которое связывает экспоненциальное среднее значение работы, выполненной любым тепловым двигателем, и теплопередачу от горячей тепловой ёмкости.
Карно понимал, что в действительности невозможно создать термодинамический обратимый двигатель, поэтому реальные тепловые двигатели менее эффективны. Кроме того, реальные двигатели, работающие в этом цикле, встречаются редко. Но хотя прямой цикл французского учёного является идеализацией, его выражение эффективности всё ещё полезно для дальнейших исследований.
Примером обратимого цикла также является идеальный цикл Стирлинга. Существует и другие идеальные циклы, в которых коэффициент полезного действия определяется по той же формуле, что и для циклов Карно и Стирлинга, например, цикл Эрикссона.
Решение задач «86. Газ, являясь рабочим веществом в цикле Карно»,
Физика
86. Газ, являясь рабочим веществом в цикле Карно, получил от теплоотдатчика теплотуQ1= 4,38 кДж и совершил работу А= 2,4 кДж. Определить темпеpатуpу теплоотдатчика, если темпеpатуpа теплоприемникаТ2= 273 К. Изобразить цикл Карно в координатах p-V и S-T. 111. Пространство между двумя большими параллельными пластинами заполнено гелием. Расстояние между пластинами ?l = 50 мм. Одна пластина поддерживается при температуре Т1 = 293 К, другая – при температуре Т2 = 313 К. Вычислить поток тепла q, приходящийся на единицу площади пластин, если давление в газе р = 760 мм рт. ст. 137. У поверхности Земли концентрация атомов гелия в 108 раз , а молекул водорода в 106 раз меньше концентрации молекул азота. На каких высотах h1 и h2 , соответственно, концентрация молекул азота будет равна концентрации атомов гелия и молекул водорода? Принять температуру атмосферы по всей рассматриваемой высоте равной t = 00 C . 155. m = 14 г азота адиабатически расширяются так, что давление уменьшается в n = 5 раз, а затем изотермически сжимаются до первоначального давления. Найти приращение энтропии при этих процессах.
Закажите подобную или любую другую работу недорого
Вы работаете с экспертами напрямую,
не переплачивая посредникам, поэтому
наши цены в 2-3 раза ниже
Последние размещенные задания
Тест дистанционно по предмету «Математика»
Тест дистанционно, Математика
Срок сдачи к 16 авг.
Функции орудийного предлога ?(yong)в современном китайском языке.
Курсовая, Китайский язык
Срок сдачи к 2 сент.
20 задач по физике ( экзамен)
Решение задач, Физика
Срок сдачи к 16 авг.
Здравствуйте, цена и сроки
Отчет по практике, Пм.04. производственная практика. выполнение работ по профессии рабочего 18559 слесарь-ремонтник. сэ
Срок сдачи к 25 авг.
взаимосвязь социально-психологического климата и особенностей межличностных отношений сотрудников трудового коллектива
Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ.
Готовое решение: Заказ №10185
Тип работы: Задача
Статус: Выполнен (Зачтена преподавателем ВУЗа)
Предмет: Физика
Дата выполнения: 16.11.2020
Цена: 119 руб.
Чтобы получить решение , напишите мне в WhatsApp , оплатите, и я Вам вышлю файлы.
Кстати, если эта работа не по вашей теме или не по вашим данным , не расстраивайтесь, напишите мне в WhatsApp и закажите у меня новую работу , я смогу выполнить её в срок 1-3 дня!
Описание и исходные данные задания, 50% решения + фотография:
«Молекулярная физика и термодинамика»
Рабочим телом идеальной тепловой машины, работающей по циклу Карно, является идеальный газ. Исходное состояние его соответствует параметрам . Объем газа после изотермического расширения , после адиабатического расширения - .
Определить:
1. Количество молекул, находящихся в сосуде.
2. Характерные скорости молекул в исходном состоянии и после адиабатического расширения.
3. Энергию теплового движения молекул газа.
4. Среднюю энергию одной молекулы, энергию ее поступательного движения (при температуре T1).
5. Теплоемкости газа при постоянном объеме и постоянном давлении.
6. Давление, температуру и объем газа в состояниях 2,3,4.
7. Изменение внутренней энергии газа в каждом процессе и за цикл.
8. Работу, совершенную газом за цикл и в каждом процессе.
9. Количество теплоты, полученное газом от нагревателя и отданное холодильнику.
10. КПД цикла как отношение совершенной работы к полученной энергии.
11. Изменение энтропии газа в каждом процессе и за весь цикл. Получить формулу КПД идеальной тепловой машины и вычислить по ней КПД цикла.
12. Построить диаграмму данного цикла (в масштабе) в координатах (P, V).
13. Определить значения коэффициентов диффузии, теплопроводности и вязкости данного газа в нормальных условиях и в исходном состоянии.
Числовые данные к контрольной работе
- Число молекул , где NA — постоянная Авогадро, v – количество вещества
Количество вещества определим из уравнения состояния: .
Тогда , где k - постоянная Больцмана
Подставляем данные:
- - средняя арифметическая скорость молекул (m-молярная масса, R- универсальная газовая постоянная R=8,31 Дж/(моль×К), Т- абсолютная температура);
Молярная масса водяного пара кг/моль
Подставляем данные: м/с.
Средняя квадратичная скорость
м/с.
Наиболее вероятная скорость
м/с
- Энергия теплового движения молекул газа – внутренняя энергия газа
Внутренняя энергия газа – это кинетическая энергия всех его молекул:
Средняя полная кинетическая энергия молекулы , где i-число степеней свободы (для трехатомной молекулы i=6), k — постоянная Больцмана.
Число степеней свободы
Тогда
Дж=3,577 кДж
- Средняя полная кинетическая энергия молекулы , где i-число степеней свободы (для трехатомной молекулы i=6), k — постоянная Больцмана.
Число степеней свободы
Тогда .
Дж
Дж
- Удельной теплоемкостью называется величина, равная количеству теплоты, которое нужно сообщить единице массы вещества, чтобы повысить его температуру на 1 градус.
.
Удельная теплоемкость зависит от процесса, при котором происходит нагревание.
Присылайте задания в любое время дня и ночи в whatsapp.
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Найдите кпд цикла если рабочее тело одноатомный идеальный газ
Образовательные цели урока: повторение графиков изопроцессов, закрепление умений чтения графиков изопроцессов и решения задач на первый закон термодинамики, формирование умений определять КПД тепловой машины по графику и общеучебных навыков (работы с текстом, выделения главного, преобразования информации из одного вида в другой).
Методы: эвристическая беседа, самостоятельная работа, дифференциация.
Оборудование: распечатанные для каждого ученика условие задачи и решение (вариант А), распечатанные на каждую парту условия задач различного уровня сложности для самостоятельной работы. (Возможно использование интерактивной доски.)
Ход урока
1. Организационный этап
2. Индуктор. На доске написан вариант А решения задачи. Учитель утверждает, что с таким сложным решением трудно разобраться, его невозможно запомнить. Что же делать? Для облегчения работы каждому ученику выдаётся вариант B решения задачи – копия А, но с пропусками.
3. Осмысление. Учащиеся предлагают разбить решение на логически завершённые части. Учитель обращает их внимание на сложные места в решении, причём не даёт объяснение, а только спрашивает: для чего эта запись? почему записано именно так? В результате работы текст решения превращается из первоначального варианта А в вариант с дополнениями В.
Задача
• Тепловая машина, рабочим телом которой является идеальный одноатомный газ, работает по циклу 1–2–3–1. Найдите КПД этой машины.
Исходный вариант решения (А, записан на доске).
Вариант решения B с дополнениями, написанными учениками в своих экземплярах и на доске в ходе урока. (Дополнения выделены другим шрифтом и цветом. Условие здесь не повторено. – Ред.)
Учитель предлагает применить полученные знания для решения подобной задачи или повторить решение этой же задачи. Каждый ученик выбирает для себя способ подсказки: глядя только на часть решённой задачи, восстановить всё решение; никуда не глядя, восстановить всё решение; глядя в решение, решить новую подобную задачу; решить задачу повышенного уровня сложности. Ученики выполняют самостоятельную работу.
Задачи для самостоятельного решения
• 1 моль идеального одноатомного газа совершает цикл, изображённый на рисунке, в координатах p, U, где p – давление, U – внутренняя энергия газа. Определите КПД цикла. (Ответ. КПД = 2/13 ≈ 15%.)
• Докажите, что КПД тепловой машины, работающей по циклу из двух изотерм и двух изохор, меньше КПД идеальной тепловой машины, работающей по циклу Карно, с тем же нагревателем и холодильником.
• КПД тепловой машины, работающей по циклу, состоящему из изотермы 1–2, изохоры 2–3, адиабаты 3–1, равен η, разность между максимальной и минимальной температурами газа в цикле равна ∆T. Найдите работу, совершённую ν молями одноатомного идеального газа в изотермическом процессе. (Ответ. )
• Найдите КПД тепловой машины, работающей по циклам 1–2–3–1; 1–3–4–1. рабочим телом является одноатомный идеальный газ. (Ответ. КПД = 2/23 ≈ 8,7%; КПД = 2/21 ≈ 9,5%.)
• Найдите КПД тепловой машины, работающей по циклам 1–2–3–4–1. рабочим телом является молекулярный водород. (Ответ. КПД = 6/43 ≈ 14%.)
4. Рефлексия. Школьники пишут эссе – своё мнение о значении проверки в решении задачи. Желающие зачитывают вслух.
5. ДЗ. Напишите алгоритм решения задачи и свои рекомендации своим отсутствовавшим товарищам.
Читайте также: