Накопленная коррекция топливоподачи лачетти
Топливная коррекция
Что такое топливная коррекция? Несмотря на существование понятия топливной коррекции задолго до появления инжекторных автомобилей, интерес к ее изучению автомобилистами возрос с ужесточением экологических требований к продуктам выхлопа двигателя внутреннего сгорания.
Понятие топливной коррекции
Способность системы двигателя поддерживать на разных режимах стехиометрический состав смеси путем регулирования подачи топлива – это и есть топливная коррекция.
Режимы работы двигателя обеспечиваются процессом смесеобразования паров бензина и воздуха при определенном соотношении их масс.
Бензин — легковоспламеняющаяся жидкость, являющаяся продуктом перегонки нефти и относится к классу углеводородного топлива. В своем составе содержит 85% углерода и 15% водорода. Пары бензина с воздухом образуют горючие и взрывные смеси, характер которых определяется весовым соотношением, парциальным давлением и температурой.
Наиболее важным показателем нормальной работы двигателя, при котором в цилиндрах его происходит химическая реакция, сопровождающаяся горением, является его стехиометрический состав смеси. Стехиометрический состав должен поддерживаться соотношением 14,7 частей воздуха и одной частью бензина. Именно при этом соотношении обеспечивается процесс горения топливной смеси. Соотношение 14,7:1 должно поддерживаться при различных условиях работы двигателя: запуск, холостой ход, движение в смешанном цикле (город-трасса).
Функция поддержки топливной смеси работает на карбюраторном двигателе в автоматическом режиме путем дозирования топлива сложным механизмом каналов и калиброванных жиклеров. Подготовка горючей смеси начинается в карбюраторе и заканчивается в цилиндре. Процесс подготовки смеси происходит непрерывно и также непрерывно изменяется соотношение масс воздуха и топлива. В зависимости от режима работы двигателя соотношение масс принимает различные значения, при которых смесь может быть богатой, обогащенной, нормальной, обедненной и бедной.
В бензиновом двигателе изменение режима работы двигателя производится путем подачи воздуха во впускной коллектор (на карбюраторном – первичную и вторичную камеру) и поэтому за основу расчета соотношения смеси принят коэффициент избытка воздуха α (альфа). Коэффициент α – это отношение действительного количества воздуха MR, находящегося в смеси, к количеству воздуха MT, теоретически необходимому для сжигания данного топлива:
Приведем пример, если количество воздуха в горючей смеси равно теоретически необходимому для полного сгорания топлива, т.е. 14,7 кг воздуха на 1 кг бензина, то α = 1 и смесь называется нормальной. Двигатель работает стабильно и экономно при сохранении умеренной мощности.
В богатойсмеси α=0,4-0,79 содержание воздуха на 20…60% меньше, чем в нормальной, или на 1 кг бензина количество воздуха находится в пределах от 5,88 кг до 11,75 кг. Скорость горения богатой смеси замедленная, при этом заметно ухудшается тяговая характеристика двигателя и значительно повышается путевой расход топлива.
Топливная коррекция на инжекторном автомобиле
Как это работает? Поступила информация от датчика кислорода о обедненной смеси выхлопных газов. Блок управления производит расчет и увеличивает подачу топлива повышая время длительности открытия форсунок. И наоборот, если датчик кислорода сообщил блоку об обогащении выхлопа, то мгновенно время открытия форсунки сокращается.
Таким образом, именно кислородные датчики определяют показания коррекции топлива.
Процесс добавления или сокращения топлива называется топливной коррекцией (Fuel Trim). В практической деятельности специалисты, при проверке двигателя называют топливную коррекцию текущим коэффициентом самообучения, который в то же время зависит от его составляющих: долгосрочной коррекции и краткосрочной. Указанные составляющие на разных автомобилях или при использовании мульти марочных сканеров разных производителей имеют свои определенные названия (обозначения).
Долгосрочная коррекция | Краткосрочная коррекция |
длительная коррекция | короткая коррекция |
аддитивная | мультипликативная |
Long Term Fuel Trim (LTFT) | Short Term Fuel Trim (STFT) |
обучение режима смешивания | интервал режима смешивания |
И это не полный перечень названий (обозначений) составляющих текущего коэффициента топливной коррекции в окне параметров сканера.
У производителей автомобилей и разработчиков диагностического оборудования различных марок отсутствует договоренность о единых обозначениях параметров – каждый назначает собственные сокращения.
Обозначим аддитивную составляющую коррекции самообучения Кад, а мультипликативную Кмульт. Аддитивная коррекция Кад отвечает за работу двигателя при минимальных оборотах холостого хода, мультипликативная Кмульт – при частичных нагрузках.
Рассмотрим более подробно функциональное значение этих составляющих.
Аддитивная топливная коррекция
Термин «аддитивный» произошел от латинского additio — прибавляю, относящийся к сложению. Соответственно, аддитивная топливная коррекция (или иначе как долгосрочная) рассчитывается на основе показаний мультипликативной коррекции (краткосрочной).
Аддитивная составляющая работает только на холостом ходу и единицей ее измерения являются миллисекунды.
Функционально долговременная коррекция выполняет действия для получения сигнала от датчика кислорода.
В практике Кад принято обозначать в процентах. Пределы его изменения варьируются – от -10 до +10%. Предположим на примере, что двигатель прогрет и нагреватель кислородного датчика подготовил его к работе. Двигатель работает на холостом ходу, но отклика от кислородного датчика нет. Электронный блок начинает увеличивать время впрыска для обогащения смеси, т.е. долговременная коррекция увеличилась на 1%, но отклика от датчика кислорода также отсутствует. Блок управления продолжает удлинять время впрыска и до тех пор, пока не начнется отклик от кислородного датчика. Отклик от датчика в данном конкретном примере появился при Кад равным 4%. Это говорит о том, что при аддитивной коррекции равной 4% кислородный датчик перешел в активное состояние и мультипликативной коррекцией поддерживается смесь в оптимальном состоянии.
Мультипликативная коррекция
Кмульт – показатель безразмерный. Предел его изменений лежит в диапазоне от 0,75 до 1,25. Выход за границы предельных значений любого коэффициента самообучения свидетельствует о значительном отклонении состава смеси от стехиометрии.
Если Кмульт станет меньше 0,78 или больше 1,22, система встроенной в блок самодиагностики включит желтую предупреждающую контрольную лампу «проверь двигатель». Аналогично включится лампа, если долговременная коррекция превысит 9-ти процентную границу, т.е. достигла критического значения, при этом, как в положительную, так и отрицательную сторону. Проверкой сканером маски DTC выявляются коды неисправностей РО171 (смесь бедная) или РО172 – смесь богатая.
Краткосрочная коррекция (STFT) относится к немедленным изменениям подачи топлива, происходящим несколько раз в секунду.
При диагностике необходимо обратить внимание на строку параметров сканера «ДК1-Банк 1», где отслеживается работа кислородного датчика. Когда сигнал датчика уходит в плюс, блок управления мгновенно меняет значение кратковременной коррекции в сторону минуса, прикрывая распыл форсунки. Значение слова «Банк 1» встречается практически на всех мультимарочных сканерах и означает оно контроль топливной смеси в одном блоке цилиндров. На V-образных двигателях, например, работает также строка «ДК1-Банк 2».
Причина отклонения показаний кислородного датчика в сторону плюса может быть не герметичность форсунок, а в сторону минуса (сваливание сигнала в бедную смесь) – подсос воздуха во впускной коллектор.
Коэффициент коррекции времени впрыска и его составляющие
Текущий коэффициент коррекции Ктек реагирует на постоянно происходящие колебания состава смеси, но функция его на этом и заканчивается. В то время, когда выпускался инжекторный автомобиль ВАЗ-2114 с установленным блоком Январь-5.1 время впрыска корректировалось только на основании текущего коэффициента коррекции. Установленные блоки Январь-7.2 и Bocsh M7.9.7 на ВАЗ-2114 стали учитывать аддитивным и мультипликативным коэффициентами влияние долговременных, медленно меняющихся факторов, возникающих в процессе работы двигателя (снижение компрессии, давления топлива, производительности работы бензонасоса, увод параметров ДМРВ и т.д.).
Как влияют и приводят в соответствие текущий коэффициент коррекции Ктек его составляющие коэффициенты самообучения (кратковременная и долговременная) приведем на примере.
На автомобиле Лачетти двигатель холодный и отсутствует лямбда регулирование, т.е. режим адаптации топливной смеси не включился. При этом, текущий коэффициент коррекции Ктек = 1. Условия включения режима адаптации: двигатель должен прогреться до рабочей температуры, активизировались кислородные датчики. Если соблюдены условия и двигатель не имеет серьезных повреждений газораспределительного механизма и поршневой группы, а также исправен датчик абсолютного давления, то коэффициент Ктек будет принимать значения на холостом ходу в пределах 0,98–1,02.
Если двигатель перевести в режим частичной нагрузки, то влияние аддитивного коэффициента, работающего только на холостом ходу принимать в расчетах не имеет смысла. Функционировать начинает мультипликативный коэффициент.
Задача всех коэффициентов заключается в управлении временем впрыска форсунок. И основной тон в этом задает управляющий кислородный датчик.
Предположим, что кривая сигнала кислородного датчика увеличивается, сообщая блоку управления об уменьшении кислорода в смеси. Блок управления мгновенно реагирует на отсутствие кислорода и короткую коррекцию уменьшает, укорачивая тем самым время открытого состояния форсунок. Реакция кислородного датчика на уменьшение топливоподачи отражается падающей кривой в сторону бедной смеси. Блок управления получив сигнал от кислородного датчика тут же увеличивает короткую коррекцию и время впрыска соответственно растет.
Аддитивная составляющая коррекции самообучения Кад также контролирует изменения коэффициента Ктек, но только в режиме холостого хода. Размерность аддитивной коррекции – проценты или миллисекунды.
Коэффициент коррекции co
На ранних версиях систем управления двигателем инжекторных автомобилей отсутствовали кислородные датчики и, соответственно, автоматическая поддержка топливной смеси не работала. Выравнивать смесь в нормальную возможно было только потенциометром СО, изменяя в сторону обогащения или обеднения.
Принцип регулирования смеси потенциометром основывался на показаниях газоанализатора, примерно так же, как и на карбюраторных двигателях. Установленные нормативы компонентов выброса в выхлопных газах приведены в инструкциях к газоанализатору. И если при регулировке показания СО на газоанализаторе установились на 0,8%, то это означает, что топливная смесь отрегулирована правильно и соответствует норме. С усовершенствованием аппаратной части блока управления, регулирование коэффициента коррекции со стало возможным непосредственно со сканера и потенциометр уже не устанавливался.
Коэффициент динамической коррекции УОЗ
Динамические характеристики автомобиля зависят не только от состояния топливной смеси, поступающей в цилиндры. В переходных режимах, например, от холостого хода к ускорению, большое значение имеет настройка коэффициента динамической коррекции угла опережения зажигания. При этом топливная смесь, подаваемая в цилиндры и динамическая коррекция УОЗ тесно связаны между собой.
По графику зависимости УОЗ от оборотов двигателя наблюдается отскок угла в данном программном обеспечении, которое достигает 10 градусов от оптимального УОЗ в некоторых режимных точках. Чем больше коррекция угла, тем сильнее проявляются запаздывания и провалы при ускорении. Незначительно изменив состав смеси в сторону обогащения и уменьшив коррекцию угла, можно существенно улучшить поведение автомобиля во всем диапазоне нагрузок.
Топливная коррекция в авто - Fuel Trim. Как правильно считывать и трактовать показания.
В интернете мне очень часто попадаются криво переведенные статьи о трактовке показаний различных датчиков, причем их репостят все подряд без разбора и тем самым еще больше путают народ. Поэтому я нашел и перевел правильную статью о топливной коррекции (Fuel Trim), постарался сделать это близко к тексту, но не теряя при этом смысл, поэтому местами я дополнял перевод своим текстом. Итак, поехали.
На форумах часто задают вопросы по поводу топливной коррекции и у меня даже есть некоторое количество электронных писем с просьбами осветить этот вопрос. Многие отмечают топливную коррекцию PIDS (идентификаторы параметра) на показаниях в реальном времени (datastream) своих сканирующих устройств и интересуются для чего она.
Итак, что такое топливные коррекции и что они делают? Надеюсь мы сможем прояснить все недопонимания. Правильное понимание топливных коррекций может привести к ускорению диагностики и предупредить вас о будущих проблемах с вашим автомобилем.
В основе своей топливные коррекции – процент изменения в топливоподаче во(по) времени. Для того, чтобы двигатель работал хорошо соотношение воздух/топливо должно оставаться в границах небольшого окна 14.7/1. Такое соотношение должно сохраняться в этой зоне под воздействием всех изменяющихся условий с которыми двигатель сталкивается каждый день: холодный пуск (хотя по мне на холодном пуске явно не 14.7/1, но это оставим на совести автора), холостой ход в условиях длительных движений в пробках при движении по трассе и т.д.
Итак, компьютер двигателя пытается сохранить правильное соотношение воздух/топливо посредством точной настройки количества топлива поступающего в двигатель. В то время, как добавляется или уменьшается подача топлива, кислородный датчик следит за тем сколько кислорода в выхлопе и сообщает об этом ЭБУ. Кислородные датчики могут быть представлены как глаза ЭБУ, которые следят за смесью кислорода в выхлопе.
ЭБУ следит за этими входными данными от горячих кислородных датчиков безостоновочно в замкнутом цикле. Если кислородный датчик информирует ЭБУ, что выхлопная смесь бедная, ЭБУ добавляет топливо путем увеличения времени открытия форсунки, для компенсации. И наоборот, если датчик кислорода информирует ЭБУ о том, что выхлопная смесь богатая, ЭБУ уменьшает время открытия форсунок, уменьшая тем самым подачу топлива для уменьшения обогащения смеси.
Эти изменения – добавление или уменьшение подачи топлива – называются Топливной Коррекцией или Fuel Trim. На самом деле, хоть датчики и называются кислородными, показывают они состояние топливной смеси. Изменения в напряжении кислородного датчика вызывают прямые изменения топливной смеси. Кратковременная топливная коррекция (STFT) относится к мгновенным изменениям топливной смеси – несколько раз в секунду.
Долгосрочная топливная коррекция (LTFT) показывает изменения топливной смеси за длительный промежуток времени на основе показаний кратковременной коррекции (среднее значение за длительное время). Отрицательная топливная коррекция (отрицательные значения по сканеру) свидетельствует об обеднении смеси, а положительная топливная коррекция об обогащении соответственно. (Т.е. если лямбда постоянно видит бедную смесь, то она постоянно обогащает и это отразится на LTFT плюсовыми значениями).
Представим себе такую ситуацию – вы едете от пляжа, который на уровне моря в горы. За короткие промежутки времени вы можете несколько раз подниматься и опускаться вверх-вниз по холмам. Однако на длительном промежутке времени вы на самом деле плавно поднимаетесь от самой низкой точки горы до ее вершины, т.е. едете постоянно вверх, несмотря на временные перепады. Так можно представить себе краткосрочную и долгосрочную коррекции. STFT – кратковременные подъемы и опускания, а LTFT – то, что происходит за длительный промежуток времени в итоге.
Самоадаптация топливной системы в ЭБУ.
Наша жизнь протекает под воздействием и в зависимости от условий окружающей среды. Давление воздуха и концентрация кислорода, смена дня и ночи в применении к колебаниям суточной температуры, жара, дождь и географическое расположение как влияние на влажность воздуха . Окружающая атмосфера и основные законы природы влияют не только на все живое на земле, но и на работоспособность механических систем, в том числе и автомобилей. В большинстве случаев никто не способен влиять на проявления окружающей среды . Однако, существует возможность подкорректировать действия механизмов, адаптировав их к воздействию окружающей среды . Одна из таких простых возможностей - это коррекция подачи топлива в двигатель .
Parameter : Fuel Correction - причины неисправности.
- Засорение воздушных / топливных фильтров .
- Утечки / подсосы воздуха .
- Утечки / недостатки топлива .
- Механические проблемы воздушно / топливных регуляторов .
- Неисправности электропроводки / датчиков / электроклапанов .
- Механические проблемы двигателя .
Диагностика, тестирование.
- Внимание! При выполнении некоторых из этих тестов создается угроза пожара! Строго соблюдать правила пожарной безопасности!
- Тесты .
- состава газов и текущего значения λ .
- исправности датчиков кислорода .
- релевантности показаний датчиков системы управления .
- реакции системы на принудительное переобогащение распылением газа / бензина .
- утечек системы впуска воздуха распылением газа / бензина .
- утечек системы вентиляции картерных газов распылением газа / бензина .
- Тест механики двигателя средствами мотор-тестера .
Дополнительная информация.
ХХ - обороты, холостой ход .
ЧН - обороты, частичная нагрузка, примерно середина шкалы от ХХ до красной зоны тахометра / оборотов . При диагностике - не рекомендуется превышать 2000 об./ мин. при ЧН - во избежание срыва работы расчетов ЭБУ в область неконтроллируемых текущих значений, с подменой на части параметров на - сохраненные (запомненные в памяти калибровок блока управления) .
корр = +20% . | . λ меньше 1 . | . смесь богатая :
- утечки на выпуске до HO2S .
корр = +20% / -20% . | . неустойчиво :
- утечки на впуске с расходомером MAP .
корр ХХ = +20% . | . корр ЧН = +20% :
- забитые инжектора / форсунки .
- регулятор давление топлива меньше нормы .
- низкое напряжение HO2S при неисправности .
корр ХХ = +20% . | . корр ЧН = 0% :
- утечки на впуске с расходомером MAF .
корр ХХ = 0% . | . корр ЧН = +20% :
- загрязнение / неисправность MAF .
- падение давления / производительности бензонасоса .
корр ХХ = -20% . | . корр ЧН = -20% :
- утечки инжектора / форсунки в цилиндры .
- регулятор давление топлива больше нормы .
- высокое напряжение HO2S при неисправности .
Влияние системы EVAP на топливную коррекцию.
Системы вентиляции паров топлива воздействует на коррекцию топливоподачи, заменяя часть топлива в жидкой фазе на газообразную составляющую, уменьшая время длительности впрыска.
Система вентиляции паров топлива предотвращает попадание испарений бензина в атмосферу.
Неисправности системы EVAP / пары топлива влияют на коррекцию топливоподачи в такой же мере, как и бензин.
Неисправность EVAP в виде избыточной подачи паров топлива / переобогащение.
Неисправность EVAP в виде избыточной подачи воздуха / переобеднение.
Коэффициент коррекции / самоадаптации.
- значение самоадаптации (саморегулирования системы) корректирует расчет сигналов управления ЭБУ, на основе базовых карт / таблиц значений компонентов (рассчитанных производителем), путем прибавления (аддитивный коэффициент) или умножения (мультипликативный коэффициент) - для его оптимизации при износе, частичных отклонениях физических параметров компонентов или, как ответная реакция на внешние воздействия .
- коэффициент позволяет наглядно увидеть процент коррекции базового значения в ту или иную сторону и упрощает определение неисправности .
- при превышении предела коррекции в память ЭБУ заноситься код неисправности и ЭБУ может перейти в аварийный режим работы .
- система лямбда-регулирования, предназначена для получения сведений о текущем отношении состава воздушно / топливной смеси, по сигналу датчика количества остаточного кислорода в составе выхлопных газов, расчете и сохранении в памяти ЭБУ коэффициента коррекции . Корректирующий показатель необходим, чтобы отношение воздушно / топливной смеси поддерживалось максимально близко к λ = 1 (для получения максимальной мощности, экономичности и снижения токсичности при всех режимах работы двигателя) . Изменения внутри подсистем ЭБУ базового времени впрыска топлива вычисляется на основе выработанного коэффициента коррекции отношения текущей смеси.
- самоадаптация это значение корректировки, сохраненное в памяти ЭБУ на основе изученных условий состояния воздушно / топливной смеси (на основе базовых величин для желаемой λ = 1, смысл самоадаптации имеет различные названия разных фирм производителей автомобилей и блоков управления.
Self-adaptation - самоадаптация, самообучение, способность электронной системы подстраиваться под условия текущей работы в соответствии с заложенными характеристиками оптимальной работы в этих условиях.
Additive - аддитивный коэффициент коррекции, заученное значение коэффициента коррекции Lambda на холостом ходу.
Multiplicative - мультипликативный коэффициент коррекции при частичной или полной нагрузке на двигатель. Заученное значение коэффициента коррекции Lambda при частичной нагрузке (при движении с частично-открытой дроссельной заслонкой).
Система адаптивной коррекции функций.
Adaptive system - Адаптивная система :
- Система управления двигателем, способная к обучению или переобучению наилучших настроек для каждого применения, считается адаптивной.
- Адаптивное регулирование - это функция ЭБУ, подсистема или состояние датчика, изменяющего характеристики от внешних или временных воздействий, которые требуется корректировать.
- Обычно это происходит на холостом ходу и система приспосабливается к холостому ходу в наилучших оборотах для каждого индивидуального случая.
- Большинство адаптивных систем теряют свои настройки при отключении аккумулятора.
- При подключении аккумулятора и перезапуска двигателя системе потребуется пройти через переобучение характеристик.
- Обычно это происходит довольно быстро, хотя качество холостого хода может быть плохим до успешного завершения процесса адаптации.
- Не на все системы воздействует отключение аккумулятора, в некоторых системах используется энергонезависимая память для сохранения адаптивных настроек.
- Адаптивные функции в блоках управления используются не только для коррекции топливоподачи .
Адаптивная функция. ЭБУ адаптируется к изменению рабочих характеристик двигателя и постоянно контролирует данные от различных датчиков. Когда двигатель или его компоненты изнашиваются, ЭБУ реагирует на возникшие последствия принимая измененные значения, как коррекцию к базовой карте. Когда один или более компонентов системы были заменены, ЭБУ должен быть заново калиброван для того, чтобы ЭБУ смог заучить новые значения.
© интернет . диагностика легковых автомобилей и грузовиков . народное пособие .
© internet . car & truck diagnostics . people's allowance .
Коды и расшифровка ошибок Шевроле Лачетти
Двигатели Шевроле Лачетти оснащены электронным блоком управления двигателем (ЭБУД). Каждый раз при включении лампы Check Engine в его оперативной памяти сохраняется информация о неисправном элементе.
Эта статья расскажет о том, как получить ее в виде кодов ошибок двигателей Шевроле Лачетти и о причинах их появления.
Необходимое оборудование
Считать коды неисправностей можно с помощью диагностического кабеля / адаптера и программ для компьютера или смартфона.
Адаптеры ELM 327 бывают 2 видов: с Bluetooth 1.5-3.0 и 4.0. Модификации с версией протокола 1.5-3.0 не подходят для устройств, работающих под управлением iOS. Смартфоны на Android и компьютеры с Windows поддерживают все модификации.
Так как устройства универсальны, они могут считывать только ошибки, связанные с подсистемами двигателя. Этот недостаток устранен в моделях с 3 позиционным переключателем. Они позволяют выявлять неисправности подушек безопасности, ABS и прочей кузовной электроники.
Для обработки информации, получаемой компьютером или смартфоном от ЭБУД, потребуются программы:
Chevrolet Explorer не работает с адаптерами ELM 327.
Диагностика
Порядок действий следующий:
- Отключить бортовой компьютер, если он установлен.
- Подключить кабель или адаптер к диагностическому разъему, расположенному справа от лапки открытия капота, и компьютеру / смартфону.
- Включить зажигание.
- Запустить программу, подключиться к ЭБУД и узнать коды неисправностей в соответствующих разделах меню.
Расшифровка кодов ошибок
На Шевроле Лачетти они соответствуют стандарту OBD 2 и состоят из 1 буквы и 4 цифр. Буква обозначает агрегат или систему:
- Р – двигатель;
- В – подушки безопасности, центральный замок и остальные электронные компоненты кузова;
- С — ABS , ESP, TCS;
- U – шина CAN (соединяет управляющие блоки).
Первая пара цифр (2 цифры) кодирует подсистему, в которой ЭБУД (ECU) обнаружил неисправность. Последние 2 цифры – порядковый номер ошибки. Он задаётся производителем и зависит от модели двигателя.
Коды ошибок Chevrolet Lacetti 1.4 л и 1.6 л dohc
Коды ошибок Chevrolet Lacetti F18D3 (8D-FAM I)
Коды неисправностей и причины их появления приведены в таблице ниже.
Сброс и удаление ошибок
Ошибки из памяти ECU на Лачетти нужно сбрасывать после устранения неисправностей. Для этого нужно снять клеммы с аккумулятора на 1–2 минуты или использовать соответствующую функцию в программе или приложении.
В завершении
Подводя итог, можно сказать, что для самостоятельной диагностики автомобиля потребуются диагностический кабель / адаптер, программы и базовая компьютерная грамотность. Основная причина включения лампочки Check Engine на комбинации приборов – поврежденная проводка и неисправные датчики или ЭБУД.
Консультация On-line
в нашей группе вконтакте
ДИАГНОСТИРУЙТЕ ВАШЕ АВТО САМИ!
Коды ошибок />Chevrolet />Chevrolet P0171 Система корректировки топливоподачи, смесь слишком бедная | | Hits: 50542Если порог адаптивной коррекции постоянно превышен, отклонение от условий адаптивной коррекции позволяет определить медленно обнаруживающуюся ошибку. Два счетчика (один для обогащенной стороны, другой - для обедненной) увеличивают показания, когда лямбда-контроллер превышает пороговое значение адаптивной коррекции. Ошибка обнаруживается, как только один из счетчиков достигает максимального значения.
Целью этой проверки является имитация неисправности, которая вызывает превышение условий адаптивной коррекции. Необходимо создать два типа неисправности.
Отклонение обедненной стороны: P0171
Отклонение обогащенной стороны: P0172
Поэтому, для каждого вида неисправности необходимо определить хороший и плохой предел. Для данной неисправности следует измерить порог токсичности до превышения официальных порогов токсичности.
Обратить внимание, что проблема состоит в требуемых порогах токсичности, в системе не так просто создать помехи, превышающие пороги токсичности. Настройка была произведена благодаря целенаправленной калибровке, но, так как такая процедура не допускается официальными правилами, необходимо создать какие-нибудь существенные неисправности (регулятор давления топлива, топливная форсунка, утечка воздуха. ).
Условия появления кода DTC
Автомобиль работает в режиме замкнутого контура.
Двигатель работает
Угольный фильтр СУПБ и топливная система работают нормально.
Нет ошибок в датчике ЕСТ, IAT, MAP, CMP, CKP и TP.
Температура охлаждающей жидкости двигателя выше 20°С (68°F).
Условия установки кода неисправности.
Средние значения краткосрочной корректировки топливоподачи плюс адаптивная корректировка топливоподачи выше 33% в течение 200 секунд из 450 секунд испытательного периода.
Действия, выполняемые при установке кода неисправности
Контрольная лампа индикации неисправности загорается.
Контроллер записывает рабочие условия в момент определения неисправности. Эта информация сохраняется в буфере записей состояния и протоколах неисправностей.
Сохраняется архив диагностических кодов неисправности.
Условия очистки кода неисправности/индикации неисправности
Лампа индикации неисправности выключается по окончании трех циклов проверки подряд, при которых диагностика выполняется без сбоя.
Архивный диагностический код неисправности убирается после 40 циклов нагрева без сбоя.
Диагностический код неисправности может быть очищен сканирующим прибором.
Указания по диагностике
Важно: После ремонта использовать функцию сброса корректировки топливоподачи, чтобы сбросить долгосрочную корректировку топливоподачи до 128 (0%).
Давление топлива - Система обедненная, если давление слишком низкое. Возможно, потребуется наблюдение за давлением топлива на ходу при разных скоростях и нагрузках для подтверждения.
Датчик MAP - Выходной сигнал, который воспринимается контроллером ЭСУД как давление в коллекторе (высокое разряжение) ниже нормального, заставляет систему обеднять состав топливной смеси. Отсоединение датчика MAP позволяет контроллеру ЭСУД заменить фиксированное (по умолчанию) значение датчика МАР. Если условия обеднения смеси исчезли с отсоединением датчика, заменить датчик на заведомо исправный и проверить еще раз.
Загрязнение топлива - Вода, даже в небольших количествах рядом с входом в насос топливного бака, можен попасть в топливные форсунки. Вода вызывает обедненный выхлоп и может установить DTC P0171.
Проверить надежность соединения датчика кислорода или абсолютного давления в коллекторе у контроллера ЭСУД. Проверить разъемы жгута проводов на наличие следующего:
Снятые клеммы
Соединение клемм
Неисправность замков
Деформированность
Повреждения клемм
Слабое соединение клемм с проводами
Осмотреть жгут проводов на наличие повреждений. Если жгут проводов кажется исправным, контролировать значение датчика HO2S на сканирующем приборе, перемещая разъемы и жгуты проводов, относящиеся к двигателю. Изменения на дисплее покажут место нахождения неисправности.
Система питания
Элементы системы питания двигателя:1 — топливный фильтр; 2 — топливный бак; 3 — адсорбер; 4 — вентиляционная трубка; 5 — наливная труба; 6 — трубка подвода воздуха к адсорберу; 7 — топливный модуль; 8 — трубка нагнетательной магистрали; 9 — трубка сливной магистрали; 10 — гравитационный клапан; 11 — гофрированный шланг подвода воздуха к дроссельному узлу; 12 — дроссельный узел; 13 — клапан продувки адсорбера; 14 — впускной трубопровод; 15 — вакуумный резервуар в сборе с клапаном системы изменения длины впускного тракта; 16 — топливная рампа; 17 — клапан рециркуляции отработавших газов; 18 — проставка клапана рециркуляции; 19 — форсунки; 20 — воздушный фильтр; 21 — резонатор; 22 — воздухозаборник; 23 — тройник
Топливо подается из бака, установленного под днищем в районе заднего сиденья. Топливный бак состоит из двух сваренных между собой стальных штампованных частей. Заливная горловина соединена с баком пластмассовой бензостойкой трубкой, закрепленной на патрубке бака хомутом. В пробке заливной горловины установлены клапаны, предотвращающие деформацию бака при изменении давления внутри него. Верхние части наливной трубы и топливного бака соединяет пластмассовая вентиляционная трубка, служащая для отвода воздуха, вытесняемого из бака при заправке топливом.
В баке установлен топливный модуль, в состав которого входят топливный насос, регулятор давления топлива, датчик указателя уровня топлива и резистор контрольной лампы резерва топлива.
Для доступа к топливному модулю под подушкой заднего сиденья в днище автомобиля выполнен лючок, закрытый крышкой.
Датчик указателя уровня топлива выдает сигналы на указатель, расположенный в комбинации приборов.
Топливный насос расположен внутри корпуса топливного модуля.
Топливный модуль: 1 — корпус модуля; 2 — регулятор давления топлива; 3 — крышка модуля; 4 — штуцер сливной магистрали; 5 — штуцер нагнетательной магистрали; 6 — электрический разъем; 7 — поплавок датчика указателя уровня топлива; 8 — резистор контрольной лампы резерва топлива; 9 — датчик указателя уровня топлива
Топливный насос
Топливный насос выполнен неразборным узлом и при выходе из строя его необходимо заменить. На входе в насос установлен сетчатый фильтр.
Производительность насоса не менее 60 л/ч.
От насоса топливо под давлением подается к топливному фильтру
Топливный фильтр
Топливный фильтр тонкой очистки — неразборный, в металлическом корпусе, с бумажным фильтрующим элементом. Фильтр закреплен на топливном баке спереди справа. После фильтра топливо подводится к тройнику и через него — к топливной рампе и регулятору давления топлива, расположенному в топливном модуле.
Топливный насос создает в системе избыточное давление, превышающее рабочее давление топливных форсунок.
Регулятор давления топлива обеспечивает сброс излишков топлива по сливной магистрали в топливный бак.
Регулятор давления топлива
Регулятор давления топлива неразборный, при выходе из строя он подлежит замене. Во время работы двигателя регулятор поддерживает давление в нагнетательной магистрали в пределах 2,8–3,3 бар.
Топливная рампа представляет собой металлическую трубку с установленными на ней форсунками.
Топливная рампа в сборе с форсунками
Рампа прикреплена к впускному трубопроводу двумя болтами.
Форсунка фиксируется на рампе металлической запорной скобой и уплотняется в рампе и впускном трубопроводе резиновыми кольцами.
Форсунка
На выходе форсунки имеется распылитель с двумя соплами, через которые топливо впрыскивается во впускной канал трубопровода.
Распылитель форсунки
Управляет работой форсунок ЭБУ (электронный блок системы управления). При обрыве или замыкании в обмотке форсунки, последнюю следует заменить. При засорении форсунок их можно промыть без демонтажа на специальном стенде СТО.
Воздух поступает в двигатель через воздухозаборник, резонатор, воздушный фильтр, гофрированный резиновый шланг, дроссельный узел и впускной трубопровод.
Воздушный фильтр со сменным бумажным элементом обеспечивает очистку всасываемого воздуха, а резонатор — глушение шума воздуха на впуске. Воздухозаборник и резонатор расположены под правым передним крылом, а воздушный фильтр расположен в передней части моторного отсека справа.
Дроссельный узел в сборе
Дроссельный узел крепится к впускному трубопроводу и представляет собой корпус дроссельной заслонки, на котором установлен блок регулятора холостого хода и датчика положения дроссельной заслонки. Во избежание обмерзания дроссельного узла при низкой температуре и высокой влажности окружающего воздуха в узел встроен блок подогрева, через который циркулирует жидкость системы охлаждения. При нажатии педали «газа» дроссельная заслонка открывается, изменяя количество поступающего в двигатель воздуха (подача топлива рассчитывается ЭБУ в зависимости от расхода воздуха). При работе двигателя на холостом ходу (дроссельная заслонка прикрыта) ЭБУ управляет подачей воздуха с помощью регулятора холостого хода, объединенного с датчиком положения дроссельной заслонки в один блок.
Регулятор холостого хода
Для всех режимов работы двигателя в ЭБУ запрограммированы (калибровкой) требуемые обороты холостого хода, зависящие от температуры охлаждающей жидкости, скорости автомобиля, напряжения на выводах аккумуляторной батареи и состояния системы кондиционирования воздуха.
Регулятор состоит из электродвигателя и редуктора, передающего вращение от вала электродвигателя на вал дроссельной заслонки. Угол открытия дроссельной заслонки на оборотах холостого хода составляет 0–24°. При выходе из строя регулятора холостого хода подлежит замене весь дроссельный узел.
Пройдя дроссельный узел, воздух поступает во впускной трубопровод. Из общей полости впускного трубопровода —ресивера—воздух по четырем отдельным каналам подводится к впускным каналам головки блока цилиндров.
Впускной трубопровод ресивер
Для улучшения наполнения цилиндров во всем диапазоне нагрузок и оборотов двигателя применена система изменения длины впускного тракта.
Расположение заслонок системы изменения длины впускного тракта в ресивере впускного трубопровода
Конструкция впускного трубопровода позволяет по командам, поступающим от ЭБУ, изменять длину каналов подвода воздуха к цилиндрам двигателя.Для этого в ресивере впускного трубопровода на общем валу установлены четыре заслонки (по одной для каналов каждого цилиндра). При повороте вала заслонки открывают одни каналы и закрывают другие, направляя воздух в цилиндры двигателя то по короткому, то по длинному пути.
Элементы системы изменения длины впускного тракта
При низких оборотах коленчатого вала длинный впускной тракт обеспечивает высокий крутящий момент и хорошую приемистость двигателя; при более высоких оборотах короткий впускной тракт позволяет двигателю развить высокую мощность.
Поворачивает вал с заслонками исполнительный механизм системы, который состоит из пневмокамеры, вакуумного резервуара, трубок и электромагнитного клапана.
Вакуумный резервуар системы соединен трубкой с внутренней полостью ресивера, а шлангом — с электромагнитным клапаном.
При работе двигателя клапан открывается по команде ЭБУ, передавая разрежение из резервуара пневмоприводу, который поворачивает ось заслонок.
Для снижения токсичности выхлопа (за счет уменьшения образования окислов азота) предусмотрена система рециркуляции отработавших газов. Принцип ее работы заключается в снижении температуры сгорания свежей топливовоздушной смеси в цилиндрах двигателя за счет «разбавления» ее отработавшими газами, отбираемыми из выпускного коллектора. Система состоит из клапана рециркуляции, закрепленного через проставку на левом торце головки блока цилиндров, каналов в выпускном коллекторе и головке блока цилиндров, а также гофрированной металлической трубки, соединяющей проставку с впускным трубопроводом.
Отработавшие газы отбираются из выпускного коллектора через канал, выполненный во фланце патрубка 4-го цилиндра…
Элементы системы рециркуляции отработавших газов: клапан; металлическая прокладка; проставка; гофрированная трубка
В зависимости от режима работы двигателя по сигналам электронного блока управления клапан рециркуляции регулирует количество отработавших газов, поступающих на догорание во впускной трубопровод.
В состав системы питания входит система улавливания паров топлива, включающая адсорбер, установленный под днищем автомобиля рядом с задним правым колесом, и электромагнитный клапан продувки адсорбера, прикрепленный к кронштейну впускного трубопровода.
Адсорбер: 1 — штуцер PURGE трубки отвода паров топлива от адсорбера к клапану; 2 — штуцер TANK трубки подвода паров топлива из бака к адсорберу; 3 — вентиляционный штуцер AIR
Пары топлива из бака попадают в адсорбер (емкость с активированным углем) через штуцер с надписью TANK, где накапливаются, пока двигатель не работает. Второй штуцер адсорбера с надписью PURGE соединен трубкой с электромагнитным клапаном продувки адсорбера, а третий с надписью AIR — с атмосферой.
При остановленном двигателе электромагнитный клапан продувки закрыт, и в этом случае адсорбер не сообщается с впускным трубопроводом.
Клапан продувки адсорбера
При работе двигателя электронный блок, управляя электромагнитным клапаном, осуществляет продувку адсорбера свежим воздухом за счет разрежения во впускном трубопроводе.
Пары бензина смешиваются с воздухом и отводятся во впускной трубопровод и далее — в цилиндры двигателя. Чем больше расход воздуха двигателем, тем больше длительность управляющих импульсов электронного блока и тем интенсивнее продувка.
Консультация On-line
в нашей группе вконтакте
ДИАГНОСТИРУЙТЕ ВАШЕ АВТО САМИ!
Коды ошибок />Chevrolet />Chevrolet P0171 Система корректировки топливоподачи, смесь слишком бедная | | Hits: 50543Если порог адаптивной коррекции постоянно превышен, отклонение от условий адаптивной коррекции позволяет определить медленно обнаруживающуюся ошибку. Два счетчика (один для обогащенной стороны, другой - для обедненной) увеличивают показания, когда лямбда-контроллер превышает пороговое значение адаптивной коррекции. Ошибка обнаруживается, как только один из счетчиков достигает максимального значения.
Целью этой проверки является имитация неисправности, которая вызывает превышение условий адаптивной коррекции. Необходимо создать два типа неисправности.
Отклонение обедненной стороны: P0171
Отклонение обогащенной стороны: P0172
Поэтому, для каждого вида неисправности необходимо определить хороший и плохой предел. Для данной неисправности следует измерить порог токсичности до превышения официальных порогов токсичности.
Обратить внимание, что проблема состоит в требуемых порогах токсичности, в системе не так просто создать помехи, превышающие пороги токсичности. Настройка была произведена благодаря целенаправленной калибровке, но, так как такая процедура не допускается официальными правилами, необходимо создать какие-нибудь существенные неисправности (регулятор давления топлива, топливная форсунка, утечка воздуха. ).
Условия появления кода DTC
Автомобиль работает в режиме замкнутого контура.
Двигатель работает
Угольный фильтр СУПБ и топливная система работают нормально.
Нет ошибок в датчике ЕСТ, IAT, MAP, CMP, CKP и TP.
Температура охлаждающей жидкости двигателя выше 20°С (68°F).
Условия установки кода неисправности.
Средние значения краткосрочной корректировки топливоподачи плюс адаптивная корректировка топливоподачи выше 33% в течение 200 секунд из 450 секунд испытательного периода.
Действия, выполняемые при установке кода неисправности
Контрольная лампа индикации неисправности загорается.
Контроллер записывает рабочие условия в момент определения неисправности. Эта информация сохраняется в буфере записей состояния и протоколах неисправностей.
Сохраняется архив диагностических кодов неисправности.
Условия очистки кода неисправности/индикации неисправности
Лампа индикации неисправности выключается по окончании трех циклов проверки подряд, при которых диагностика выполняется без сбоя.
Архивный диагностический код неисправности убирается после 40 циклов нагрева без сбоя.
Диагностический код неисправности может быть очищен сканирующим прибором.
Указания по диагностике
Важно: После ремонта использовать функцию сброса корректировки топливоподачи, чтобы сбросить долгосрочную корректировку топливоподачи до 128 (0%).
Давление топлива - Система обедненная, если давление слишком низкое. Возможно, потребуется наблюдение за давлением топлива на ходу при разных скоростях и нагрузках для подтверждения.
Датчик MAP - Выходной сигнал, который воспринимается контроллером ЭСУД как давление в коллекторе (высокое разряжение) ниже нормального, заставляет систему обеднять состав топливной смеси. Отсоединение датчика MAP позволяет контроллеру ЭСУД заменить фиксированное (по умолчанию) значение датчика МАР. Если условия обеднения смеси исчезли с отсоединением датчика, заменить датчик на заведомо исправный и проверить еще раз.
Загрязнение топлива - Вода, даже в небольших количествах рядом с входом в насос топливного бака, можен попасть в топливные форсунки. Вода вызывает обедненный выхлоп и может установить DTC P0171.
Проверить надежность соединения датчика кислорода или абсолютного давления в коллекторе у контроллера ЭСУД. Проверить разъемы жгута проводов на наличие следующего:
Снятые клеммы
Соединение клемм
Неисправность замков
Деформированность
Повреждения клемм
Слабое соединение клемм с проводами
Осмотреть жгут проводов на наличие повреждений. Если жгут проводов кажется исправным, контролировать значение датчика HO2S на сканирующем приборе, перемещая разъемы и жгуты проводов, относящиеся к двигателю. Изменения на дисплее покажут место нахождения неисправности.
Накопленная коррекция топливоподачи лачетти
Диагностика показывает цифру 15, должно быть, типо, в районе 0. Кислородник новый, ошибок по сканеру ни каких нету. Диагност (вроде как хороший спец, много лет к нему езжу) говорит - "Масло скока-то там ест - из-за этого смесь богатит". Когда газуешь до отсечки - пахнет бензином не сгоревшим. Масло ест литр на 3-4 т.км. Ну и в общем - "Надо делать поршневую и тогда всё ок". Чо делать - ни знаю. Явно поршневую делать не стану - расход не такой критичный (масло меняю каждые 7 т.км.) и я не думаю что он влияет так сильно на обогащение смеси. Какие мнения?? Заранее спасибо)
_________________
Vista Ardeo 1999, SV50, D4, Мультик, TV.
Диагност говорит, что все датчики в норме у меня. При чём он это видит просто на мониторе своего компьютера. Стоит ли ему верить?? Или искать другова диагноста, который все эти датчики вручную "цэшкой" проверять будет?
Добавлено спустя 5 минут 45 секунд:
этот перечень акутален и для 3S-FSE и для 3S-FE??
Последний раз редактировалось Andreyka42 24 июл 2014, 16:23, всего редактировалось 1 раз.
_________________
Vista Ardeo 1999, SV50, D4, Мультик, TV.
У знакомого на РАВ4 с таким же мотором было так:
По началу расход начал расти. Через какое-то время <около года>дошло до того что при прогазовывании стал вылетать чёрный дым из глушителя. Подключили ноутбук - у него на холостом ходу давление во впускном коллекторе показывает 50-60кПа. Должно быть 25-30. Переткнули датчик давления во впускном коллекторе к другому порту, который тоже связан с впускным коллектором <на блоке дроссельной заслонки, идёт к абсорберу>- показывать стал нормальные 27кПа. Дым при прогазовывании пропал. Оказалось забился штуцер, который вкручивается во впускной коллектор и на который надеваются шланги к датчику давления и к гидроусилителю. Как ни чистили этот штуцер - не помогло. Купил он новый штуцер и пол года как ездит довольный.
Какое у Вас давление во впускном коллекторе на холостом ходу при выключенных потребителях? Если больше 30кПа - стоит задуматься.
ПС: Не должна быть долгосрочная коррекция ровно 0. +-10% - нормальный результат. До 20% - не нормально, но терпимо. Больше 20% - плохо.
_________________
Vista Ardeo 1999 3S-FSE - продана, Runx 2001 1NZ-FE - у жены
Читайте также: