Гидромуфта маз принцип работы
Гидромуфта и все,что необходимо о ней знать.
В некоторых видах двигателей устанавливается привод вентилятора с охлаждающей функцией от коленвала. Соединение осуществляется через специальную деталь, называемой гидромуфтой. В чём суть действия этого прибора, строение и процесс его функционирования, пойдёт речь в данной статье. Также немаловажным фактором является правильное использование данного узла, технические особенности и, в случае необходимости, проведение ремонта.
Свойства
Отметим основные свойства, которыми обладают гидромуфты:
- Ведомые и ведущие валы действуют вне зависимости друг от друга. К примеру, когда ведомый вал находится в покое, то в это время ведущий вал может функционировать или соответствовать промежуточному значению угловой скорости. Но отметим, что значение последней не может равняться скорости вращения ведущего вала. Обычно её значения меньше на 2 – 3%.
- Именно гидравлические муфты смогут обеспечить плавное начало движения транспорта и плавный набор разгона.
- Строение организовано таким образом, что в ней отсутствуют детали, которые тесно соприкасаются между собой. Другими словами отсутствует процесс трения деталей, а следовательно, их износ сводится к минимуму.
- Гидромуфта сдерживает крутильные колебания.
- С её помощью обеспечивается бесшумное функционирование передач.
- Обеспечивается высокие показатели коэффициента полезного действия, до 0,96 – 0,98.
- Высокая степень надёжности при эксплуатации.С их помощью можно организовать управление, как на дистанционном, так и на автоматическом уровне.
История
Своим рождением гидротрансформатор и гидромуфта обязаны развитию судостроения в конце XIX века. С появлением на кораблях морского флота паровых машин возникла острая необходимость в новом дополнительном механизме, который позволял бы плавно передавать крутящий момент от паровых двигателей к большим и тяжелым гребным винтам, погруженным в воду. Такими устройствами стали гидромуфта и гидротрансформатор, которые запатентовал в 1905 году немецкий инженер и изобретатель Герман Феттингер. Позже эти механизмы адаптировали для установки на лондонские автобусы, а затем на автомобили и первые дизельные локомотивы для более плавного начала движения.
Устройство и принцип работы гидромуфты
Внутри гидромуфты очень близко друг к другу соосно размещены два вращающихся колеса с лопастями. Одно соединено с ведущим валом (насосное), а второе с ведомым (турбинное). Все пространство вокруг них в гидромуфте заполнено рабочей жидкостью (масло).
Принцип работы гидромуфты очень прост. Её ведущий вал вращается двигателем. Вместе с валом в корпусе гидромуфты циркулирует и масло. За счет своей вязкости оно постепенно все больше и больше вовлекает за собой в это вращение ведомый вал. Таким образом, крутящий момент от двигателя плавно нарастая постепенно через жидкость передается на ведомый вал.
Устройство и принцип работы гидротрансформатора
По сути, гидротрансформатор это та же гидромуфта в которой между вращающимися колёсами добавлено третье лопастное колесо – реактор (статор). Посредством муфты свободного хода оно может вращаться на ведущем валу, образуя единое целое с насосным колесом. Это происходит до тех пор, пока обороты вращения насоса и турбины различаются. Как только они уравниваются, реактор начинает вращаться независимо от насоса, превращая гидротрансформатор в гидромуфту.
Достоинства и недостатки гидромуфты
В настоящее время гидромуфты устанавливаются на автомобили с полуавтоматическими коробками передач (грузовые, автобусы, реже легковые), на тракторы, в авиационные турбины, применяются в металлообрабатывающих станках. К достоинствам гидромуфты можно отнести простоту конструкции, обеспечение плавности изменения крутящего момента, передаваемого от двигателя на механизмы трансмиссии, снижение ударных нагрузок на шестеренчатые пары коробок передач.
Недостатком гидромуфты является меньший по сравнению с гидротрансформатором коэффициент полезного действия из-за больших потерь при высоких оборотах ведущего вала двигателя. По этой причине на современные легковые автомобили гидромуфты практически не устанавливаются.
Гидромуфты подразделяются на регулируемые и замкнутые.
Регулируемые гидромуфты предназначены, как правило, для относительно неглубокого (до 30-40%) регулирования частоты вращения ведомого вала привода. Наиболее экономичным такое регулирование является лишь для машин, у которых мощность нагрузки в процессе работы изменяется пропорционально кубу частоты вращения турбины, т.е. N2=(i 3 ) Nн (Nн- номинальная мощность при полной скорости и n1=const.). К таким машинам относятся мощные (до15тыс.квт) центробежные насосы, турбогенераторы, вентиляторы. Менее экономичным регулирование с помощью гидромуфт является в случае, когда мощность изменяется пропорционально квадрату частоты вращения ,т.е. N2=(i 2 ) Nн. Максимальные потери мощности Nпот. в первом случае составляют Nпот.= 0,148 Nн при i=0,666, а во втором случае 0,25 Nн- при i=0,5. Для многих лопастных машин регулирование гидромуфтой имеет ряд преимуществ по сравнению с другими способами регулирования скорости.
Основные типы и характеристики замкнутых гидромуфт.
Замкнутые гидромуфты постоянного наполнения условно могут быть подразделены на предохранительные и пускопредохранительные.
Предохранительные гидромуфты ограничивают крутящий момент значением, меньшим на 15-20% максимального (опрокидного) момента приводного электродвигателя (двигатель). Значение пускового(стопового) момента в отдельных моделях таких гидромуфт может иметь значение 1,3-1,4 от величины номинального момента. В этом случае предохранительная гидромуфта выполняет функцию муфты предельного момента. Пускопредохранительная гидромуфта предназначена для поддержания вращающего момента привода в течение всего периода разгона машины в пределах 1,3-1,5 от номинального момента.
На рис.2 показана предохранительная гидромуфта ГП 740, имеющая симметричные насос 1 и турбина 2 , межлопастные каналы которых образуют рабочую полость 3. Насос 1 соедин?н посредством фланцев с вращающимся корпусом 4. Турбина 2 установлена на полом валу 5, имеющем посадочное отверстие для монтажа гидромуфты на входной вал редуктора. Насос 1 посредством пальцев 6 и упругих втулок 7 связан с полумуфтой 8 вала электродвигателя. В центральной части полости гидромуфты имеется камера 9.
При работе гидромуфты на установившемся режиме вся РЖ находится в рабочей полости 3 и, как было указано выше, циркулирует по каналам насоса и турбины.
В указанном режиме в камере 9 РЖ отсутствует, т.к. оба колеса (насос 1 и турбина 2) вращаются с большой частотой вращения при минимальном их скольжении. В случае возрастания нагрузочного момента скорость турбины 2 начинает уменьшаться.
При определенной величине внешней нагрузки РЖ опускается по лопаткам турбины 2 к центру гидромуфты и достигает границ камеры 9. С дальнейшим ростом нагрузки и скольжения вс? большее количество РЖ устремляется в камеру 9, в то время как количество ее в рабочей полости 3 уменьшается. Так как расход РЖ по каналам насоса и турбины в этом переходном режиме падает, то крутящий момент, передаваемой гидромуфтой, не возрастает и ограничивается вполне определeнной величиной. Остановка турбины 1 (скольжение 100%) соответствует практически полному заполнению камеры 9 РЖ, находящейся в ней в состоянии динамического равновесия. Последнее обусловлено тем, что насос 1 постоянно всасывает ту порцию жидкости, которая в данный момент поступает из турбины 2 в указанную камеру. При снятии внешней нагрузки первоначальная картина восстанавливается, поскольку вся РЖ перетекает вновь из камеры 9 в рабочую полость 3. Пуск гидромуфты сопровождается аналогичным гидравлическим процессом, но с той лишь разницей, что он протекает в обратном порядке по сравнению с режимом торможения ведомого вала.
Вал 5 турбины 2 имеет два подшипника качения 10 и 11, позволяющие этому колесу свободно вращаться по отношению к насосу 1. Полость гидромуфты во избежание вытекания РЖ уплотнена на валу 5 манжетами 12 и 13.
На рис. 3 представлены графики внешних моментных характеристик асинхронного короткозамкнутого двигателя (а) и предохранительной гидромуфты (б). В качестве допущения принято, что при изменении момента частота вращения насоса (мин -1 ) n1 =const.
Момент гидромуфты Мг подчиняется зависимости
Мг = λi?ρ?(n1/ 60) 2 ?Da 5 ,где:
Из приведенной зависимости следует, что изменение Мг с изменением n1 следует закону квадратичной параболы.
В случае отсутствия гидромуфты включение двигателя в электросеть вызывает ударное приложение усилий к элементам передачи, эквивалентное среднему значению Мпуск. Использование же гидромуфты совместно с двигателем коренным образом и в лучшую сторону изменяет характер пускового процесса .
Внешняя нагрузка на двигатель в период пуска определяется только параметрами моментной характеристики гидромуфты. Если пуск двигателя осуществляется ,например, при полностью блокированном ведомом валу привода, то внешний крутящий момент ( Мг) плавно нарастает от нуля по параболам 0-с1 и 0-с2 соответственно при характеристиках 1 и 2.В точках с1 и с2 работа двигателя с частотой вращения, близкой к рабочей, устойчива, поскольку момент гидромуфты 0-С1 и 0-С2 при ее скольжении, равном 100%, меньше Ммакс.
Пуск привода при номинальной нагрузке Мн и характеристике гидромуфты, например, 2 (Рис.3) можно условно разделить на три фазы. В первой фазе при неподвижной турбине двигатель быстро разгоняется по параболе 0-с2до точки к пересечения этой кривой с линией Мн=const. При частоте вращения двигателя n1к турбина совместно с ведомой частью привода страгивается с места и ускоряется, что соответствует второй фазе пуского процесса. В течение этой фазы двигатель разгоняется, преодолевая момент сопротивления гидромуфты, изменяющийся так же по параболе 0-с2. Завершению этой фазы соответствует точка с2пересечения кривой 0-с2 с рабочим участком характеристики двигателя и точка В на графике 2 характеристики гидромуфты. Третья завершающая фаза определяется участком a-c2 характеристики двигателя и соответственно участком A-B характеристики гидромуфты. В этой фазе момент гидромуфты изменяется от Мкр до Мн.
На рис.4 приведена конструкция пускопредохранительной гидромуфты ГПП530 с тормозным шкивом, которая устанавливается на входной вал коническо-цилиндрического редуктора приводного блока ленточного конвейера.
Отличительной особенностью этой гидромуфты гидромуфты в сравнении с предохранительной является то, что помимо насоса 1, турбины 2, корпуса 3 и вала 4 турбины в центральной части полости муфты предусмотрена пусковая камера (камера) 5, образованная внутренней нерабочей поверхностью насоса 1 и прикрепленной к нему крышкой 6. Заполнение камеры 5 РЖ при неподвижной гидромуфте и при ее вращении происходит через кольцевой вход 7 , имеющийся в крышке 6.
Выход РЖ из камеры 5 в рабочую полость 8 при работе гидромуфты осуществляется через ряд отверстий 9 небольшого сечения, выполненных в цилиндрической стенке указанной камеры. При неподвижном состоянии гидромуфты РЖ свободно заполняет большую часть объема камеры 5. В процессе быстрого пуска двигателя камера 5 под напором насоса полностью заполняется РЖ и остается максимально заполненной практически до полного разгона машины.
Расход РЖ, перетекающей постоянно в рабочую полость 8 из камеры 5, сполна компенсируется большим расходом РЖ, поступающей в нее из каналов турбины 2.
Объем РЖ в камере 5 начинает уменьшаться лишь после разгона ведомого вала привода до скорости, близкой к номинальной. При этой скорости центробежные силы, воздействующие на РЖ в каналах турбины, будут препятствовать ее проникновению к кольцевому входу 7. В связи с этим рабочая полость будет постепенно пополняться через отверстия 9 РЖ, поступающей из камеры 5. Последняя полностью опорожнится лишь после окончания разгона машины.
Способность пускопредохранительной гидромуфты удерживать в пусковом процессе значительную часть РЖ в полости пусковой камеры обеспечивает снижение пускового момента привода до значения (1,3-1,6) Мн и тем самым растянутый во времени плавный разгон машины.
Ограничение пускового момента в указанных пределах необходимо для большинства ленточных конвейеров, поскольку при этом устраняются опасные динамические колебания натяжения ленты и ее пробуксовка по барабанам.
Экспериментально полученные графики изменения частот вращения насоса и турбины, а также крутящего момента гидромуфты ГПП530 в процессах пуска механической системы, имитирующей разгон ленточного конвейера, приведены на рис.5.
При пускопредохранительной гидромуфте привод приобретает в известном смысле признаки адаптивной системы, т.к. при сниженном моменте сопротивления движению уменьшается и вращающий момент Мг, в связи с чем плавность пуска сохраняется.
Заключение
Включением гидромуфты в состав привода достигается существенное улучшение его статических и динамических характеристик, что способствует повышению эксплуатационной надежности машин.
Гидромуфта, способная в режимах пуска и торможения ограничивать заданным значением крутящий момент, является эффективным быстродействующим средством защиты от недопустимых перегрузок двигателя, механической передачи и машины в целом.
Обладая свойствами демпфирования и гашения крутильных колебаний, пульсирующих и пиковых нагрузок, гидромуфта позволяет увеличить срок службы машин.
Гидромуфты ведущих фирм Запада широко используются во всех отраслях промышленности большинства стран мира. В то же время в России так же, как и в странах СНГ, наблюдается значительное отставание в сфере серийного производства и применения гидромуфт, что снижает технический уровень и эксплуатационную надежность многих отечественных машин.
22.Включатель гидромуфты вентелятрора
Возвращаясь назад и решил описать что уже было сделано, вдруг кому пригодится, а кому так, для общего развития.
Дело это было почти в самом начале моего знакомства с моим мАзом, был рейс на Самару, зима… поначалу всё было гладко, дорога ровная, машина катит… но как только пошли холмы/горки на казанской объездной, так температурка поползла вверх. Тогда еще не опытный не знал в чем проблема, много воды было влито по дороге так и не поняв почему ОЖ вскипает, хоть и стоит флажок в режиме "авто" (там 3 режима: Вкл, Авто, Откл). Но стало ясно потом, что у меня стоит гидромуфта и она не срабатывает. На обратку так же загрузил 20-ку и чтобы как то вентилятор крутился пришлось приколхозить: остановился возле одного из СТО в городе, нашел у них старый тросик от ручника в металлоломе, ну и навернул на муфту — до дому доехал, ближе к дому троисик порвался.
Уже дома разобравшись, стало ясно что не работает механический включатель гидромуфты
так подключается к муфте
Далее прикупил датчик температуры, нашел кусок алюминиевой пластины (желательно потолще), высверлил нужные отверстия и нарезал резьбу под датчик
Далее устанавливаем гидроклапан. Т.к. отверстие в муфте было больше чем в клапане — пришлось подложить так же переходную алюминиевую пластину, ну и герметик и прокладки разумеется… Отверстия с резьбой для крепления клапана уже имелись.
Далее возникла проблемка — откуда запитать компрессор маслом? Ранее он питался с механического включателя (см. рис 1), а нынче его нет… А в заводском варианте по схемам с электроклапаном от питается с электроклапана, а в моем случае мешает генератор.
Решил таки запитать с канала турбина-ТНВД
НО эксплуатация показала, что медные трубки довольно таки хрупкие: так к примеру трубка ТурбинА-ТнвД после обрыва (сломалась в местах крепления муфты) была заменена на стальную и разок ломалась и в проводе ТНВД-компрессор так же в месте крепления муфтой (в ТНВД). Только по счастливой случайности обрыв был вовремя замечен и были приняты меры по их устранению.
Ранее питающая магистраль гидромуфты проходила так:
после была переделана и запитана с корпуса масляного фильтра
для этого была выкручена заглушка в корпусе, у токаря заказан штуцер. Трубка подошла та, что стояла ранее с механическим включателем муфты (см. рис.2), только чуточку подогнута (без этого никак).
Электроклапан работает в 2-х режимах (у меня): "Авто" и "Вкл", т.е. режим "вкл" управляется с кабинета, обычно включаю перед затяжными подъемами заранее, а если забыл, то срабатывает на "автомате"
Так же был заменён карлсон на китайскую пластиковую…
Хоть размерчик оказался и маловат, видимых недостатков пока не было замечено. Плюсы кита — легкий, безшумный по сравнению с железным
А если настанут времена и будет совсем жарко, то в уме пока вот это чудо:
он камазовский, диаметр 660мм вроде, если память не подводит, НО для него нужна будет переходная плита, т.к. этот "черный" предназначен под вискомуфту.
Что такое гидромуфта и для чего она нужна
Гидравлическая муфта является частью закрытой системы автоматической и полуавтоматической коробки передач. Отдельный узел гидромуфты (в современных моделях авто — гидротрансформатор) предназначен для плавной передачи крутящего момента от коленвала к коробке-автомат.
Принцип работы
Гидромуфта обеспечивает плавные переходы с одной передачи на другую, сдерживая вращательное колебание, позволяет начать плавный старт автомобиля и быстрый плавный разгон.
Главные комплектующие гидромуфты — два лопастных колеса, которые расположены на одной оси. Первая лопасть соединяется гибкой связкой с ведущим валом авто. Вторая лопасть имеет сцепление с ведомым валом. Внутренняя часть гидромуфты заполнена маслом.
Ведущий вал муфты получает вращение от двигателя машины. Под действием вращательных движений рабочей жидкости происходит передача усилий на лопасти ведомого вала, который начинает плавно вращаться, перебирая на себя ускорение от ведущего вала. Связующим звеном между валами является рабочая жидкость.
Гидротрансформатор как более модернизированная система имеет дополнительную силовую деталь – статор, третье колесо с лопастями определенной формы. Устанавливается на ведущий (насосный) вал, образуя с колесом единый узел.
Гидротрансформатор увеличивает крутящий момент передачи от двигателя на АКПП в несколько раз, в то время как муфта передает количество колебаний от ведущего вала с потерями на 2-5%.
Главные комплектующие гидромуфты:
-
колесо (лопасть насосная) присоединяется к коленвалу;
Признаки износа и поломки гидромуфты и гидротрансформатора
Гидравлическая муфта рассчитана на весь срок эксплуатации автоматической коробки передач, но, как и любая другая деталь, может выходить из строя намного раньше.
Признаки неисправности гидромуфты, которые потребуют обращения в автосервис:
-
Явно слышен нехарактерный треск в АКПП при переключении скоростей. После набора скорости потрескивание исчезает. Причина может быть в истирании опорных подшипников.
Главной особенностью и достоинством гидромуфты является предохранение АКПП от большого крутящего момента при передаче усилия от двигателя. Муфта и гидротрансформатор позволяют сглаживать рывки подачи и передавать крутящий момент плавно, с постепенным увеличением и снижением оборотов.
Видео анимации гидромуфты КамАЗа:
Гидромуфта маз принцип работы
Двигатели комплектуются фрикционным приводом вентилятора, предназначенным для включения и выключения вентилятора в зависимости от условий эксплуатации
Применение фрикционного привода позволяет:
Обеспечить оптимальный тепловой режим двигателя.
Снизить расход топлива за счет снижения потерь мощности на работу вентилятора.
Повысить надежность шестеренчатого привода двигателя за счет снижения динамических нагрузок на шестерни.
Обеспечить бродоходимость автомобиля без снятия вентилятора.
Сократить время прогрева двигателя.
Улучшить комфортабельность за счет поддержания надлежащего микроклимата в кабине и снижения шумности.
Устройство и работа привода вентилятора
Системы привода вентилятора могут быть выполнены с включателем механического типа (в запасные части для двигателей выпуска до 2003 г.) или с электромагнитным управлением (двигатели выпуска с 2003 г.) и поэтому имеют ряд конструктивных отличий.
Устройство и работа привода вентилятора с включателем механического типа
Фрикционный привод может работать в трех режимах: автоматическом, постоянно включенным и постоянно выключенном.
Управление вентилятора осуществляется с помощью выключателя.
Вентилятор при неработающем двигателе находится в отключенном состоянии.
После пуска двигателя крыльчатка вентилятора может вращаться за счет трения в подшипниках и других сопрягаемых деталях дисковой муфты с частотой 200÷500 об /мин.
При достижении температурного состояния двигателя близкого к высшему оптимальному (+85˚ …+93˚ С) масло от включателя под давлением поступает в штуцер 13 (рис. 1) корпуса 14.
Далее через отверстие в корпусе, радиальные отверстия во втулках 10 и 22 попадает в осевое отверстие ведущего вала 18, а оттуда к поршню 30.
Поршень начинает перемещаться, передавая усилия через пружины 32 на обойму, которая давит на диски 4 и 5, выбирая зазоры между ними.
После сжатия ведущих и ведомых дисков ведомый вал 25 с крыльчаткой начинает вращаться с рабочей частотой.
После того как, температурное состояние двигателя достигнет значения близкого к низшему оптимальному, включатель прекращает подачу масла.
Масло, находящееся под поршнем 30, под действием центробежных сил, а также пружин 7, 32 через дренажные отверстия по специальным каналам перемещается во внутреннюю полость передней крышки 2 и шкива 24.
С помощью черпательной трубки 9 и далее по каналам в корпусе масло попадает в картер двигателя.
По мере освобождения полости под поршнем 30 от масла он перемещается под действием пружин 7 и 32.
Диски фрикционного привода расходятся и вентилятор отключается.
Включатель механического типа (рис. 2) совмещен с термодатчиком и ручным переключателем режимов и устанавливается на водяную трубу двигателя.
Включатель служит для управления муфтой фрикционного привода. Режим его работы устанавливается с помощью ручного переключателя 20, имеющего три положения:
- положение «А» - автоматическое;
- положение «В» - постоянно включено;
- положение «О» - постоянно выключено.
Масло из центрального масляного канала блока по подводящей трубке 29 поступает во включатель.
При положении рычага "В" масло беспрепятственно проходит через выключатель и по отводящей трубке 25 поступает в привод, включая его.
При положении рычага ″О″ масло в привод не поступает. Привод отключен.
При положении рычага ″А″ включение и выключение фрикционного привода происходит автоматически в зависимости от температуры охлаждающей жидкости двигателя.
Поршень 8, упираясь в толкатель 7, поднимает его, одновременно сжимая пружину 6 золотника 5.
Золотник выключателя 5 остается неподвижным, т.к. удерживается шариком 18 фиксатора 14.
При температуре охлаждающей жидкости около +85ºС толкатель 7 касается золотника 5, шарик 18 выходит из фиксирующей канавки, золотник 5 резко передвигается в сторону движения толкателя 7.
Шарик 18 попадает в другую фиксирующую канавку, золотник 5 останавливается и занимает положение, при котором полость, в которую подводится масло, соединяется с полостью, отводящей масло.
По трубке масло поступает к фрикционному приводу вентилятора.
По мере снижения температуры охлаждающей жидкости поршень датчика 8 начинает двигаться в датчик 12 под действием пружины 6.
Внимание! При подготовке к преодолению брода необходимо включатель привода вентилятора установить в положение «О» (постоянно выключено).
Устройство и работа привода вентилятора с электромагнитным включателем
Устройство и принцип работы фрикционной муфты привода вентилятора аналогичны предыдущему, но конструктивное исполнение ряда деталей имеет особенности.
Включатель электромагнитный
Особенности работы электромагнитного включателя (рис. 3-7) заключаются в том, что от термореле, установленного на правом водяном коллекторе, поступает электрический сигнал через реле к электромагнитному клапану, который управляет поступлением масла в муфту привода.
Переключатель режимов работы привода в этом случае находится в кабине и управляет работой электромагнитного клапана также электрическим сигналом.
Схема включения муфты вентилятора электрическая, принципиальная (рис. 3) включает следующие элементы:
* – Привод вентилятора комплектуется электромагнитным клапаном КЭМ 32-20 при напряжении бортовой сети 24 В.
** – Схема электрическая принципиальная, поэтому она может видоизменяться, в том числе могут быть применены другие комплектующие, которые выбираются предприятиями потребителями силовых агрегатов.
Функции элементов схемы электрической принципиальной:
1. Переключатель SA находится в кабине.
2. Переключатель SA имеет три положения:
• «Выключено» – вентилятор выключен независимо от температуры двигателя.
• «Включено» – вентилятор включен независимо от температуры двигателя.
• «Автомат» – вентилятор включается от термореле в зависимости от температуры двигателя.
3. HL – лампа контрольная включается при работе вентилятора.
Ремонт привода вентилятора
Снятие и разборка привода
1. Отвернуть болты крепления и снять крыльчатку вентилятора.
2. Ослабить крепление натяжных устройств ремня пневмокомпрессора и ремня генератора, снять ремни со шкива привода вентилятора.
3. Отсоединить провода подачи напряжения к электромагнитному клапану, демонтировать трубку подвода масла, вывернув болт ее крепления из штуцера клапана, и, отвернув болты крепления, снять клапан вместе с прокладкой с привода вентилятора.
4. Отвернуть болты и гайки крепления, аккуратно, не повредив прокладку, снять с двигателя привод вентилятора.
5. Отвернуть болты крепления и снять с привода крышку 2 (см. рис. 1) в сборе со ступицей и ведомым валом 25, извлечь из ведущего вала 18 пакет ведущих и ведомых дисков 4 и 5, а также поршень 30 в сборе с упором 31 и нажимной обоймой 27.
6. Зафиксировать шестерню привода 17 от проворота, отвернуть гайку ее крепления.
Используя любой подходящий съемник, спрессовать шестерню с ведущего вала.
7. Выпрессовать ведущий вал. При этом шкив 24 должен быть зафиксирован в осевом направлении в избежании поломки черпательной трубки 9.
После этого извлечь из корпуса привода 14 внутреннюю обойму заднего подшипника 15 и внутреннюю распорную втулку 11 вместе с уплотнительными кольцами 12.
8. Вывернуть винты крепления 10, снять черпательную трубку и шкив привода компрессора и генератора.
9. Отвернуть болты крепления 19 упорного фланца 16, выпрессовать наружную распорную втулку 21 и наружную обойму заднего подшипника.
В избежании передачи осевого усилия через сепаратор переднего подшипника, выпрессовку необходимо проводить с помощью специального приспособления, как показано на рис. 10 и 11.
После этого извлечь из корпуса передний подшипник.
Сборка привода вентилятора
Сборку привода вентилятора необходимо осуществлять в обратной последовательности. При этом должны соблюдаться следующие требования:
1. Перед сборкой все манжеты, резиновые и металлические уплотнительные кольца, а также подшипники должны быть смазаны дизельным маслом.
2. Запрессовку переднего сферического подшипника в корпус необходимо производить с помощью оправки, не допускающей перекоса внутренней обоймы относительно наружной, а также передачи осевого усилия через сепаратор.
3. Установку распорных втулок в корпус привода необходимо проводить, как показано на рисунке, чтобы обеспечить совпадение маслоподводящих отверстий.
4. При сборке пакета фрикционных дисков чередование ведущих и ведомых дисков должно быть таким, как показано на рис. 1. При этом ведущие диски необходимо устанавливать так, чтобы направление отжимных усов было против часовой стрелки, если смотреть на привод со стороны ступицы вентилятора.
5. При сборке привода вентилятора необходимо обеспечить затяжку контролируемым моментом следующих резьбовых соединений:
– болтов упорного фланца 1,8…2,0 Нм (18…20 кгс·м);
– винтов черпательной трубки 0,5…0,8 Нм (4,9…7,8 кгс·м);
– болтов крышки привода 2,0…2,5 Нм (19,61…24,51кгс·м);
– гаек шестерни и ступицы 16…20 Нм (156,9…196,1кгс·м).
Ржавчина, масляные и другие загрязнения в резьбовом соединении не допускаются.
У собранного привода вентилятора вращение шкива относительно корпуса должно быть свободным, без заеданий.
Вращение ступицы вентилятора относительно неподвижных корпуса и шкива также должно быть свободным, без заеданий.
2.11.2. Включатель электромагнитный системы охлаждения двигателей ЯМЗ-7601.10, ЯМЗ-7514.10, ЯМЗ-7513.10, ЯМЗ-7512.10, ЯМЗ-7511.10
Рис. 50 – Расположение деталей привода вентилятора с электромагнитным клапаном на двигателе:
1 – вентилятор, 2 – муфта привода; 3 – электромагнитный клапан КЭМ32-23; 4 – трубка подвода масла; 5 – термореле.
Рис. 51 – Клапан электромагнитный КЭМ 32-23
Особенности работы электромагнитного включателя (рис. 50-53) заключаются в том, что от термореле, расположенного на правом водяном коллекторе, поступает электрический сигнал к электромагнитному клапану, который устанавливается непосредственно на корпусе привода вентилятора и управляет поступлением масла в муфту привода. Соединение клапана с корпусом уплотняется паронитовой прокладкой.
Конструкция электромагнитного клапана (рис. 51) обеспечивает необходимое давление масла при включении вентилятора, а также предусматривает регламентируемую подачу масла в выключенном состоянии через специальный самоочищающийся жиклер для обеспечения смазки подшипников привода. При отсутствии напряжения на контактах штекерной колодки электромагнитный клапан находится в закрытом положении. При подаче напряжения 24В клапан открывается.
Управление работой электромагнитного клапана осуществляется трехпозиционным переключателем, расположенным в кабине водителя.
При включении вентилятора на пульте водителя загорается контрольная лампа (см. схему на рис. 53).
Рис. 52 – Термореле
Рис. 53 – Схема включения муфты вентилятора электрическая, принципиальная
Обозначение элемента | Наименование | Количество |
ВК | Термореле 661.3710-01 | 1 |
Y | Электромагнитный клапан КЭМ 32-23* | 1 |
HL | Контрольная лампа | 1 |
SA | Переключатель 51.3709** | 1 |
VD1, VD2 | Диод Д247А** | 2 |
K | Реле 11.3747** | 1 |
* – Привод вентилятора комплектуется электромагнитным клапаном КЭМ 32-23 при напряжении бортовой сети 24В. ** – Схема электрическая принципиальная, поэтому она может видоизменяться, в том числе могут быть применены другие комплектующие, которые выбираются предприятиями потребителями силовых агрегатов. |
Функции элементов схемы электрической принципиальной:
- Переключатель SA находится в кабине.
- Переключатель SA имеет три положения:
• «Выключено» – вентилятор выключен независимо от температуры двигателя.
• «Включено» – вентилятор включен независимо от температуры двигателя.
• «Автомат» – вентилятор включается от термореле в зависимости от температуры двигателя. - HL – лампа контрольная, включается при работе вентилятора.
При выходе из строя электрической части системы управления вентилятором (обрывы обмотки электромагнита, проводов и т. п.) конструкцией электромагнитного клапана КЭМ32-23 предусмотрено принудительное включение вентилятора с помощью механического дублера. Открытие клапана производится закручиванием винта дублера до упора.
При изменении режимов работы вентилятора трехпозиционным переключателем, расположенным в кабине водителя, винт механического дублера должен быть вывернут до упора.
ВНИМАНИЕ! ПРИ РАБОТЕ ВЕНТИЛЯТОРА В АВТОМАТИЧЕСКОМ РЕЖИМЕ (ВЕНТИЛЯТОР ВКЛЮЧАЕТСЯ ОТ ЭЛЕКТРИЧЕСКОГО СИГНАЛА ТЕРМОРЕЛЕ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРНОГО РЕЖИМА) ВИНТ РУЧНОГО ДУБЛЕРА ДОЛЖЕН БЫТЬ ВЫВЕРНУТ ДО УПОРА.
Принцип работы гидромуфты
В некоторых видах двигателей устанавливается привод вентилятора с охлаждающей функцией от коленвала. Соединение осуществляется через специальную деталь, называемой гидромуфтой. В чём суть действия этого прибора, строение и процесс его функционирования, пойдёт речь в данной статье. Также немаловажным фактором является правильное использование данного узла, технические особенности и, в случае необходимости, проведение ремонта.
Содержание:
Принципиальная схема гидромуфты и её технические характеристики
Для лучшего понимания функционирования гидравлической муфты приведём её конструктивную схему:
Колёса (9) снабжены прямыми лопатками, хотя в некоторых случаях, для них используют лопатки изогнутой формы.
Гидромуфта является соединением колеса центробежного насоса, колеса реактивной турбины и кожухов (3), как охватывающего, так вращающего. Насос, в свою очередь, присоединён к ведущему валу (6), а реактивная турбина – к ведомому валу (16).
Принцип действия
Попробуем разобраться, в чём же состоит её основной принцип роботы. Во время вращения насос является передающим звеном работы двигателя жидкости, которая заполняет гидравлическую муфту через клапан. В процессе этого сообщается запас энергии скорости и энергии давления. Попадая на лопасти, жидкость преобразует энергию в механическую работу, которая приводит к вращению ведомого вала. Покидая турбину, жидкость снова поступает в насос. Во время этого процесса происходит передача момента вращения с одного вала на другой. Таким образом, устанавливается замкнутый процесс, который работает в таком порядке: насос – турбина – насос. Делаем вывод, что основным элементом, которая связывает между собой оба вала – это жидкость.
В процессе действия происходят некоторые потери. Причиной этому является тот факт, что в рабочем состоянии ведущий вал немного опережает ведомый.
Свойства
Отметим основные свойства, которыми обладают гидромуфты:
- Ведомые и ведущие валы действуют вне зависимости друг от друга. К примеру, когда ведомый вал находится в покое, то в это время ведущий вал может функционировать или соответствовать промежуточному значению угловой скорости. Но отметим, что значение последней не может равняться скорости вращения ведущего вала. Обычно её значения меньше на 2 – 3%.
- Именно гидравлические муфты смогут обеспечить плавное начало движения транспорта и плавный набор разгона.
- Строение организовано таким образом, что в ней отсутствуют детали, которые тесно соприкасаются между собой. Другими словами отсутствует процесс трения деталей, а следовательно, их износ сводится к минимуму.
- Гидромуфта сдерживает крутильные колебания.
- С её помощью обеспечивается бесшумное функционирование передач.
- Обеспечивается высокие показатели коэффициента полезного действия, до 0,96 – 0,98.
- Высокая степень надёжности при эксплуатации.
С их помощью можно организовать управление, как на дистанционном, так и на автоматическом уровне.
Нюансы работы
Благодаря всем выше перечисленным свойствам, обеспечивается взаимодействие гидравлической муфты и двигателя. Перечислим все основные функции, которые выполняет устройство:
- Способность регулировать количество выполняемых вращений ведомым валом при постоянном числе вращений двигателя;
- Обеспечение разгона больших масс.
Обеспечение суммирования мощностей и реверса. Особенно это актуально при использовании детали на судах.
Обратим внимание, все функции, которые приведены выше, позволяют использовать гидравлической муфты не только в автомобильной отрасли.
Установлено, что она зарекомендовала себя довольно долгими сроками службы. В ходе эксплуатации требуются лишь периодическая регулировка температуры срабатывания выключателя. Но всё-таки, если произошла поломка, то замена производится в комплекте с передней крышкой двигателя.
Принцип работы гидромуфты вентилятора маз. Вискомуфта принцип работы. Принцип работы вискомуфты
Принципиальная схема гидромуфты и её технические характеристики
Для лучшего понимания функционирования гидравлической муфты приведём её конструктивную схему:
Колёса (9) снабжены прямыми лопатками, хотя в некоторых случаях, для них используют лопатки изогнутой формы. Гидромуфта является соединением колеса центробежного насоса, колеса реактивной турбины и кожухов (3), как охватывающего, так вращающего. Насос, в свою очередь, присоединён к ведущему валу (6), а реактивная турбина – к ведомому валу (16).
Принцип действия
Попробуем разобраться, в чём же состоит её основной принцип роботы. Во время вращения насос является передающим звеном работы двигателя жидкости, которая заполняет гидравлическую муфту через клапан. В процессе этого сообщается запас энергии скорости и энергии давления. Попадая на лопасти, жидкость преобразует энергию в механическую работу, которая приводит к вращению ведомого вала. Покидая турбину, жидкость снова поступает в насос. Во время этого процесса происходит передача момента вращения с одного вала на другой. Таким образом, устанавливается замкнутый процесс, который работает в таком порядке: насос – турбина – насос. Делаем вывод, что основным элементом, которая связывает между собой оба вала – это жидкость.
В процессе действия происходят некоторые потери. Причиной этому является тот факт, что в рабочем состоянии ведущий вал немного опережает ведомый.
История[ | ]
Разобранные гидромуфты вспомогательных приводов тепловоза ЧМЭ3
Создание первых гидродинамических передач связано с развитием в конце XIX века судостроения. В то время в морском флоте стали применять быстроходные паровые турбины, что вызвало необходимость понижения оборотов вала до скорости вращения гребного винта в пределах 200—300 об/мин или ниже — на крупногабаритных судах, т.к. наиболее высокий КПД гребных винтов проявляется именно в этих пределах. Кроме этого, высокие обороты вызывают кавитацию на лопастях и большие нагрузки. Это потребовало применения дополнительных механизмов. Поскольку технологии в то время не позволяли изготавливать высокооборотистые шестерённые передачи, то потребовалось создание принципиально новых передач. Первым таким устройством с относительно высоким КПД явился изобретённый немецким профессором Г. Фётингером гидравлический трансформатор (патент 1902 года)[1], представлявший собой объединённые в одном корпусе насос, турбину и неподвижный реактор. Однако первая применённая на практике конструкция гидродинамической передачи была создана в 1908 году и имела КПД около 83 %. Позднее гидродинамические передачи нашли применение в автомобилях. Они повышали плавность трогания с места. В 1930 году Гарольд Синклер (англ. Harold Sinclair), работая в компании Даймлер, разработал для автобусов трансмиссию, включающую гидромуфту и планетарную передачу[2]. В 1930-х годах производились первые дизельные локомотивы, использовавшие гидромуфты[3].
В СССР первая гидравлическая муфта была создана в 1929 году.
Свойства
Отметим основные свойства, которыми обладают гидромуфты:
- Ведомые и ведущие валы действуют вне зависимости друг от друга. К примеру, когда ведомый вал находится в покое, то в это время ведущий вал может функционировать или соответствовать промежуточному значению угловой скорости. Но отметим, что значение последней не может равняться скорости вращения ведущего вала. Обычно её значения меньше на 2 – 3%.
- Именно гидравлические муфты смогут обеспечить плавное начало движения транспорта и плавный набор разгона.
- Строение организовано таким образом, что в ней отсутствуют детали, которые тесно соприкасаются между собой. Другими словами отсутствует процесс трения деталей, а следовательно, их износ сводится к минимуму.
- Гидромуфта сдерживает крутильные колебания.
- С её помощью обеспечивается бесшумное функционирование передач.
- Обеспечивается высокие показатели коэффициента полезного действия, до 0,96 – 0,98.
- Высокая степень надёжности при эксплуатации.
С их помощью можно организовать управление, как на дистанционном, так и на автоматическом уровне.
Роль в системе охлаждения ДВС
Вентилятор с вискомуфтой устанавливается на автомобили с продольным расположением двигателя (обычно это полноприводные и заднеприводные модели). При такой компоновке шкив вентилятора радиатора целесообразней всего соединить со шкивом водяной помпы. Как известно, вращение водяной помпе передается сервисным ремнем от шкива коленчатого вала.
Недостаток такой конструкции в том, что скорость вращения крыльчатки вентилятора всегда будет пропорциональна оборотам коленчатого вала. Подобное устройство приведет к тому, что на высоких оборотах в условиях холодного воздуха двигатель будет чрезмерно охлаждаться, что снизит его КПД. К тому же постоянное соединение крыльчатки и шкива коленчатого вала увеличит механические потери на трение, что будет отнимать мощность и повышать расход топлива.
Вискомуфта вентилятора позволяет регулировать скорость вращения крыльчатки в зависимости от температуры двигателя.
Устройство
Разница в конструкции вискомуфт вентилятора Toyota, BMW, Mercedes, Audi. минимальна, так как все они устроены и работают по единому принципу.
Вал с соединительным фланцем крепится к приводу помпы охлаждения, поэтому его скорость вращения всегда пропорциональна оборотам коленчатого вала. К валу, в свою очередь, крепится приводной шкив, который вращается в рабочей камере. Рабочая и резервная камеры разделены пластинами. Переход между камерами возможен только через впускные клапаны и возвратные каналы. Изначально резервная камера заполнена специальным силиконовым маслом. Приводной шкив, или диск, как его еще называют, имеет по окружности косые зубья, которые при вращении позволяют выгонять масло обратно в резервную камеру. Поверхность приводных дисков, как и делительных пластин, имеет специальные ребра, которые превращают рабочую камеру в своеобразную сеть лабиринтов, по которым циркулирует силиконовое масло.
Корпус муфты, к которому и крепится крыльчатка вентилятора, соединяется с валом (ротором вискомуфты) посредством обычного шарикового подшипника. Впускные клапаны соединены с биметаллической пластиной, которая располагается в передней части корпуса вискомуфты. При нагреве пластина расширяется, что приводит к увеличению пропускного сечения клапанов.
Свойства силиконового масла
Основная особенность силиконовой жидкости, использующейся в вискомуфтах вентиляторов, – термостойкость и вязкостная стабильность. С изменением температуры масло лишь незначительно изменяет свою вязкость.
В работе вискомуфты силиконовое масло исполняет роль связывающего вещества, позволяющего создать между приводным диском и разделительными пластинами, соединенными с корпусом, трение. Несмотря на то что между корпусом и приводным шкивом всегда будет некоторая степень проскальзывания, созданного коэффициента сцепления достаточно для зацепления корпуса муфты с приводным валом.
В некоторых источниках указывается, что с повышением температуры масло расширяется, что и провоцирует вязкостное зацепление приводного диска с корпусом вискомуфты. Подобное понимание принципа работы вискомуфты вентилятора охлаждения является ложным и возникло, скорее всего, из-за сравнения вискомуфты вентилятора с вязкостными муфтами раздаточных коробок полноприводных автомобилей. В вискомуфтах дифференциалов используется дилатантная жидкость, вязкость которой сильно зависит от скорости деформации сдвига.
Принцип работы
Когда рабочая камера не заполнена маслом, приводной диск свободно вращается в рабочей камере. Небольшое количество масла все же присутствует, но коэффициент сцепления приводного шкива с корпусом вискомуфты минимален, поэтому с повышением оборотов двигателя скорость вращения крыльчатки не увеличивается.
Процесс прогрева двигателя и увеличения температуры тосола в радиаторе сопровождается нагревом биметаллической пластины. Нагреваясь, пластина расширяется, что приводит к открытию впускного клапана и увеличению количества рабочей жидкости, проникающей из резервной в рабочую камеру. Возникающее между приводным диском и разделительными пластинами трение приводит к увеличению скорости вращения корпуса и крыльчатки вентилятора.
Когда двигатель нуждается в максимальном охлаждении, биметаллическая пластина изогнута настолько, чтобы обеспечить максимальное проходное сечение впускных клапанов. В таком случае разница частоты вращения вала и корпуса вискомуфты минимальна, поэтому повышение оборотов коленчатого вала приводит к практически равнозначному увеличению скорости вращения крыльчатки вентилятора.
Снижение температуры набегающего воздуха приводит к постепенному возврату биметаллической пластины в исходное положение. Соответственно, уменьшается проходное сечение впускных клапанов, жидкость перегоняется в резервную полость. Уменьшение коэффициента сцепления приводит к увеличению разницы частоты вращения приводного вала вискомуфты и корпуса – крыльчатка вентилятора замедляется.
Работа вискомуфты Toyota на примере конкретных температурных режимов
Устройство вискомуфт вентиляторов Toyota предполагает наличие двух рабочих камер (в первых вариантах конструкции была только одна камера).
Читать дальше: Большая европейская семерка грузовики
- Биметаллическая пластина в «холодном» состоянии.
- Пластина разогрета теплым воздухом, открыт впускной клапан передней камеры.
- Коэффициент температурного расширения соответствует максимальному режиму охлаждения. Открыт клапан задней камеры.
Почему вискомуфта вращается на холодную
Многие владельцы автомобилей с механическим приводом вентилятора системы охлаждения, скорее всего, замечали, что после запуска холодного двигателя вентилятор крутится с большой скоростью. Спустя некоторое время после прогрева двигателя, количество оборотов крыльчатки уменьшается, поэтому может показаться, что подобное явление идет в разрез с описанным выше принципом работы вискомуфты вентилятора. Такой эффект возникает из-за того, что во время простоя масло самотеком стекает в нижнюю рабочую камеру, поэтому сразу после запуска крыльчатка и корпус вискомуфты будут вращаться до того времени, пока масло перекачается обратно в резервную секцию.
Преимущества
Обороты крыльчатки подстраиваются под фактический температурный режим двигателя, что позволяет:
- уменьшить расход топлива;
- снизить уровень шума;
- уменьшить потери мощности.
Установка вискомуфты в системе охлаждения позволяет уменьшить нагрузку на генератор и снизить себестоимость авто, исключив затраты на электропривод крыльчатки, проводку.
Недостатки
Многие сетуют на ненадежность вискомуфты, забывая, что система с электровентилятором также периодически нуждается в ремонте. Наиболее распространенная поломка – утечка рабочей жидкости. Несмотря на то что большинство муфт вязкостного типа неразборные, существуют проверенные технологии восстановления работоспособности системы. В случае износа поддается восстановлению и подшипник. Именно поэтому важно знать способы проверки и ремонта вискумуфты вентилятора радиатора.
Система охлаждения автомобилей КамАЗ устроена по классическому принципу. Но имеются и особенности. Одна из них – наличие гидромуфты вентилятора. Благодаря исправной работе этого узла система охлаждения грузового автомобиля под нагрузкой работает максимально эффективно.
Нюансы работы
Благодаря всем выше перечисленным свойствам, обеспечивается взаимодействие гидравлической муфты и двигателя. Перечислим все основные функции, которые выполняет устройство:
- Способность регулировать количество выполняемых вращений ведомым валом при постоянном числе вращений двигателя;
- Обеспечение разгона больших масс.
Обеспечение суммирования мощностей и реверса. Особенно это актуально при использовании детали на судах.
Обратим внимание, все функции, которые приведены выше, позволяют использовать гидравлической муфты не только в автомобильной отрасли.
Установлено, что она зарекомендовала себя довольно долгими сроками службы. В ходе эксплуатации требуются лишь периодическая регулировка температуры срабатывания выключателя. Но всё-таки, если произошла поломка, то замена производится в комплекте с передней крышкой двигателя.
Читайте также: