Дад дэу матиз где находится
Победа над рывками, или датчик абсолютного давления
Прошло два месяца с покупки матиза. Машина дергается, едет рывками, глохнет на холостых. Устранил кучу неисправностей, которые могли бы в теории вызвать такие симптомы. Два раза посещал диагностику (там ребята опытные и многие годы занимаются автомобильной электроникой и прошивкой, клиенты у них на месяц вперёд записаны в очередь с разных окрестных городов). Но вот проблема моего матиза не поддалась лечению.
Кому интересна предыстория, читайте предыдущие записи.
В общем у нас город южный. Зима, холод и снежная погода резко сменилась на теплую солнечную. И тут я заметил, что днём машина перестает дергаться, а к вечеру, ночью и утром, дерганья стали гораздо хуже чем были в морозную погоду. На то, чтобы понять, что это закономерность у меня ушла неделя.
Так как нестабильная работа матиза уже давно, я таки интересовался где у матиза ДМРВ (датчик массового расхода воздуха). Его нет. Точнее вместо ДМРВ в matiz другой датчик ДАД (датчик абсолютного давления).
Этот датчик замеряет атмосферное давление при выключенном моторе, но включенном зажигании, а так же датчик определяет разряжение во впускном коллекторе. На основе этих данных ЭБУ вычисляет количество воздуха попавшего во впускной коллектор для правильного приготовления смеси.
ДАД расположен под жабо (где механизм дворников) и соединён со впускным коллектором тонкой резиновой шлангочкой.
Я долго выявлял закономерность дерганий, то мне казалось, что в мокрую погоду и дождь усиливается неисправность (думал генератор, или мокнет повреждённая проводка), то при переходе с отрицательной температуры воздуха на положительную (опять я ложно думал, что тает лёд и влага попадает в поврежденное место или генератор). И только неделя ясной солнечной погоды, помогла разгадать зависимость от времени суток.
Повторюсь: ЭБУ никаких ошибок не показывал.
Ну я подумал: какие параметры связаны с временем суток? Температура и атмосферное давление.
Датчик температуры на впуске я отключал, ни каких изменений (некоторые на форумах его вообще отключали, не помню зачем). Сопротивление на нем замерял, при изменении температуры оно меняется.
Давление. И тут я вспоминаю что есть датчик абсолютного давления. Через блютуз адаптер OBD2 понаблюдал за показателями давления во впускном коллекторе. Атмосферное 100кПа вроде около того, что в прогнозе погоды, а при заведенном моторе показывал 42 килопаскаля на холостых.
Ну так как я не знаю сколько должно быть, стал шерстить интернет. Толком ничего не нашёл, кроме примерных показаний, что соответствовало моим.
Если отключить шланг от датчика, на заведенном моторе, то мотор тут же глохнет.
Если шланг не отключать, а отключить провод от датчика, то чувствуется не стабильные холостые обороты и загорается chek на приборной панели.
При отключенном проводе на датчик ДАД на ходу матиз почти не дергался, только когда чуть еле жмешь на газ, но характер вывков другой. Автомобиль стал хуже отзываться на педаль газа, точнее через раз. То нажмёшь она прям хорошо едет, другой раз жмешь в пол, секуды три- пять ноль реакции как и не жмешь, а потом резко набирает обороты.
Короче с отключем ДАД лучше. ЭБУ не видит датчик и работает по аварийному алгоритму, считает количество воздуха по датчику положения дроссельной заслонки.
Датчики Матиз
Автомобиль ДЭУ Матиз является довольно популярным автомобилем в странах СНГ. Его двигатель объемом в 0,8 литра обладает минимальным расходом топлива, который положительно сказывается на затратах необходимых на бензин. Инжекторная система впрыска топлива позволила уменьшить расход топлива до минимальных значений. Для правильной работы инжектора в Матизе используется большое количество датчиков, которые участвуют в процессе работы двигателя. Так же датчики служат для контроля выбросов вредных веществ из автомобиля, тем самым заботясь об окружающей среде. Дэу Матиз соответствует всем нормам ЕВРО-стандартов. Зачастую случается, что какой-либо из датчиков выходит из строя, тем самым переводя двигатель в аварийный режим, в котором повышается расход топлива и теряется мощность.
В данной статье речь пойдет о проблемах связанных с датчиками на автомобиле Daewoo Matiz, подробно описывается их расположение, назначение и признаки неисправности.
Блок Управления двигателем
Данная деталь является одной из основных, отвечая за работу всего автомобиля. ЭБУ своего рода компьютер, в котором происходят процессы обработки данных с датчиков, необходимых для работы двигателя. Поломка ЭБУ случается довольно редко. Блок не только считывает показания с датчиков, но так же и диагностирует их, при поломке одного из датчиков или при его неправильной работе на панели автомобиля загорается контрольная лампа «CHECK ENGINE».
Расположен ЭБУ в салоне автомобиля и спрятан под обшивкой с правой стороны.
Признаки неисправности:
- Автомобиль не запускается;
- Не работают приборы и вся электроника в авто;
Датчик скорости
Датчик скорости служит для считывания показаний о скорости движения автомобиля. Раньше в старых автомобилях таких датчиков не было, а скорость автомобиля измерялась с помощью троса, который часто перетирался и выходил из строя. В современных же автомобилях используется датчик скорости, который устанавливается в корпусе КПП и считывает показания с вращения шестерней валов коробки передач и передавая их на спидометр и одометр.
Признаки неисправности:
- Не работает спидометр;
- Спидометр показывает неправильные показания;
Датчик температуры
Датчик температуры охлаждающей жидкости в Дэу Матиз служит для измерения температуры жидкости и корректировки топливной смеси. При изменении температуры сопротивление датчика меняется, ДТОЖ подключен к ЭБУ, который считывает эти показания сопротивления, тем самым обедняя или обогащая топливную смесь в зависимости от температуры жидкости. При низкой температуре жидкости чтобы двигателю не заглохнуть необходимо больше топлива поэтому ЭБУ основываясь на показаниях с ДТОЖ обогащает смесь на период прогрева двигателя до рабочей температуры. ДТОЖ расположен вблизи корпуса термостата и имеет прямой контакт с ОЖ.
Признаки неисправности:
- Нет повышенных оборотов при прогреве;
- Неправильные показания о температуре ОЖ;
Датчик положения коленчатого вала
ДПКВ он же датчик коленвала считывает показания о нахождении коленчатого вала, а именно определяет ВМТ двигателя. Это необходимо для правильной подачи топливной смеси в нужный цилиндр. Данный датчик устанавливается вблизи шкива коленчатого вала и считывает показания с него. Единственный датчик, без которого двигатель не запустится.
Признаки неисправности:
- Не работает один из цилиндров;
- Двигатель не запускается;
Датчик распределительного вала
Датчик фаз служит для определения фазы работы двигателя и непосредственного фазированного впрыска топлива. Устанавливается вблизи распредвала и имеет сходство с работой ДПКВ. При поломке датчика обязательно зажигается сигнальная лампа «Проверьте двигатель».
Признаки неисправности:
- Повышенный расход топлива;
- Нестабильная работа двигателя;
Датчик детонации
Детонации в двигателе неблагоприятно сказываются на его работе, чтобы снизить детонацию, применятся датчик, который улавливает малейшие шумы в двигателе и передает показания на ЭБУ. Детонация может возникнуть из-за неправильной топливной смеси поэтому первую очередь после обнаружения детонации ЭБУ корректирует топливную смесь. Принцип работы датчика схож с пьеза элементом при обнаружении детонации он вырабатывает напряжение и передает его на ЭБУ. Расположен датчик на блоке цилиндров.
Признаки неисправности:
- Не стабильная работа двигателя;
- Повышенный расход топлива;
Датчик положения дроссельной заслонки
Датчик служит для определения угла положения заслонки. Это необходимо чтобы ЭБУ понимал, на какой угол открылась ДЗ и сколько воздуха поступило во впускной ресивер. Датчик устанавливается на корпусе дросселя и имеет механическую связь с заслонкой. Надежность его оставляет желать лучшего из-за его конструкции.
Признаки неисправности:
- Повышенные обороты ХХ до 2500 об/мин;
- Не стабильный холостой ход;
Датчик кислорода
ДК в первую очередь заботится об окружающей среде, не позволяя двигателю выбрасывать в атмосферу большое количество вредных веществ. Установлен датчик в выпускном коллекторе, расположен ДК там не просто так, а именно для улавливания выхлопных газов, которые не должны превышать норму, если газы превышают норму ДК сигнализирует об этом ЭБУ, а тот изменяет топливную смесь для снижения показаний вредных выбросов.
Признаки неисправности:
- Большой расход топлива;
- Потеря динамики;
Датчик абсолютного давления
ДАД устанавливается во впускном ресивере и регистрирует давление в нем в зависимости от оборотов двигателя. Так же датчик участвует в формировании угла опережения зажигания.
Признаки неисправности:
- Большой расход топлива;
- Не стабильные обороты ХХ;
Датчик давления масла
Давление масла очень важный параметр в работе двигателя. При его отсутствии смазка трущихся деталей будет невозможна, что приведет к неизбежной поломке всего ДВС, если его вовремя не остановить. Для сигнализации о потере давления масла в двигателе применяется специальный датчик, который установлен на корпусе ГБЦ. При потере давления его клапан замкнется и подаст сигнал на приборную панель.
Датчик абсолютного давления (ДАД): как работает, неисправности, симптомы, как проверить
Датчик абсолютного давления (ДАД или manifold absolute pressure — MAP) используется блоком управления двигателем (ЭБУ) для расчёта нагрузки двигателя. Датчик генерирует сигнал, который пропорционален вакууму во впускном коллекторе. ЭБУ использует этот входной сигнал, вместе с несколькими другими, для расчета правильного количества топлива для впрыска в цилиндры.
Общая информация
Когда двигатель работает под нагрузкой, вакуум на впуске падает, т. к. дроссель открывается широко. Двигатель всасывает больше воздуха, что требует бОльшего количества топлива для поддержания соотношения топливо-воздушной смеси.
Фактически, когда ЭБУ считывает сигнал большой нагрузки от ДАД, это обычно приводит к тому, что топливная смесь становится немного богаче, чем обычно, поэтому двигатель может производить больше энергии. В то же время блок управления слегка изменяет угол опережения зажигания (УОЗ), чтобы предотвратить детонацию, которая может повредить двигатель и снизить производительность.
Когда условия меняются и автомобиль движется под небольшой нагрузкой, накатом или замедляясь, от двигателя требуется меньше мощности. Дроссельная заслонка открыта немного или может быть закрыта, что приводит к увеличению вакуума на впуске.
Датчик MAP обнаруживает это. ЭБУ обедняет топливную смесь и изменяет момент зажигания, чтобы уменьшить расход топлива.
Где находится датчик абсолютного давления
ДАД может располагаться в нескольких местах в зависимости от марки и модели автомобиля. MAP сенсор может быть установлен на моторном щите, внутреннем крыле или впускном коллекторе.
Соединение датчика производится непосредственно через отверстие в коллекторе или с помощью штуцера и шланга.
На двигателях с турбонаддувом датчик абсолютного давления чаще всего устанавливается непосредственно на впускной коллектор.
Как работает ДАД
Датчики MAP называются датчиками абсолютного давления в коллекторе, а не датчиками вакуума на впуске, поскольку они измеряют давление (или его отсутствие) внутри впускного коллектора. Когда двигатель не работает, давление внутри впускного коллектора такое же, как и внешнее атмосферное давление.
Когда двигатель запускается, внутри коллектора создается вакуум за счет движения поршней и ограничением, создаваемым дроссельной заслонкой. При полностью открытом дросселе при работающем двигателе вакуум на впуске падает почти до нуля, а давление внутри впускного коллектора снова почти равно внешнему атмосферному давлению.
Атмосферное давление обычно варьируется от 700 до 800 мм ртутного столба (93 – 105 кПа) в зависимости от вашего местоположения и климатических условий. Переводя в фунты на квадратный дюйм значение атмосферного давления будет равно 14,7 psi (pound-force per square inch).
Атмосферное давление, скриншот с яндекса
Вакуум внутри впускного коллектора двигателя, для сравнения, может варьироваться от нуля до 70 кПа или более в зависимости от условий эксплуатации.
Вакуум на холостом ходу всегда высокий и обычно составляет 50 – 65 кПа (от 400 до 500 мм рт. ст.) в большинстве транспортных средств. Самый высокий уровень вакуума возникает при торможении с закрытым дросселем. Поршни пытаются всасывать воздух, но закрытый дроссель перекрывает подачу воздуха, создавая высокий вакуум во впускном коллекторе (обычно на 13-17 кПа выше, чем на холостом ходу).
Когда дроссель внезапно открывается, как при ускорении, двигатель всасывает большое количество воздуха, и вакуум падает до нуля. Затем вакуум медленно поднимается, когда дроссель закрывается.
Когда ключ зажигания включается первый раз, прежде чем запустить двигатель, блок управления проверяет показания ДАД, чтобы определить атмосферное (барометрическое) давление.
Таким образом, датчик MAP может выполнять функцию датчика атмосферного давления (BARO). Затем ЭБУ использует эту информацию для регулировки воздушно-топливной смеси, чтобы компенсировать изменения давления воздуха из-за высоты и / или погоды.
Некоторые автомобили используют отдельный барометрический датчик для этой цели, а другие используют комбинированный, который измеряет оба давления и называется BMAP.
На двигателях с турбонаддувом ситуация немного сложнее, потому что при наддуве на самом деле может быть положительное давление во впускном коллекторе. Но датчику MAP это неважно, потому что он просто контролирует абсолютное давление внутри впускного коллектора.
На двигателях с электронной системой впрыска «скорость-плотность» воздушного потока оценивается, а не измеряется непосредственно датчиком воздушного потока. Контроллер анализирует сигнал ДАД, а также обороты двигателя, положение дроссельной заслонки, температуру охлаждающей жидкости и температуру окружающего воздуха, чтобы оценить, сколько воздуха поступает в двигатель.
Блок управления также может принимать во внимание сигнал обогащения / обеднения от датчика кислорода и положение клапана EGR, прежде чем вносить необходимые поправки в воздушно-топливную смесь. Этот подход к управлению топливом не так точен, как в системах, использующих датчик массового расхода воздуха (ДМРВ), но в тоже время он не так сложен и не слишком дорог.
Смотрите видео о том, как работает датчик абсолютного давления в коллекторе:
Другое преимущество систем с ДАД состоит в том, что они менее чувствительны к утечкам вакуума. Любой воздух, который попадает в двигатель после ДМРВ, является «неизмеренным» и нарушает баланс, необходимый для поддержания соотношения воздушно-топливной смеси.
В системе с MAP датчиком, он обнаружит небольшое падение вакуума, вызванное утечкой воздуха, и контроллер компенсирует это, добавляя больше топлива.
На многих двигателях GM, которые имеют датчик массового расхода воздуха (MAF), датчик MAP также используется в качестве резервного в случае потери сигнала воздушного потока и для контроля работы клапана EGR. Отсутствие изменений в сигнале датчика MAP, когда включен клапан рециркуляции EGR, указывает на неисправность системы.
Как устроен ДАД
По выходному сигналу датчики абсолютного давления бывают:
- С аналоговым выходом — широко используются. Их напряжение пропорционально нагрузке двигателя.
- С цифровым выходом — используются в таких системах, как Ford EEC IV. Цифровой MAP сенсор посылает сигналы прямоугольной формы с определенной частотой. Когда нагрузка увеличивается, частота также увеличивается, и время между импульсами (миллисекунды) уменьшается. Блок управления очень быстро реагирует на цифровой сигнал, потому что нет необходимости преобразовывать его из аналогового.
Датчик MAP состоит из двух камер, разделенных гибкой диафрагмой. Одна камера является «эталонным воздухом» (она может быть герметична или соединена с атмосферой), а другая — соединена с впускным коллектором прямым соединением или с помощью резинового шланга.
Чувствительная к давлению электронная схема внутри датчика MAP контролирует движение диафрагмы и генерирует сигнал напряжения, который изменяется пропорционально давлению. Это производит аналоговый сигнал напряжения, который обычно колеблется от 1 до 5 вольт.
Аналоговые датчики MAP имеют трехпроводной разъём: заземление, опорное напряжение 5 В от ЭБУ и сигнальное напряжение. Выходное напряжение обычно увеличивается, когда дроссель открывается и вакуум падает.
ДАД, который выдаёт 1 или 2 вольта на холостом ходу, может показывать от 4,5 вольт до 5 вольт при полностью открытой дроссельной заслонке. Выход обычно изменяется от 0,7 до 1,0 вольт на каждые 15 кПа изменения вакуума.
Признаки неисправности ДАД
Неисправный датчик MAP имеет серьезные последствия для контроля топлива, выбросов выхлопных газов автомобиля и экономии топлива. Симптомы плохого или неисправного ДАД включают в себя:
Увеличение расхода топлива
Датчик MAP, который измеряет высокое давление во впускном коллекторе, указывает ЭБУ на высокую нагрузку двигателя. Это приводит к увеличению впрыска топлива в двигатель.
Это, в свою очередь, увеличивает расход топлива. Это также увеличивает количество выбросов углеводородов и окиси углерода из автомобиля в окружающую атмосферу. Углеводороды и окись углерода являются одними из химических компонентов смога.
Недостаток мощности
Датчик MAP, который измеряет низкое давление во впускном коллекторе, указывает ЭБУ на низкую нагрузку двигателя. Блок управления реагирует уменьшением количества топлива, впрыскиваемого в двигатель.
Хотя вы можете заметить увеличение расхода топлива, вы также заметите, что ваш двигатель не такой мощный, как прежде. При уменьшении подачи топлива в двигатель температура в камере сгорания увеличивается. Это увеличивает количество NOx (оксидов азота) в двигателе. NOx также является химическим компонентом смога.
Увеличение токсичности выхлопных газов
Неисправный датчик MAP приведет к тому, что ваш автомобиль не пройдет проверку выхлопных газов на техосмотре. Выбросы из выхлопной трубы могут показывать высокий уровень углеводородов, высокий уровень NOx, низкий уровень CO2 или высокий уровень окиси углерода.
Проверка датчика абсолютного давления
Во-первых, убедитесь, что разрежение в коллекторе двигателя на холостом ходу соответствует техническим характеристикам. Вакуум может быть необычно низким из-за подсоса воздуха, задержки зажигания, ограничения выхлопа (засоренный катализатор) или утечки EGR (клапан EGR не закрывается на холостом ходу).
Слабое разрежение на впуске или избыточное противодавление в выхлопной системе могут обмануть датчик MAP, указывая на наличие нагрузки на двигатель. Это может привести к обогащению топливной смеси.
С другой стороны, ограничение на впуске воздуха (например, загрязнённый воздушный фильтр) может привести к превышению нормальных показаний вакуума. Это приведет к тому, что MAP сенсор будет передавать сигнал о низком уровне нагрузки и, возможно, к состоянию обедненной смеси.
Исправный ДАД должен показывать атмосферное давление при повороте ключа зажигания до запуска двигателя. Это значение можно посмотреть с помощью диагностического сканера или адаптера ELM327 с программой Torque и сравнить с фактическим показанием атмосферного давления, чтобы увидеть, совпадают ли они. Текущее атмосферное давление можно посмотреть на сервисе Яндекса.
Проверьте вакуумный шланг датчика на наличие изломов или утечек. Затем используйте ручной вакуумный насос, чтобы проверить сам ДАД на герметичность. Датчик должен держать вакуум. Любая утечка говорит о необходимости замены MAP сенсора.
Неполадка датчика давления, потеря сигнала из-за проблем с проводкой или сигнал датчика, выходящий за пределы нормального напряжения или диапазона частот, обычно устанавливают диагностический код неисправности (DTC) и включают индикатор Check Engine.
Проверка сканером OBD2
На автомобилях после 1996 года могут диагностироваться коды ошибок OBD II с P0105 по P0109. Это будет указывать на неисправность в цепи датчика MAP.
- P0105 — Неисправность цепи датчика абсолютного давления. .
- P0107 — Низкое давление в коллекторе. .
- P0109 — Прерывистый сигнал цепи датчика абсолютного давления.
Выходное напряжение MAP датчика можно считывать в реальном времени и сравнивать со спецификациями. По сути, вы должны увидеть быстрое и резкое изменение сигнала датчика давления, когда дроссель на холостом ходу открывается и закрывается. Отсутствие изменений будет указывать на неисправность датчика или проводки.
Если показания датчика низкие или отсутствуют совсем, нужно проверить опорное напряжение, приходящее на датчик. Оно должно быть очень близко к 5 вольтам. Также проверьте заземление. Если опорное напряжение низкое — проверьте жгут проводов и разъём, возможен плохой контакт, повреждение или коррозия.
Диагностические сканеры также отображают «рассчитанное значение нагрузки», которое можно использовать для определения, работает ли датчик MAP или нет.
Значение нагрузки рассчитывается с использованием входных данных от ДАД, датчика положения дроссельной заслонки (ДПДЗ / TPS), ДМРВ и частоты вращения двигателя. Значение должно быть низким на холостом ходу и высоким — когда двигатель находится под нагрузкой. Отсутствие изменения значения или превышение нормальных показаний на холостом ходу может указывать на проблему с датчиком абсолютного давления, ДПДЗ или ДМРВ.
Проверка мультиметром
Датчик давления также может быть испытан на стенде путем подачи вакуума с помощью ручного вакуумного насоса. Выходной сигнал должен падать, начиная с 5 вольт опорного напряжения. Вместо насоса можно использовать пустой медицинский шприц через шланг.
Таблица для проверки датчика давления аналогового типа:
Приложенный вакуум, мБар | Напряжение, вольт | Показания ДАД, Бар |
---|---|---|
0 | 4.3 – 4.9 | 1.0 ± 0.1 |
200 | 3.2 | 0.8 |
400 | 3.2 | 0.6 |
500 | 1.2 – 2.0 | 0.5 |
600 | 1.0 | 0.4 |
Таблица показаний ДАД атмосферного двигателя:
Состояние | Напряжение, вольт | Показания ДАД, Бар | Вакуум, Бар |
---|---|---|---|
Полностью открытый дроссель | 4.35 | 1.0 ± 0.1 | 0 |
Зажигание включено | 4.35 | 1.0 ± 0.1 | 0 |
Холостой ход | 1.5 | 0.28 – 0.55 | 0.72 – 0.45 |
Двигатель остановлен | 1.0 | 0.20 – 0.25 | 0.80 – 0.75 |
Таблица показаний ДАД турбированного двигателя:
Состояние | Напряжение, вольт | Показания ДАД, Бар | Вакуум, Бар |
---|---|---|---|
Полностью открытый дроссель | 2.2 | 1.0 ± 0.1 | 0 |
Зажигание включено | 2.2 | 1.0 ± 0.1 | 0 |
Холостой ход | 0.2 – 0.6 | 0.28 – 0.55 | 0.72 – 0.45 |
Выходное напряжение аналогового датчика MAP может быть измерено непосредственно с помощью мультиметра или осциллографа. Частотный сигнал цифрового ДАД также может быть считан с помощью цифрового мультиметра, если он имеет функцию измерения частоты, или осциллографа. Измерительные провода приборов должны быть подключены к сигнальному выводу и заземлению.
НЕ ИСПОЛЬЗУЙТЕ обычный вольтметр для проверки цифрового датчика Ford BP / MAP, так как это может повредить электронику внутри датчика. Этот тип ДАД может быть диагностирован только с помощью цифрового мультиметра в режиме измерения частоты, осциллографом или диагностическим прибором.
Школа Алексея Пахомова (Ижевск). Диагностика Daewoo Matiz: включаем логику
Школа автодиагностики Алексея Пахомова начала работу в 2011 году. Основным направлением деятельности было выбрано производство обучающих видеокурсов. Самый первый курс «Диагностика бензиновых двигателей» имел такой значительный успех, что было решено продолжить работу в этом направлении. В результате был разработан широкий портфель видеокурсов, посвященных автодиагностике.
Сегодня школа вышла на качественно новый уровень. На платформе дистанционного обучения «Прометей» создана целая система по подготовке специалистов автосервиса в области диагностики двигателей и электронных систем автомобиля. Выпускниками, не теряющими связь со школой, стали более 2300 специалистов из разных городов России, ближнего и дальнего зарубежья. Статьи, которые будут размещаться в журнале «АБС-авто», по существу, являются переформатированными для печати видеоматериалами, подготовленными специалистами школы для известного профессионального российского журнала.
За что я люблю профессию автодиагноста? А за то, что она заставляет думать. Не размахивать кувалдой, выбивая закисшие шкворни на «Газели» или чисто механически по много раз пройденному алгоритму менять тормозные колодки, а именно думать и анализировать. Бывает, что после трудового дня возвращаешься домой усталый, но в приподнятом настроении, если на работе попался интересный случай диагностики и была решена сложная и зачастую нетривиальная задача. А на следующее утро на работу опять не идешь, а как будто летишь на крыльях в предвкушении новых интересных загадок, которые частенько подкидывают диагностам наши автомобили.
Самое интересное заключается в том, что головоломки случаются не только на современных дорогих и «навороченных» автомобилях, но и на самых простых и давно изученных. И высший пилотаж диагностики в этом случае – работа мотортестером: глядя на осциллограмму напряжения того или иного сигнала, диагност должен увидеть происходящие в двигателе процессы, оценить качество их протекания, обнаружить отклонения (зачастую чуть заметные!) и сделать правильные выводы.
Очень интересный случай, о котором я хочу рассказать, произошел, как ни странно, на автомобиле Daewoo Matiz. Казалось бы, куда проще? Маленькая дешевая машинка, ремонт и обслуживание давно освоены всеми автосервисами, что там может еще быть непонятно? Двигатель уже без «трамблера», с тремя катушками зажигания, по одной на каждый цилиндр. Однако появившаяся однажды проблема заставила владельца безуспешно объехать несколько сервисов, на которых диагносты лишь развели руками. Ну что ж, тем интереснее!
Ладно, хоть что-то. Попробуем сами осмотреть и послушать двигатель. В первую очередь пытаемся запустить. Двигатель завелся быстро и на первый взгляд без каких-либо проблем. Работает на холостом ходу ровно, если это слово вообще применимо к плохо уравновешенному трехцилиндровому мотору. Ну скажем так: работает, как все подобные двигатели.
Пробуем дать «газу», благо, что дроссель здесь классической конструкции, с тросовым приводом от педали акселератора. Частота вращения растет, и вдруг в какой-то момент мотор «затыкается», словно вдруг прекратилась подача топлива. Через две-три секунды вновь оживает, опять раскручивается и опять останавливается. Вот оно!
Ну что, проблема, как говорится, имеет место быть. Причем проблема настолько явная, что не найти ее причину для профессионала непростительно! Нет, ну правда: когда клиент говорит, что его автомобиль «иногда чуть-чуть делает как-то вот так» или «жрет бензин» – это одно. А когда мы явно видим раскачку частоты вращения и остановку двигателя, то это, согласитесь, совсем другое! И это другое найти значительно проще. Почему же тогда владельцу автомобиля ничем не помогли на тех сервисах, где он уже успел побывать? Возможно, потому, что в памяти блока управления двигателем не зафиксировано никаких кодов неисправностей.
Однако пора приступать к делу. Не будем мудрить, а попробуем для начала просто подключить сканер и посмотреть основные параметры двигателя при работе на холостом ходу (илл. 1).
Илл. 1
Что можно сказать, глядя на эти параметры? Во-первых, двигатель прогрет, а дроссель закрыт полностью. Во-вторых, давление во впускном коллекторе очень хорошее, всего 37 кПа. Значит, с высокой долей вероятности нет никаких проблем с фазами газораспределения и углом опережения зажигания.
Хочу отметить, что давление во впускном коллекторе иногда называют вакуумом. Я не люблю термин «вакуум». На мой взгляд, он здесь неуместен и создает путаницу. Во впускном коллекторе, конечно же, давление. Да, оно ниже атмосферного, а в быту такое давление принято называть вакуумом. Но это в быту, а диагност должен мыслить так: во впускном коллекторе присутствует давление. Такое понимание представляется правильным хотя бы потому, что датчики давления во впускном коллекторе показывают именно давление, причем отсчет ведется от абсолютного нуля, а отнюдь не вакуум. И это давление мы и видим на экране сканера.
И еще диагност должен понимать важную вещь: давление во впускном коллекторе – параметр интегральный, зависящий от целого ряда факторов. Поэтому логика здесь работает, образно говоря, только в одну сторону. Если давление достаточно низкое, на уровне 35–40 кПа, то с двигателем все хорошо. А если давление повышено, например, до 60 кПа, то где-то есть проблема, но где именно – сказать сложно, здесь нужны дополнительные проверки. Это может быть и подсос воздуха в задроссельное пространство, и неверные фазы газораспределения, и забитый выпускной тракт. Все, что угодно! Любое отклонение работы двигателя от оптимального режима приводит к росту давления во впускном тракте.
Но в нашем случае значение давления такое, что мы можем уверенно сказать: никаких серьезных проблем нет, двигатель вполне себе прилично работает. Осталось лишь найти причину его остановки.
Продолжим рассуждения, глядя на экран сканера. Значение напряжения бортовой сети очень хорошее, оно составляет 14,3 В, а это значит, что с генератором явно проблем нет. Хорошо, учтем. Коэффициент коррекции подачи топлива вроде как немного ушел в отрицательную область и равен –7%, но это далеко не катастрофическое значение, да и после окончательного прогрева двигателя оно может измениться.
Значение расхода воздуха в 76 мг/такт и положение регулятора холостого хода 38 шагов являются типичными для этого двигателя. Здесь для диагноста также нет никакой подсказки.
Что ж, малой кровью обойтись не удалось, придется копать глубже. И прежде всего открыть базу данных Chevrolet TIS и изучить документацию на этот двигатель. Замечу, что работа с базами данных – один из обязательных навыков автодиагноста.
В базе нас в первую очередь интересует электрическая схема системы управления двигателем. Для удобства она разбита на несколько частей. Бегло просмотрев все, выясняем, что данный двигатель оборудован датчиками положения коленчатого вала и распределительного вала. В документации они обозначены как CranK shaft Position (CKP) Sensor – датчик положения коленчатого вала (илл. 2) и CaM shaft Position (CMP) Sensor – датчик положения распределительного вала (илл. 3).
Илл. 2
Илл. 3
Как известно, электронному блоку управления для подачи топлива и искры в точно заданный момент нужна привязка к вращению коленчатого вала, иначе говоря, синхронизация. Чаще всего она осуществляется по сигналам датчиков положения коленчатого и распределительного валов. Исходя из опыта, звук работы двигателя и его поведение в момент проявления дефекта явно напоминают срыв синхронизации. Поэтому первым делом попробуем подключиться к выходам обоих датчиков мотортестером и оценить их сигнал (илл. 4).
Илл. 4
• осциллограмма желтого цвета – это импульсы синхронизации, соответствующие моментам искрообразования (по сути, импульсы искры);
• осциллограмма зеленого цвета – напряжение на выходе датчика положения распределительного вала;
• осциллограмма красного цвета – напряжение датчика положения коленчатого вала.
Начинаем рассуждения. Даже на первый взгляд вывод совершенно очевиден: проблема есть, и проблема явная. Теперь попробуем включить логику и дойти до результата.
Моменты искрообразования отмечены на иллюстрации цифрой 1. Несмотря на очень искаженную форму сигнала ДПРВ, искра все-таки есть. Хорошо, примем это к сведению.
Далее. Осциллограмма ДПРВ зеленого цвета отображает прямоугольные импульсы с этого датчика. Но на линии нуля явно видны искажения (цифра 3 на илл. 4), причем очень характерной формы, похожей на горку. Сопоставив их с моментами появления искры, очень легко сделать вывод, что эти искажения совпадают с периодами накопления энергии в катушках зажигания, и такая форма говорит об отсутствии нормального соединения массы. О том, как проверить качество питания и массы, я подробно рассказывал в одной из предыдущих статей, но вкратце напомню: эта горка, или подскок напряжения, возникает на паразитном сопротивлении, попросту говоря, на плохом соединении массы. Ток в катушках нарастает плавно и в соответствии с ним так же плавно нарастает напряжение.
Установив измерительную линейку, убеждаемся, что подскок напряжения составил целых 0,7 В! Это весьма значительная потеря. Ладно, запомним и идем дальше.
Совсем интересен момент, обозначенный цифрой 2. Это очень необычный всплеск напряжения. Откуда он появился? Поясню чуть позже, а пока рассмотрим на осциллограмме фрагмент, соответствующий моменту «затыка» двигателя (илл. 5).
Илл. 5
Этому событию предшествовали очень сильные искажения формы сигнала ДПРВ и линии нуля. Настолько сильные, что в какой-то момент произошло нечто, и искрообразование прекратилось совсем. Все, двигатель начал останавливаться, что и было явно слышно при попытке открыть дроссель. И опять видны всплески на осциллограмме ДПРВ (да и ДПКВ тоже)!
Такие вещи однозначно говорят о проблеме с массой, причем проблеме настолько серьезной, что ЭБУ на короткий промежуток времени попросту теряет питание и перезагружается. Что и проявляется как «затык» двигателя на несколько секунд.
Внимательно рассмотрим еще раз электрические схемы (илл. 2, илл. 3). Как и положено, масса ДПРВ берется непосредственно от блока управления двигателем. А сам блок, если верить схеме, подключен к точке массы на двигателе через контакты разъема 3, 33, 63, 67 и 28. Точка подключения, согласно схеме, G106. Отлично! А где она находится на двигателе?
База данных содержит не только электрические схемы, но и схемы расположения датчиков, жгутов проводов и точек подключения масс. Находим точку G106 на двигателе, она расположена под стартером (илл. 6).
Илл. 6
Поднимаем автомобиль на подъемнике – так и есть! Болт массы едва прикручен, клемма уже давно окислилась. Тщательно очищаем как клемму, так и место ее крепления (илл. 7).
Илл. 7
Масса в этом месте давно уже мешала нормальной работе двигателя, а при повышении частоты вращения и, соответственно, росте тока через катушки зажигания приводила к потере питания ЭБУ. Приведя все в порядок и затянув болт, заводим мотор и с удовлетворением убеждаемся, что проблема решена.
Но кое-что я припас, как говорится, на десерт. Давайте вернемся к осциллограмме ДПРВ и обратим внимание на вот этот выброс напряжения (илл. 8).
Илл. 8
Откуда он? Еще раз внимательно изучаем электрическую схему (илл. 3). Питание датчика положения распределительного вала берется из той же точки, что и питание соленоида системы EVAP, или улавливания паров бензина. А так как соленоид – это все-таки катушка, обладающая заметной индуктивностью, то в момент пропадания массы на нем возникает всплеск напряжения самоиндукции, аналогично тому, как это происходит в катушках зажигания. Именно поэтому мы и видим на осциллограмме ДПРВ всплеск напряжения до 20 В.
Какова мораль истории? Она весьма проста. Первое – нужно обязательно иметь под рукой базы данных и пользоваться ими. Каждый диагност буквально обязан уметь читать электрические схемы и понимать работу их элементов.
И второе – диагностика отнюдь не сводится к считыванию кодов неисправностей. Кодов может и не быть, и описанный случай – полное тому подтверждение. Как поступать в подобной ситуации? Ответ очень прост: применять мотортестер! Всего лишь сняв осциллограмму сигнала двух датчиков и чуть подумав, мы нашли не самый простой в поиске дефект.
замена датчика температуры воздуха и самодиагностика Daewoo Matiz 0.8L
Диагностические коды неисправностей для Матиз 0,8 Евро-0 и Евро-2 (до 2008 г.в.) (ЭБУ Fenix5MR). На Daewoo Matiz Евро-0 и Евро-2 возможна самодиагностика
Ошибка р0110-датчик темп всасываемого воздуха
Ошибка р1500-датчик темп испарителя кондиционера
Ошибка р105-датчик абсолютного давления
Ошибка р115-датчик темп охл жидкости
Ошибка р0120-датчик положения дрос заслонки
Ошибка р130-датчик кислорода
Ошибка р201-топл форсунка1
Ошибка р202-топл форсунка2
Ошибка р203-топл форсунка3
Ошибка р320-оптический датчик трамблера
Ошибка р325-датчик детонации
Ошибка р340-датчик положения коленчатого вала вылазит когда замеряют компрессию и снимали фишку, от того и ошибка
Ошибка р350-Неисправность катушки зажигания
Ошибка р440-Контроль системы испарения
Ошибка р500-датчик скорости автомобиля
Для проверки датчика скорости, надо ключом на 27 отвернуть датчик от корпуса привода и снять его. Подсоединить колодку жгута проводов к датчику скорости. Подкл щупы тестера к проводам колодки, подходящим к выводу массы(вывод со стороны выреза на колодке это масса) и среднему выводу(соединение с ЭБУ). При вкл зажигании медленно вращайте пинцетом вал датчика и следите за тестером. У исправного датчика тестер покажет смену напряжения от 1до12В. Если напряжение отсутствует, то это или обрыв в эл. цепи или неполадки в ЭБУ.
Ошибка р505-регулятор холостого хода
Ошибка р560-напряжение АКБ
Ошибка р601-Ошибка контрольной суммы ПЗУ
Ошибка р1100-регулирование соотношения воздух/топливо
Ошибка р1110-
Ошибка р1510-Неисправность выхода главного реле
Ошибка р1600-иммобилайзер (нет ответа)
Ошибка р1601-иммобилайзер (неверный ответ)
Ошибка р1602-иммобилайзер (ЭБУ заблокировано)
Ошибка р1610-Неисправность электромагнита главного реле
Ошибка р1620-Сбой реле кондиционера
Ошибка р1630-Низкая скорость вент-ра охлаждения
Ошибка р1631-Высокая скорость вент-ра охлаждения
Диагностические коды неисправностей для Матиз/Спарк 1.0, Спарк 0.8, Матиз Евро-3 0.8 и Матиз Евро-4 0.8. Для считывания ошибок двигателя необходим сканер: самодиагностика матиз евро-3 не предусмотрена.
Коды неисправности сохр-ся в памяти блока управления, чтобы стереть коды из памяти блока управления, надо отключить ак батарею не менее чем на 10с(или выбрать соответствующий режим на диагностическом приборе).
Датчик темп воздуха на впуске отличается от датчика темп воздуха во впускном трубопроводе системы управления двигателем 1,0 л только внешним видом. Датчик установлен в крышке корпуса возд фильтра
Датчик представляет собой терморезистор, который изменяет своё сопротивление в зависимости от темп воздуха. Инфо поступающую от датчика температуры, ЭБУ учитывает при расчёте расхода воздуха двигателем. При выходе из строя датчика темп воздуха или неиспр-ти в его цепях в комбинации приборов загорается контр лампа неиспр-ти системы управления двигателем CHECK
При этом видимых изменений в работе двигателя может не быть, но возможно УВЕЛИЧЕНИЕ расхода топлива и повышение уровня токсичности газов
Ссылка с описанием особенности работы датчика температуры воздуха https://avto.pro/autonews/kak_vibrat_datchik_temperaturi_vsasivaemogo_vozduha-20170402/
Контр лампа неисправности системы управления двигателем CHECK информирует видителя о появлении неполадок, но не запрещает дальнейшее движение автомобиля. Если система управления двигателем исправна, то при включении зажигания лампа загорается и гаснет сразу после пуска двигателя. Если она продолжает гореть или мигает при работающем двигателе, значит, в его системе управления имеются неисправности, условные коды которых блок управления записывает в память (ОЗУ). Если в дальнейшем неисправность исчезла (напр, восстановился пропавший контакт в цепи какого-либо из датчиков), лампа может погаснуть; при этом код неисправности не стирается, а сохр-ся в памяти блока управления и может быть считан с помощью диагностики.
Отказ некоторых компонентов системы управления (топливного насоса и его цепи, блока катушек зажигания, свечей и высоковольтных проводов) не определяется ЭБУ, и след-но, лампа неисправности системы управления двигателем CHECK при этом не загорается.
При выходе из строя отдельных датчиков или их цепей ЭБУ переходит на обходные алгоритмы работы: при этом могут ухудшаться некоторые параметры двигателя (мощность, приемистость, экономичность), но движение автомобиля с такими неисправностями возможно. Датчики неремонтопригодные - при выходе из строя их заменяют
Видео замена датчика температуры воздуха и самодиагностика Daewoo Matiz 0.8L канала Dmitrij Bortnik
Описание элементов системы и их работы
Описание элементов системы и их работы Daewoo Matiz
Электронный блок управления
Электронный блок управления (ЭБУ) расположен под панелью приборов и является центром управления системой впрыска топлива. ЭБУ постоянно обрабатывает информацию из различных датчиков и управляет системами, влияющими на различные функции автомобиля. ЭБУ выполняет диагностику функций систем. Он может распознавать неисправности в работе систем, предупреждать водителя через сигнализатор неисправности систем двигателя и хранить диагностические коды неисправности, распознающие местонахождение неисправностей для помощи механикам в проведении ремонта. ЭБУ не ремонтируемая деталь.
Классифицирование хранится в программируемом запоминающем устройстве (ПЗУ) ЭБУ. ЭБУ поставляет напряжение для питания датчиков или включателей. Это осуществляется через сопротивления в ЭБУ, значение которого настолько велико, что при подсоединении к цепи контрольная лампочка не загорается. В некоторых случаях даже обычные вольтметры не могут дать точное показание, потому что его сопротивление очень маленькое. Надо применять цифровой вольтметр с входным сопротивлением 10 мОм для получения точных показаний напряжения.
Рис. 3.156. Электронный блок управления (ЭБУ) и расположение контактов электрического разъема
Внешний вид ЭБУ показан на
Рис. 3.157. Датчики и источники сигнала от которых ЭБУ получает информацию и исполнительные устройства, на которые подается выходной сигнал
ЭБУ получает информацию от следующих датчиков и источников (
Рис. 3.158. Расположение датчика кислорода (а) в системе выпуска отработавших газов
Датчик кислорода установлен в системе выпуска отработавших газов, где он определяет содержание кислорода в потоке отработавших газов (
Рис. 3.159. Расположение датчика температуры охлаждающей жидкости (а)
Датчик температуры охлаждающей жидкости двигателя является терморезистором (резистор изменяет величину сопротивления в зависимости от температуры); установлен в корпусе термостата/распределителя зажигания (
Рис. 3.160. Расположение датчика положения дроссельной заслонки (а)
Датчик положения дроссельной заслонки - это потенциометр (делитель напряжения), подсоединенный к оси дроссельной заслонки в дроссельном узле (
Рис. 3.161. Расположение датчика абсолютного давления во впускном коллекторе (а)
Датчик абсолютного давления во впускном коллекторе а (
Рис. 3.162. Расположение датчика температуры воздуха во впускном коллекторе (а)
Датчик температуры воздуха во впускном коллекторе а (
Рис. 3.163. Оптический датчик: а - оптический датчик; b - диоды; с - диск с 54-мя отверстиями; d - прорезь; e - отверстия; f - сигнал о положении поршня в ВМТ цилиндра № 1; g - сигнал угла поворота шкива коленчатого вала; h - фотодиоды
В системе зажигания используются оптический датчик а (
Рис. 3.164. Расположение герконового датчика (а) в спидометре
Герконовый датчик а (
Рис. 3.165. Расположение топливного насоса (а) в топливном баке
Топливный насос а (
Рис. 3.166. Расположение регулятора давления топлива (а)
Регулятор давления топлива а (
Рис. 3.167. Расположение форсунки (а) на двигателе
Многоточечная топливная форсунка а (
Рис. 3.168. Расположение клапана контроля холостого хода (а)
Клапан контроля холостого хода а (рис. 3.168) установлен на корпусе дроссельного узла, и управляет частотой вращения холостого хода под воздействием сигналов ЭБУ. ЭБУ посылает импульсы напряжения на обмотку клапана контроля холостого хода, заставляя стержень клапана двигаться внутрь и наружу на фиксированное расстояние (шаг) при каждом сигнале. Движение стержня управляет потоком воздуха вокруг дроссельной заслонки; поворачиваясь, она управляет частотой вращения холостого хода.
Требуемая частота вращения холостого хода запрограммирована внутри ЭБУ для всех режимов работы двигателя. Эта запрограммированная частота вращения двигателя основана на температуре охлаждающей жидкости, скорости автомобиля, напряжения аккумуляторной батареи и давлении в системе кондиционирования воздуха (если автомобиль им оборудован).
ЭБУ "восстанавливает" надлежащее положение контроля холостого хода для достижения равномерной частоты вращения холостого хода, необходимых для различных условий ВКЛ или ВЫКЛ кондиционера воздуха (если автомобиль им оборудован). Эта информация сохраняется в памяти ЭБУ в активном состоянии (информация сохраняется после выключения зажигания). Все остальные положения клапана контроля холостого хода вычислены на основе этих значений памяти. В результате колебания двигателя, обусловленные износом и колебания дроссельной заслонки в минимальном положении (не превышая предела), не влияют на частоту вращения на холостом ходу двигателя. Эта система обеспечивает надлежащий контроль холостого хода на всех условиях. Это также означает, что отключение питания от ЭБУ может стать причиной неправильного контроля частоты вращения холостого хода или потребности частичного отпуска педали акселератора (понижения ускорения) при пуске до тех пор, пока ЭБУ восстановит контроль холостого хода.
Частота вращения холостого хода - это функция поступления потока воздуха внутрь двигателя, основанная на положении стержня клапана контроля холостого хода, угла открытия дроссельной заслонки и потери калиброванного разрежения. Положение минимального открытия дроссельной заслонки устанавливается (регулируется) на заводе с помощью стопорного винта. Эта установка позволяет с помощью дроссельной заслонки расположить стержень клапана контроля холостого хода на калиброванный (определенный) шаг от седла в течение работы "управляемого" холостого хода для прохождения достаточного потока воздуха. Установка минимального положения открытия дроссельной заслонки на двигателе не должна рассматриваться как "минимальная частота вращения холостого хода", как на других двигателях с впрыском топлива. После регулировки стопорный винт дроссельного узла закрывается пробкой.
Клапан рециркуляции отработавших газов
Система рециркуляции отработавших газов используется в двигателе для понижения уровня оксида азота, вызванного высокой температурой сгорания горючей смеси. Система управляется электронным блоком управления через соленоид рециркуляции отработавших газов.
Клапан рециркуляции отработавших газов пропускает небольшое количество выхлопных газов внутрь впускного коллектора для понижения температуры сгорания топливной смеси. Общее количество рециркулируемого отработавшего газа управляется изменением разрежения и обратного давления отработавшего газа. При попадании большого количества отработавшего газа воспламенение топливной смеси не происходит. Для этого через клапан пропускается очень незначительное количество отработавшего газа специально для частоты вращения на холостом ходу. Клапан рециркуляции отработавших газов обычно открыт при:
- работе прогретого двигателя;
- превышении частоты вращения на холостом ходу.
Очень большой поток рециркулируемого отработавшего газа способствует ослаблению возгорания, заставляет работать двигатель неравномерно или остановиться. При очень большом потоке рециркулируемых газов при работе двигателя на частоте вращения холостого хода, при работе двигателя на движущемся автомобиле или при работе холодного двигателя некоторые из следующих условий могут иметь место:
- после пуска холодного двигателя, двигатель останавливается;
- двигатель останавливается после отпускания педали акселератора на частоте вращения холостого хода;
- автомобиль движется рывками;
- на частоте вращения холостого хода двигатель работает неравномерно.
Если клапан рециркуляции отработавших газов все время остается открытым, двигатель не может работать на частоте вращения холостого хода. Очень слабый поток рециркулируемых газов или постоянно закрытый клапан рециркуляции отработавших газов способствуют повышению температуры сгорания топливной смеси при ускорении и при нагрузке. Это может стать причиной следующих нарушений:
- детонационное сгорание топливной смеси;
- увеличение токсичности отработавших газов.
Датчик детонации
Датчик детонации обнаруживает в двигателе ненормальный шум (стук).
Датчик установлен в блоке цилиндров вблизи цилиндров, генерирует выходные сигналы переменного напряжения (AC output voltage), которые увеличиваются с повышением детонации. Этот сигнал посылается в ЭБУ. Затем ЭБУ регулирует момент зажигания для уменьшения детонации.
Разъем переключения октанового числа
Разъем переключения октанового числа - соединительный провод (белый) - сигнализирует ЭБУ об октановом числе топлива.
Разъем расположен рядом с ЭБУ.
Существуют четыре различных используемых установок октанового числа. Автомобиль поставляется с завода с прикрепленным ярлыком к соединительному проводу для указания октанового числа, установленного в электронном блоке управления. ЭБУ изменяет подачу топлива и момент зажигания, основываясь на установке октанового числа.
Таблица 3.9 показывает, какие клеммы необходимо соединить на разъеме переключения октанового числа для достижения правильного октанового числа топлива. Клемма 2 - масса на разъеме переключения октанового числа.
Читайте также: