Что такое s2 на схеме ваз
На шильдиках электродвигателей кроме механической мощности, номинальных напряжений и токов указывается и режим работы. В зависимости от производителя и года производства информация может несколько отличаться, но обычно режим указывается как S1, S2, S3 и так далее. Кроме обозначения режима может быть и дополнительная информация, обозначенная буквами ПВ и числом в процентах. Ниже прилагаю подборку табличек разных двигателей, собранную на просторах интернета.
Давайте разберёмся что такое S1, S2, S3 и ПВ у электродвигателей!
Режимы работы
Электродвигатели нашли широкое применение в быту и на производстве. Они используются для привода в движение всевозможных механизмов, например: конвейеров, метало- и деревообрабатывающих станков, задвижек на трубопроводах, компрессоров, лифтов, грузоподъёмных механизмах и прочих.
Но в каждом применении на двигатель действуют нагрузки разной продолжительности, требуются разные варианты использования, например, длительная работа на протяжении дней, недель и месяцев или, наоборот, кратковременные включения несколько раз в сутки или периодически повторяющиеся включения, остановки и реверс. Сама же нагрузка может быть постоянной, как на конвейере или же изменяться в ходе работы. Особенности работы в каждом конкретном случае описывает режим работы электродвигателя. И каждый двигатель должен быть рассчитан для работы в конкретном режиме.
Режимы работы электродвигателей описаны в ГОСТ IEC 60034-1-2014, определение приведено в п. 3.9, а в разделе 4.2 приведено 10 типовых режимов, каждый из которых обозначается буквой S и цифрой от 1 до 10, например, S1.
Различают 3 основных режима (от S1 до S3), и 7 дополнительных (от S4 до S10), которые более точно описывают особенности работы и изменения нагрузки у двигателя. При рассмотрении режимов будем руководствоваться основной частью информации из ГОСТ IEC 60034-1, некоторые особенности в нём не описаны и за ними обратимся к советскому (ныне не действующему) ГОСТ 183-74 или на справочные данные. В необходимых местах будут приведены ссылки на пункты, из которых взята информация или иллюстрации.
S1 — продолжительный режим
В режиме S1 — электрические машины работают с постоянной нагрузкой, при этом времени работы достаточно для достижения установившегося теплового состояния. То есть за время своей работы машина нагреется до определённой температуры, и при дальнейшей работе температура изменяться не будет. По времени работы ограничений нет.
В таком режиме работают электродвигатели насосов, конвейеров, вентиляторов.
S2 —кратковременный режим
В режиме S2 двигатель работает при постоянной нагрузке в течение определённого времени, за которое не наступает установившееся тепловое состояние. После окончания работы двигатель останавливается на время, достаточное для того, чтобы он остыл до температуры окружающей среды или охлаждающего агента с точностью до 2 К (п. 4.2.2. ГОСТ IEC 60034-1) .
Условное обозначение содержит длительность периода нагрузки, например, S2 60 минут . Согласно п. 1.4. ГОСТ 183-74 , если не оговорено иное, то периоды нагрузки выбираются из стандартного ряда 10, 30, 60 и 90 минут.
В таком режиме работают электродвигатели приводящие в движение заслонки или другие запорные устройства на трубопроводах.
S3 — повторно-кратковременный периодический режим
В режиме S3 двигатель выполняет последовательность повторяющихся одинаковых рабочих циклов. Каждый цикл состоит из периода работы с постоянной нагрузкой и периода покоя (п. 4.2.3. ГОСТ IEC 60034-1) , при этом пусковой ток не оказывает существенного влияния на превышение температуры. Цикл работы двигателя в повторно-кратковременном режиме можно записать в виде формулы:
где T — время цикла, Δtр — период работы, а Δtотк — период покоя.
Двигатель в периодических режимах за время работы не успевает нагреться до установившейся температуры, а за время паузы не успевает охладиться до температуры окружающей среды.
В условном обозначении режима указывается коэффициент циклической продолжительности включения , например, S3 25%.
В этом режиме работают электродвигатели приводящие в движение грузоподъёмные механизмы, лифты и другие механизмы, работающие циклично.
Что такое продолжительность включения
Продолжительность включения или ПВ — это основная характеристика электродвигателя, работающего в повторно-кратковременном режиме (S3—S8). Характеристика отражает в процентном отношении времени, которое работает двигатель к длительности цикла, и вычисляется по формуле:
ПВ% = (Δtр/T)×100%
Согласно п. 5.2.3. ГОСТ IEC 60034-1 продолжительность включения должна быть равна одному из следующих значений —15, 25, 40, 60%, если не оговорено иное, а длительность цикла не должна превышать 10 минут.
Если режим работы предполагает длительный пуск и/или электрическое торможение, то в расчётах продолжительности включения учитывается время пуска и торможения (согласно п.3.1.1. ГОСТ IEC 60034-1).
Режимы S4 и S5 — повторно-кратковременные
Режимы S4 и S5 по определению похожи на S3, но описывают особенности работы машины подробнее, поэтому предлагаю объединить их одним подзаголовком.
Типовой режим S4 — повторно-кратковременный периодический с пусками. Для этого режима характерны относительно длинные пуски, которые влияют на нагрев машины. Обратите внимание в S4 используется другая формула для определения коэффициента циклической продолжительности включения, учитывающая время пуска (п. 4.2.4. ГОСТ IEC 60034-1).
Цикл работы T состоит из 3 периодов: Δtп — время пуска, Δtр — время работы, Δtотк — время покоя (остановки или отключения питания):
T= Δtп + Δtр + Δtотк
В обозначении режима кроме коэффициента циклической продолжительности указывается момент инерции двигателя Jд и момент инерции нагрузки Jнагр. Пример — S4 25%, Jд=0,15 кг·м², Jнагр= 0,7 кг·м².
Типовой режим S5 — повторно-кратковременный периодический с длительными пусками и электрическим торможением. В этом случае учитывается влияние на температуру машины и пусковых токов, и токов, протекающих в обмотках машины при торможении (п. 4.2.5. ГОСТ IEC 60034-1). Таким образом, цикл работы T состоит из: Δtп — времени пуска, Δtр — времени работы, Δtт — времени электрического торможения, Δtотк — времени покоя (остановки или отключения питания):
T= Δtп + Δtр + Δtт + Δtотк
Условное обозначение режима аналогично предыдущему — Пример — S5 25%; Jд=0,15 кг·м²; Jнагр= 0,7 кг·м².
Действующий ГОСТ не определяет количество включений в час для режимов S4 и S5, однако в ГОСТ 183-74 оно нормировалось стандартным рядом: 30, 60, 120 и 240 включений в час.
Режим S6 — непрерывный периодический режим с кратковременной нагрузкой
Этот режим похож на S3, но при работе двигателя чередуется работа под нагрузкой Δtр и работа на холостом ходу Δt0 без остановок, то есть время покоя отсутствует (п. 4.2.6. ГОСТ IEC 60034-1). Условное обозначение — S6 40%
Режим S7 — непрерывный периодический с электрическим торможением
В этом режиме двигатель работает постоянно, но при этом выполняются одинаковые рабочие циклы, каждый из которых состоит из: Δtп — времени пуска, Δt времени работы при постоянной нагрузке и Δtт времени электрического торможения (п. 4.2.7. ГОСТ IEC 60034-1) . В процессе работы двигатель остаётся включённым и время покоя отсутствует.
В условном обозначении указываются моменты инерции двигателя Jд и момент инерции нагрузки Jнагр — S7; 0,4 кг·м²; 7,5 кг·м² .
Режим S8 — непрерывный периодический режим со взаимозависимыми изменениями нагрузки и частоты вращения
В этом режиме двигатель работает с разными нагрузками при разных частотах вращения. Изменение частоты вращения может осуществляться переключением числа полюсов в асинхронных двигателях, использованием частотного привода и другими способами (п. 4.2.8. ГОСТ IEC 60034-1).
В условном обозначении указывают моменты инерции двигателя Jд и момент инерции нагрузки Jнагр для каждой нагрузки и частоте вращения, а также коэффициенты циклической продолжительности включения для каждой нагрузки и частоты. Пример обозначения — S8; 0,5 кг·м²; 6 кг·м²; 16 кВт 740 1/мин - 30%; 40 кВт 1460 1/мин - 30%; 25 кВт 980 1/мин - 40%.
Режим S9 — с непериодическими изменениями нагрузки и частоты вращения
В этом режиме нагрузка и частота вращения изменяются не периодически, а в случаях, когда это необходимо в технологическом процессе. Возможны перегрузки двигателя, значительно превышающие базовую нагрузку (п. 4.2.9. ГОСТ IEC 60034-1).
Режим S10 — с дискретными постоянными нагрузками и частотами вращения
В этом режиме число нагрузок и, по возможности, частот вращения ограничено, а каждая комбинация нагрузки и частоты длится достаточно долго, чтобы машина достигла практически установившегося теплового состояния (п. 4.2.10. ГОСТ IEC 60034-1). При этом возможны периоды работы машины на холостом ходу или отключение двигателя.
Условное обозначение содержит информацию о продолжительности нагрузки в виде P/Δt, где P — соответствующая нагрузка в долях базовой нагрузки и Δt — её продолжительность в долях продолжительности полного цикла нагрузки, а также относительная величина ожидаемого термического срока службы (ТСС) изоляционной системы). Нагрузка для времени холостого хода и обесточенного состояния машины обозначается буквой О.
Пример —S10; P/Δt 1,1/0,4; 1/0,3; 0,9/0,2; O/0,1; ТСС=0,6.
Примечание — нормативной базовой величиной для оценки ожидаемого ТСС изоляции является ожидаемый термический срок службы при номинальной мощности и допускаемом пределе превышения температуры, соответствующих продолжительному типовому режиму S1.
Заключение
Двигатель, предназначенный для работы в длительном режиме S1 (или при ПВ = 100%) может работать в повторно-кратковременном и кратковременном режимах без потери мощности, и возможно использование бри нагрузке больше номинальной.
Однако двигатели, предназначенные для работы в повторно-кратковременных режимах, не могут длительно выдавать номинальную мощность, они перегреются. Длительная работа возможна либо на пониженной мощности, либо при принудительной вентиляции (обдуве).
Хотелось добавить, что в старых двигателях (60-х, 70-х годов) повторно-кратковременный режим мог указываться иначе не в виде S3 40%, а в виде ПВ 40%, в чём вы можете убедиться, пересмотрев подборку фото в начале статьи. Как отмечалось выше, в то время в ГОСТе не было такого обилия режимов, их было всего 3.
Далее представлена электрическая схема включения электродвигателя вентилятора отопителя автомобилей ВАЗ 2104, 2105, 2107
В схеме включения электродвигателя присутствует дополнительный резистор. Он крепится двумя пружинными шайбами в кожухе вентилятора отопителя. При подаче напряжения на электродвигатель через резистор, вал электродвигателя вращается с уменьшенной частотой.
Сам электродвигатель МЭ-255 постоянного тока с возбуждением от постоянных магнитов.
Примечания и дополнения
— На автомобилях ВАЗ 2104, 2105, 2107 с монтажным блоком 40.3722 электрическую цепь электродвигателя отопителя защищает предохранитель F1.
Еще статьи по электрооборудованию автомобилей ВАЗ 2104, 2105, 2107
Везде в интернете рассказывают, как поставить 4-х позиционный регулятор от Калины, принцип действия которого заключается в переключении 4-х силовых резисторов разного номинала. Но мы пойдем другим путем — решим вопрос кардинальным образом, применяя современные технологии. Будем делать плавный регулятор оборотов.
В описании к набору написано:
"Регулятор яркости ламп накаливания 12В/50A
Устройство предназначено для регулировки яркости ламп накаливания, работающих от постоянного тока, мощностью до 600Вт (50А). … Предлагаемое устройство можно использовать в качестве регулятора мощности различных нагревателей, работающих от напряжения постоянного тока, например, подогревателей автомобильных сидений или двигателей. Устройство можно использовать для регулирования оборотов мощных двигателей постоянного тока. Применение современной элементной базы позволило повысить КПД регулятора до 99 % и максимально уменьшить габариты устройства."
Вентилятор печки потребляет до 6 ампер, соответственно, данный регулятор подойдет.
Будем собирать и смотреть. Продолжение следует…
UPD. В комментариях к набору обнаружил следующий диалог:
Евгений58 17.11.2016 04:16
Здравствуйте. Подключил этот регулятор к электромотору печки, добавив при этом диод между выводами мотора. Мотор при работе постоянно пищит, можно ли в этой схеме увеличить частоту ШИМ за диапазон слышимости? Как это сделать?
+1 Советник 17.11.2016 10:11
Замените конденсаторы С2 и С4 на номинал 2,2нФ и 22нФ соответственно, пищать перестанет.
Если будет пищать, знаю что делать.
Продолжение 24.09.2017
Теперь задача сверстать все это на автомобиль.
Электрическая схема подключения вентилятора печки классики всем известна
Я решил сохранить выбор вариантов следующим образом:
Первое положение переключателя — подача напряжения на двигатель через шунт, как и было раньше — фиксированная половинная скорость.
Второе положение переключателя — подача напряжения через схему плавной регулировки.
Однако, посмотрев на схему подключения регулировки, становится понятно, что напряжение на двигатель должно подаваться с точек 2 и 3, а с контактом GND у двигателя не будет прямого контакта, только через транзистор VT1 схемы плавного управления.
Поэтому сохранить управление через плюсовой провод не удастся, придется переделать трехпозиционный переключатель на минусовой провод. Схема получилась следующая:
Для чего нужен шунтирующий диод? — при прекращении импульса ШИМ с устройства питания индуктивная нагрузка (двигатель) создает обратный всплеск напряжения, который вредным образом воздействует на транзистор. Что и было проверено экспериментально: и с диодом, и без диода каких-либо существенных изменений в поведении двигателя не обнаружено, но с диодом транзистор был холодным. Как только отключал диод — транзистор сразу же начинал безбожно греться.
Следующий нюанс — частота управления ШИМ — 500 Гц — это звуковая частота, поэтому двигатель издавал писк. Чтобы писка не было, нужно, как уже было замечено, сдвинуть частоту ШИМ за предел слышимости — 20 000 Гц. Для этого заменил конденсаторы C2 и C4 на 2,2нФ и 22нФ соответственно. Писк исчез практически полностью. Но! Стал снова греться транзистор, хотя не так сильно, как без диода. Легко предположить вероятную причину: диод не рассчитан на частоту 20 кГц, он медленный, не успевает закрываться, и пропускает обратный импульс. Китайский диод на 10А 1000В.
Нужно заменить на высокочастотный (диод Шоттки или ультрафаст КД213).
Итак, заменил диод на КД213, однако транзистор все равно греется. Путем общения на форумах было выяснено, что при повышении частоты за 20 кГц резко падает КПД данного регулятора, транзистор не успевает открываться и закрываться полностью, поэтому работает не в ключевом режиме.
Понизил частоту до 10 Гц — эта частота находится тоже за пределами слышимости. Для этого увеличил номиналы конденсаторов С2 и С4 на 22нФ и 2,2мкФ соответственно. Теперь транзистор холодный и вентилятор тоже работает отлично.
Была еще одна особенность. Регулировка вентилятора работала не на всем диапазоне поворота потенциометра, а только где-то на участке 15% от его полного оборота. Поэтому был куплен переменный резистор на 10 кОм вместо 50 кОм, был вынесен за пределы печатной платы, и к каждой из боковых ножек временно припаяно по переменному резистору на 50 кОм. После установки на автомобиль были экспериментальным путем подобраны величины этих боковых резисторов таким образом, чтобы при минимуме главного потенциометра вентилятор обдувал едва-едва, а на максимуме — в полную силу.
Итоговый результат можно наблюдать на видео.
ВЫВОДЫ:
1. Справедливости ради надо сказать, что при минимальных регулировках обдува существующая система не дает заметного эффекта. Просто движение автомобиля без работы вентилятора дает больший обдув, чем работающий вентилятор на минимальных оборотах. Это связано с низкой эффективностью лопастного вентилятора. У всех современных автомобилей используется центробежный вентилятор (улитка), который при более бесшумной работе обеспечивает гораздо более сильный поток воздуха.
Поэтому корпус собранного регулятора я добавил пару подстроечных резисторов по 10 кОм, и величины были подобраны так, чтобы при минимальном положении регулятора обдув все-таки обеспечивался заметный. При максимальном положении — максимальный. А между ними, соответственно, свобода плавной регулировки.
2. Для совсем эффективной работы нужно подходить еще более коренным образом — менять конструкцию самой печки — лопастной вентилятор менять на улитку, с перепроектированием корпуса печки. Где-то на драйве были примеры такой переделки.
3. Еще хотелось бы добавить светодиодную индикацию (полоску) вокруг ручки регулятора, чтобы видеть уровень обдува визуально, т.к. проверять поток воздуха рукой не всегда удобно.
4. Электросхема классики такова, что вентилятор печки работает вне зависимости от того, включено ли зажигание. Т.е. теоретически возможно забыть выключить вентилятор, работающий на минимальных оборотах, и уйти, а утром придти и обнаружить посаженный аккумулятор. Поэтому нужно забор напряжения питания вентилятора переделать — брать с клеммы после замка зажигания, как у нормальных современных автомобилей. Для чего вентилятор сделан независимо от зажигания, непонятно. Ведь при выключенном двигателе обдув обеспечивает горячий воздух в течение минуты — не более, далее становится холодным.
Когда перестает работать отопитель (печка) на автомобилях ВАЗ, особенно в зимний период, можно вообще лишится возможности передвижения на автомобиле. Иногда после сильного намерзания, невозможно отчистить стекла для обзора, и если отопитель не функционирует, даже добраться до СТО, будет проблематично.
Но, как правило, печку можно отремонтировать на месте, не прибегая к услугам мастеров. Используя схему и правила поиска неисправностей, вполне можно обойтись своими силами.
Принцип работы
Электрическая схема отопителя состоит из:
- электромотора с вентилятором (вентилятор дует горячий воздух в салон, на стекла и по регулировкам);
- кнопки включения и выбора скорости (на «классике ВАЗ 2101 – 2107, всего две скорости вращения, на ВАЗ 2108 – 2115 три скорости, на ВАЗ 2110 – 2112 три скорости плюс режим проветривания);
- набора дополнительных сопротивлений, для обеспечения нужной скорости вращения вентилятора отопителя (понижающие, вольфрамовые, витковые катушки);
- предохранителя и проводкой;
Поиск и устранение неисправностей
Схема электрической системы отопителя (печки) ВАЗ:
Схема включения электромотора вентилятора отопителя салона на автомобиле ваз 2108, ваз 2109, ваз 21099:
1 – монтажный блок (блок предохранителей);
2 – замок зажигания;
3 – дополнительный резистор (сопротивление);
4 – электродвигатель отопителя салона;
5 – кнопка переключения электродвигателя отопителя;
Ремонт электрической системы отопления салона ВАЗ
– максимальные обороты вращения вентилятора, по схеме идут без переключателя, и если у вас не работают только минимальные и средние обороты, то причину необходимо искать в кнопке переключателя оборотов или в дополнительных резисторах (значения на схеме);
– иногда, при включении печки, слышен очень сильный шум, высоких тонов (писк) и нет должного обдува. Это указывает на неисправность самого электродвигателя отопителя (подклинивание крыльчатки или подшипников якоря), в этом случае поможет либо замена, либо разбор и смазка (не рекомендуется, так как помогает на короткий срок);
Автономные системы управления отоплением
На автомобилях ВАЗ 2110, 2111, 2112, 2170 и других, устанавливались автономные системы отопления:
1 – электромотор вентилятора отопителя;
2 – дополнительное сопротивление (резистор);
3 – контроллер управления отопителем;
4 – монтажный блок предохранителей и реле;
5 – выключатель зажигания (замок зажигания);
6 – термодатчик температуры воздуха в салоне;
7 – выключатель рециркуляции (забор воздуха с улицы или салона);
8 – клапан рециркуляции;
9 – микромоторедуктор привода заслонки отопителя (холодный или горячий воздух);
А – к выключателю освещения приборов;
В – к источникам питания.
В такой системе, при возникновении неисправности, поиски необходимо начинать с:
- Проверка предохранителей;
- Проверка контролера управления (необходимо проверить напряжение питания и выходящие напряжение управления);
- Переключатель и датчики (должен работать максимальный режим оборотов);
- Сам электродвигатель (щетки, якорь);
Часто выходит из строя микродвигатель, переключающий режим работы, при его замене необходимо выставлять начальное положение микродвигателя (подключив его и по очереди включив все положения);
При сгоревшем предохранителе, менять его необходимо на рекомендуемый номинал.
Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.
До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов
Изучаем простую схему
Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:
Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.
Ну что же, давайте ее анализировать.
В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.
Как соединяются радиоэлементы в схеме
Итак, вроде бы определились с задачей этой схемы. Прямые линии — это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача — соединять радиоэлементы.
Точка, где соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:
Если пристально вглядеться в схему, то можно заметить пересечение двух проводников
Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:
Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.
Если бы между ними было соединение, то мы бы увидели вот такую картину:
Буквенное обозначение радиоэлементов в схеме
Давайте еще раз рассмотрим нашу схему.
Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.
Как же обозначаются остальные радиоэлементы?
Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды — это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:
А — это различные устройства (например, усилители)
В — преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.
D — схемы интегральные и различные модули
E — разные элементы, которые не попадают ни в одну группу
F — разрядники, предохранители, защитные устройства
G — генераторы, источники питания, кварцевые генераторы
H — устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации
K — реле и пускатели
M — двигатели
Р — приборы и измерительное оборудование
R — резисторы
S — коммутационные устройства в цепях управления, сигнализации и в цепях измерения
T — трансформаторы и автотрансформаторы
U — преобразователи электрических величин в электрические, устройства связи
V — полупроводниковые приборы
W — линии и элементы сверхвысокой частоты, антенны
X — контактные соединения
Y — механические устройства с электромагнитным приводом
Z — оконечные устройства, фильтры, ограничители
Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:
BD — детектор ионизирующих излучений
BE — сельсин-приемник
BL — фотоэлемент
BQ — пьезоэлемент
BR — датчик частоты вращения
BS — звукосниматель
BV — датчик скорости
BA — громкоговоритель
BB — магнитострикционный элемент
BK — тепловой датчик
BM — микрофон
BP — датчик давления
BC — сельсин датчик
DA — схема интегральная аналоговая
DD — схема интегральная цифровая, логический элемент
DS — устройство хранения информации
DT — устройство задержки
EL — лампа осветительная
EK — нагревательный элемент
FA — элемент защиты по току мгновенного действия
FP — элемент защиты по току инерционнго действия
FU — плавкий предохранитель
FV — элемент защиты по напряжению
GB — батарея
HG — символьный индикатор
HL — прибор световой сигнализации
HA — прибор звуковой сигнализации
KV — реле напряжения
KA — реле токовое
KK — реле электротепловое
KM — магнитный пускатель
KT — реле времени
PC — счетчик импульсов
PF — частотомер
PI — счетчик активной энергии
PR — омметр
PS — регистрирующий прибор
PV — вольтметр
PA — амперметр
PK — счетчик реактивной энергии
PT — часы
QF — выключатель автоматический
QS — разъединитель
RK — терморезистор
RP — потенциометр
RS — шунт измерительный
SA — выключатель или переключатель
SB — выключатель кнопочный
SF — выключатель автоматический
SK — выключатели, срабатывающие от температуры
SL — выключатели, срабатывающие от уровня
SP — выключатели, срабатывающие от давления
SQ — выключатели, срабатывающие от положения
SR — выключатели, срабатывающие от частоты вращения
TV — трансформатор напряжения
UB — модулятор
UI — дискриминатор
UR — демодулятор
UZ — преобразователь частотный, инвертор, генератор частоты, выпрямитель
VL — прибор электровакуумный
WA — антенна
WT — фазовращатель
WU — аттенюатор
XA — токосъемник, скользящий контакт
XP — штырь
XS — гнездо
XT — разборное соединение
XW — высокочастотный соединитель
YA — электромагнит
YB — тормоз с электромагнитным приводом
YC — муфта с электромагнитным приводом
YH — электромагнитная плита
ZQ — кварцевый фильтр
Графическое обозначение радиоэлементов в схеме
Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:
Резисторы и их виды
а) общее обозначение
б) мощностью рассеяния 0,125 Вт
в) мощностью рассеяния 0,25 Вт
г) мощностью рассеяния 0,5 Вт
д) мощностью рассеяния 1 Вт
е) мощностью рассеяния 2 Вт
ж) мощностью рассеяния 5 Вт
з) мощностью рассеяния 10 Вт
и) мощностью рассеяния 50 Вт
Конденсаторы
a) общее обозначение конденсатора
в) полярный конденсатор
г) подстроечный конденсатор
д) переменный конденсатор
Акустика
a) головной телефон
б) громкоговоритель (динамик)
в) общее обозначение микрофона
г) электретный микрофон
Диоды
б) общее обозначение диода
г) двусторонний стабилитрон
д) двунаправленный диод
ж) туннельный диод
з) обращенный диод
м) излучающий диод в оптроне
н) принимающий излучение диод в оптроне
Измерители электрических величин
Катушки индуктивности
а) катушка индуктивности без сердечника
б) катушка индуктивности с сердечником
в) подстроечная катушка индуктивности
Трансформаторы
а) общее обозначение трансформатора
б) трансформатор с выводом из обмотки
г) трансформатор с двумя вторичными обмотками (может быть и больше)
д) трехфазный трансформатор
Устройства коммутации
в) размыкающий с возвратом (кнопка)
г) замыкающий с возвратом (кнопка)
Электромагнитное реле с разными группами контактов
Предохранители
а) общее обозначение
б) выделена сторона, которая остается под напряжением при перегорании предохранителя
Что такое iso
Распиновка стандартного евроразъема
Евроразъемом называют стандартный штекер, который используют в большинстве стран мира. При подключении оборудования можно столкнуться с запутанными в пучок нестандартными проводами. Решается эта проблема приобретением переходников и распиновкой фишек магнитолы.
Стандарты 1din и 2din
Разъемы акустических систем бывают двух видов: нестандартные от компании-производителя в основном штырькового вида и стандартизированные европейские, которые находятся сзади. Установка оборудования со специальным аудиоразъемом от производителя потребует использование специального фирменного коннектора. Если штекер ISO, то подключиться нему можно напрямую. Евроразъемы бывают двух видов 1din и 2din, разница в высоте автомагнитол. Двухблочный в два раза выше, подсоединяется не ко всем автомобилям, потому что на панели нет места под нужные размеры.
Магнитолы с европейским 1din самые распространенные.
При установке автомагнитол применяют провода с маленьким диаметром 1,5-2 мм, для силовых линий – с большим сечением. Несоблюдение этих простых правил исказит звук, выведет оборудование из строя.
№ 1 | — |
№ 2 | — |
№ 3 | — |
№ 4 | Постоянное питание |
№ 5 | Питание антенны |
№ 6 | Подсветка |
№ 7 | Зажигание |
№ 8 | Масса |
Производители в Японии, США и некоторые китайские применяют стандарт 2din.
Верхний силовой разъем А
Штекер используют для питания электричеством ресивера, антенны и усилителя, а также при необходимости управления подсветкой или при отключении сигнала звука. Применяют стандартную маркировку по цветовой гамме. Выходы 1-3 и 6 в акустике низкого и среднего ценового сегмента не используются, они предназначены для дополнительных опций продукции высокого класса.
Типы подключения
- Первый – соединение в цоколе проводов двух цветов желтого и красного, включение/выключение ресивера не зависит от зажигания. Способ не удобен тем, что предрасполагает к разрядке АКБ, если не выключить акустику;
- Второй – провод подключают через замок зажигания, желтый – к бортовому компьютеру.
Функциональное назначение выходов ресивера
ANT | Разъем применяется, если в автомобиле имеется выдвижная антенна |
Remote | Возможно подключение несколько динамиков |
Illumination | Позволяет менять интенсивность свечения устройства |
Mute | Регулировка звука |
А4 | Включение/выключение |
Распиновка ISO-разъема магнитолы
А 4 | Цв. желтый | Аккумулятор + Питание |
А 5 | Цв. синий | Антенна. |
А 6 | Цв. оранжевый | Подсветка |
А 7 | Цв. красный | Зажигание, 12В. При отключении сброс параметров к заводским. |
А 8 | Цв. черный | Акустика |
Нижний акустический разъем В
Применяют для подключения усилителей (2 кабеля на каждый). Звучание аппаратуры зависит от того, правильно ли подключены все разъемы. Главное – не перепутать, иначе акустика будет некачественной.
Правила подключения колонок по цветовой маркировке проводов
Цв. белый | Левая передняя |
Цв. серый | Правая передняя |
Цв. зеленый | Левая задняя |
Цв. фиолетовый | Правая задняя |
Двойной ИСО разъем
Штатные аудиосистемы некоторых автомобилей подключаются двойным штекером. Распиновка разъемов для них стандартная. Половинки контактов соединяются между собой прочной пластиковой перемычкой, фиксируются специальным зажимом. Для корректного монтажа используется направляющий паз, который исключает установку штекера в неправильном положении.
Черный присоединяет к магнитоле источник тока, коричневый – для акустики .
Переходники для iso разъемов
Срезка нестандартного штатного штекера и присоединение проводов напрямую не рекомендуется, потому что со временем соединение разболтается, может окислиться, придется спаивать не только проводку, потребуется дополнительный ремонт, замена перегоревших предохранителей. Иногда встречается акустика с тремя выходами, но она имеет стандаризированную маркировку и электросхемы, позволяющие соединить с помощью распиновки штатные кабели с устройством. Можно купить любой тип переходника для ИСО разъёмов от одной модели к другой.
Автомобиль может быть не оснащен коннекторами, тогда нужно подключать разъем магнитолы к кабелю напрямую. Это делают скручиванием, пайкой либо применяют клеммную колодку, которая не требует последующей изоляции. При скручивании и пайке используют термоусадочные трубки для безопасного использования оборудования.
Распиновка для различных марок авто и магнитол
Приступая к работе, ознакомьтесь с инструкцией к ресиверу, а также обратите внимание на маркировку и фишки самого изделия. На распиновку магнитол влияют штатные разъемы в разных автомобилях.
Схема распиновки iso разъемов к магнитолам pioneer
Чтобы не сжечь акустику, перед подключением динамиков нужно подсоединить магнитолу, проверить, чтобы она светилась и переключалась.
toyota
Распиновку акустики этой марки осуществляют по стандартным схемам. Оптимально выбрать систему питания от АКБ, в этом случае нет риска его разрядки.
№ 1 | А+ |
№ 2 | GND |
№ 3 | BAT+ |
№ 4 | Подсветка |
№ 5 | Антенна |
№ 6 | Динамики (RR+, RR-, RF+, RF-, LF+, LF-, LR+, LR-) |
При подключении магнитолы используются стандартные схемы.
№ 1 | ANT |
№ 3 | LR. Линейный выход |
№ 4 | GND. Линейных выход |
№ 5 | RR. Линейный выход |
№ 6 | CD – LCH |
№ 7 | CD – GND |
№ 8 | CD – RCH |
№ 9 | CD – Reset |
№ 10 | CD – CD clock out |
№ 11 | CD – DSPL select |
№ 12 | CD – data out |
№ 13 | CD – clock in |
№ 14 | CD – data in |
№ 16 | A+ |
№ 17 | GND |
№ 18 | ANT GND |
№ 22-27 | Динамики (LF-, LR+, RF-, RR+, LF+, LR-, RF+, RR-) |
№ 28 | Mute |
№ 29-30 | Динамики (LF-, LR+, RF-, RR+, LF+, LR-, RF+, RR-) |
№ 31 | ANT CONT |
№ 32 | CD ACC Постоянный |
№ 33 | AMP Постоянный |
№ 34 | B UP |
nissan
№ 1-6 | Динамики (LR+, RR+, LR-, RR-, LF+, RF+) |
№ 7 | А+ |
№ 8 | Подсветка |
№ 9 | BAT+ |
№ 10 | Динами LF- |
№ 11 | динамик RF- |
№ 12 | Антенна |
№ 13 | GND |
honda
Все модели автомобильных магнитол оборудованы универсальным европейским штекером для подключения к гнезду.
№ 1 | Динамик RR+ |
№ 2 | Динамик LR+ |
№ 3 | Подсветка |
№ 4 | BAT+ |
№ 5 | A+ |
№ 6 | Антенна |
№ 7-10 | Динамики LF+, RF+, RR-, LR- |
№ 13 | GND |
№ 14-15 | Динамики LF-, RF- |
Стандартная европейская разводка выводов.
№ 1 | А+ |
№ 2 | BAT+ |
№ 3 | GND |
№ 4 | — |
№ 5-12 | Динамики RR+, RR-, LF+, LF-, RF+, RF-, LR+, LR- |
alpine
Alpine TDE-7823W: 1 – BAT+,
№ 2-5 | Динамики LR-, LR+, RR-, RR+ |
№ 7 | Усилитель |
№ 8 | Антенна |
№ 9 | GND |
№ 10-13 | Динамики LF-, LF+, RF-, RF+ |
№ 5-12 | А+ |
mitsubishi
Во всех моделях используется стандартная европейская распиновка акустической системы.
№ 1-2 | Динамики RR+, LR+ |
№ 3 | Управление антенной |
№ 4 | Управление подсветкой |
№ 5-8 | Динамики LF+, RF+, RR-, LR- |
№ 10 | А+ |
№ 11 | BAT+ |
№ 12 | Управление подсветкой |
№ 13-14 | Динамики LF-, RF- |
GND |
Видео разбор распиновки автомагнитолы
Читайте также: