В чем измеряется гибкость стержня лямбда
Технический портал, посвященный Сопромату и истории его создания
Продольный изгиб
При расчетах на прочность подразумевалось, что равновесие конструкции под действием внешних сил является устойчивым. Однако выход конструкции из строя может произойти из-за того, что равновесие конструкций в силу тех или иных причин окажется неустойчивым. Во многих случаях, кроме проверки прочности, необходимо производить еще проверку устойчивости элементов конструкций.
Состояние равновесия считается устойчивым, если при любом возможном отклонении системы от положения равновесия возникают силы, стремящиеся вернуть её в первоначальное положение.
Рассмотрим известные виды равновесия.
Неустойчивое равновесное состояние будет в том случае, когда хотя бы при одном из возможных отклонений системы от положения равновесия возникнут силы, стремящиеся удалить её от начального положения.
Состояние равновесия будет безразличным, если при разных отклонениях системы от положения равновесия возникают силы, стремящиеся вернуть её в начальное положение, но хотя бы при одном из возможных отклонений система продолжает оставаться в равновесии при отсутствии сил, стремящихся вернуть её в начальное положение или удалить от этого положения.
При потере устойчивости характер работы конструкции меняется, так как этот вид деформации переходит в другой, более опасный, способный привести её к разрушению при нагрузке значительно меньшей, чем это следовало из расчета на прочность. Очень существенно, что потеря устойчивости сопровождается нарастанием больших деформаций, поэтому явление это носит характер катастрофичности.
При переходе от устойчивого равновесного состояния к неустойчивому конструкция проходит через состояние безразличного равновесия. Если находящейся в этом состоянии конструкции сообщить некоторое небольшое отклонение от начального положения, то по прекращении действия причины, вызвавшей это отклонение, конструкция в исходное положение уже не вернется, но будет способна сохранить приданное ей, благодаря отклонению, новое положение.
Состояние безразличного равновесия, представляющее как бы границу между двумя основными состояниями – устойчивым и неустойчивым, называется критическим состоянием. Нагрузка, при которой конструкция сохраняет состояние безразличного равновесия, называется критической нагрузкой.
Эксперименты показывают, что обычно достаточно немного увеличить нагрузку по сравнению с её критическим значением, чтобы конструкция из-за больших деформаций потеряла свою несущую способность, вышла из строя. В строительной технике потеря устойчивости даже одним элементом конструкции вызывает перераспределение усилий во всей конструкции и нередко влечет к аварии.
Изгиб стержня,связанный с потерей устойчивости, называется продольным изгибом.
Критическая сила. Критическое напряжение
Наименьшая величина сжимающей силы, при которой первоначальная форма равновесия стержня – прямолинейная становится неустойчивой – искривленной, называется критической.
При исследовании устойчивости форм равновесия упругих систем первые шаги были сделаны Эйлером.
В упругой стадии деформирования стержня при напряжениях, не превышающих предел пропорциональности, критическая сила вычисляется по формуле Эйлера:
Критическое напряжение вычисляется следующим образом
, где гибкость стержня ,
а радиус инерции сечения.
Введем понятие предельной гибкости.
Величина λпред зависит только от вида материала:
Если у стали 3 Е=2∙10 11 Па, а σпц=200МПа, то предельная гибкость
Для дерева (сосна, ель) предельная гибкость λпред=70, для чугуна λпред=80
Таким образом, для стержней большой гибкости λ≥λпред критическая сила определяется по формуле Эйлера.
В упругопластической стадии деформирования стержня, когда значение гибкости находится в диапазоне λ0≤λ≤λпр, (стержни средней гибкости) расчет проводится по эмпирическим формулам, например, можно использовать формулу Ясинского Ф.С. Значения введенных в нее параметров определены эмпирически для каждого материала.
где a и b – постоянные, определяемые экспериментальным путем (эмпирические коэффициенты).Так, для стали3 а=310МПа, b=1,14МПа.
При значениях гибкости стержня 0≤λ≤λ0 (стержни малой гибкости) потеря устойчивости не наблюдается.
Таким образом, пределы применимости формулы Эйлера — применяется только в зоне упругих деформаций.
Условие устойчивости. Типы задач при расчете на устойчивость. Коэффициент продольного изгиба
Условием устойчивости сжатого стержня является неравенство:
Здесь допускаемое напряжение по устойчивости [σуст] — не постоянная величина, как это было в условиях прочности, а зависящая от следующих факторов:
1) от длины стержня, от размеров и даже от формы поперечных сечений,
2) от способа закрепления концов стержня,
3) от материала стержня.
Как и всякая допускаемая величина, [σуст] определяется отношением опасного для сжатого стержня напряжения к коэффициенту запаса. Для сжатого стержня опасным является так называемое критическое напряжение σкр, при котором стержень теряет устойчивость первоначальной формы равновесия.
Величину коэффициента запаса в задачах устойчивости принимают несколько большей, чем значение коэффициента запаса прочности, то есть если k=1÷2, то kуст=2÷5.
Допускаемое напряжение по устойчивости можно связать с допускаемым напряжением по прочности:
В этом случае ,
где σт – опасное с точки зрения прочности напряжение (для пластичных материалов это предел текучести, а для хрупких – предел прочности на сжатие σвс).
Коэффициент φ Запись опубликована 24.09.2014 автором admin в рубрике Устойчивость.
Наименьшая величина сжимающей силы, при которой первоначальная форма равновесия стержня – прямолинейная становится неустойчивой – искривленной, называется критической.
При исследовании устойчивости форм равновесия упругих систем первые шаги были сделаныЭйлером.
В упругой стадии деформирования стержня при напряжениях, не превышающих предел пропорциональности, критическая сила вычисляется по формуле Эйлера:
гдеImin – минимальный момент инерции сечения стержня (обусловлено тем, что изгиб стержня происходит в плоскости с наименьшей жесткостью), однако исключения могут быть только в случаях, когда условия закрепления концов стержня различны в разных плоскостях, ℓ - геометрическая длина стержня, μ – коэффициент приведенной длиныиликоэффициент приведения (зависит от способов закрепления концов стержня), Значения μприведены под соответствующей схемой закрепления стержней
Критическое напряжение вычисляется следующим образом
, где гибкость стержня ,
а радиус инерции сечения.
Введем понятие предельной гибкости.
Величинаλпред зависит только от вида материала:
Если у стали 3 Е=2∙10 11 Па, а σпц=200МПа, то предельная гибкость
Для дерева (сосна, ель) предельная гибкость λпред=70, для чугуна λпред=80
Таким образом, для стержней большой гибкости λ≥λпред критическая сила определяется по формуле Эйлера.
В упругопластической стадии деформирования стержня, когда значение гибкости находится в диапазоне λ0≤λ≤λпр,(стержни средней гибкости) расчет проводится по эмпирическим формулам, например, можно использовать формулу Ясинского Ф.С. Значения введенных в нее параметров определены эмпирически для каждого материала.
σк=а-bλ, или Fкр=A(a—bλ)
где a и b – постоянные, определяемые экспериментальным путем (эмпирические коэффициенты).Так, для стали3 а=310МПа,b=1,14МПа.
При значениях гибкости стержня0≤λ≤λ0 (стержни малой гибкости) потеря устойчивости не наблюдается.
Таким образом, пределы применимости формулы Эйлера — применяется только в зоне упругих деформаций.
Формула Эйлера и пределы ее применимости для стальных и деревянных стержней. Другие формулы для определения критической силы
Для шарнирно закрепленного, центрально-сжатого стержня постоянного сечения (рис.8.2). I Формула Эйлера имеет вид:
где Е - модуль продольной упругости материала стержня;
Jmin - минимальный момент инерции поперечного сечения стержня.
Для стержней с другими видами закрепления формулу Эйлера записывают в виде:
где - приведенная длина стержня;
- коэффициент приведения длины.
Выражение "приведенная длина" означает, что в формуле Эйлера с помощью коэффициента все случаи закрепления концов стержня можно привести к основному, шарнирному закреплению.
Коэффициент приведения длины иногда можно оценить по числу полуволн n, по которым выпучится стержень, теряя устойчивость, а именно, можно принять
На рис. 8.2 показаны наиболее часто встречающиеся на практике случаи закрепления концов стержня и соответствующие им значения коэффициента
Формула Эйлера применима только о пределах выполнения закона Гука, когда критическое напряжение не превышает предел пропорциональности материала стержня, так как эта формула была введена с помощью зависимости
в свое время полученной на основании закона Гука.
Применимость формулы Эйлера можно определить, оценив гибкость стержня и сравнив эту гибкость с ее предельным значением. Гибкость стержня равна
- минимальный радиус инерции (геометрическая характеристика сечения);
- минимальный момент инерции площади сечения стержня.
Значение предельной гибкости получается из условия
Предельная гибкость равна
Так, для малоуглеродистой стали, если принять Е = 2x10 5 МПа,
Для повышения несущей способности конструкций в них стремятся использовать стержни возможно меньшей гибкости. Так что расчет реальных конструкций с гибкостью практически маловероятен. Будем считать верхней границей значений гибкости реальных стержней.
Следовательно, формула Эйлера для определения критического значения сжимающей силы в виде
применима в случае, если гибкость стержня находится в пределах
(кривая СД на рис. 8.3)
Для малоуглеродистой стали этот диапазон равен
© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.005)
Как показали опыты, решение Эйлера подтверждается не во всех случаях. Причина состоит в том, что формула Эйлера была получена в предположении, что при любой нагрузке стержень работает в пределах упругих деформаций по закону Гука. Следовательно, его нельзя применять в тех ситуациях, когда напряжения превосходят предел пропорциональности. В связи с этим найдем границы применимости решения Эйлера:
(30)
Из (30) следует, что напряжение возрастает по мере уменьшения гибкости стержня. Заметим, что стержень, имеющий неодинаковые опорные закрепления в главных плоскостях и, следовательно, неодинаковые приведенные длины, теряет устойчивость в той главной плоскости, в которой гибкость стержня имеет наибольшее значение.
Формула Эйлера неприемлема, если напряжения
,
где – предел пропорциональности. Приравнивая (30) к пределу пропорциональности, получим предельное значение гибкости:
Если λ > λпред , то формулу Эйлера можно применять. В противном случае ею пользоваться нельзя. Для стали Ст. 3 – lпред = 100.
В ситуациях, когда напряжения превышают предел пропорциональности, получение теоретического решения осложняется, т.к. зависимость между напряжениями и деформациями становится нелинейной. В связи с этим, в таких случаях пользуются эмпирическими зависимостями. В частности, Ф.С. Ясинский предложил следующую формулу для критических по устойчивости напряжений:
где a, b – постоянные, зависящие от материала, так для стали Ст. 3 a = 3,1•10 5 кН/м2, b = 11,4•10 2 кН/м2.
Лабораторная работа №14 по испытанию на устойчивость прямого стального стержня при его продольном изгибе.
Цель работы – исследовать явление потери устойчивости прямолинейной формы равновесия при осевом сжатии, проверить опытным путем справедливость формулы Эйлера.
Основные сведения
У стержней, длина которых значительно больше поперечных размеров, при определенной величине осевой сжимающей силы происходит искривление оси. Это явление носит название продольного изгиба. Переход прямолинейной формы равновесия в криволинейную называется потерей устойчивости.
Сжимающая сила, при которой прямолинейная форма равновесия перестает быть устойчивой, называется критической. Ее можно определить по формуле Эйлера
где Е – модуль продольной упругости материала;
l – длина стержня;
Imin – минимальный момент инерции сечения;
μ – коэффициент приведения длины, который зависит от способов закрепления концов стержня.
Формула Эйлера применима лишь в том случае, если потеря устойчивости стержня происходит при напряжениях, меньших предела пропорциональности σпц, т.е. когда справедлив закон Гука
Здесь А – площадь поперечного сечения;
λ = μ∙l/imin – гибкость стержня;
– минимальный радиус инерции сечения.
Предельная гибкость, начиная с которой можно использовать формулу Эйлера, определяется по формуле
зависит лишь от физико-механических свойств и является постоянной для данного материала.
Так, например, для стали Ст.З λ пр = 100, для древесины λ пр = 110, для чугуна λ пр = 80, для дюралюминия λ пр = 60.
Стержни, у которых λ > λ пр, называются стержнями большой гибкости.
При меньших значениях гибкости (стержни средней гибкости) критические напряжения σ кр > σ пц определяются по эмпирическим формулам или соответствующим им таблицам (графикам). Например, формула Ясинского для определения критических напряжений имеет вид
где a и b – эмпирические коэффициенты.
Например, для стали Ст.3 a = 310 МПа, b = 1,14 МПа, для древесины (сосна) a = 28,7 МПа, b = 0,19 МПа.
Эмпирические формулы, особенно для древесины, дают лишь приближенный результат.
Для стержней малой гибкости, у которых σ кр, подсчитанные по формуле Ясинского, получаются больше, чем опасные (предельные) напряжения, принимают:
σ кр = σ т – для пластичных материалов;
σ кр = σ пч – для хрупких материалов.
Порядок выполнения и обработка результатов
Опыты по исследованию устойчивости сжатых стержней производятся либо на испытательных машинах малой мощности (Р-5 и других), либо на специальных установках, например, СМ-20.
На испытательных машинах величина критической силы определяется непосредственно по шкале динамометра.
На установке СМ-20 (рис. 14.1) нагружение производится с помощью винтовой пары (подъемный винт-гайка) через тарированную пружину; величина нагрузки определяется по осадке пружины δ , которая пропорциональна сжимающей силе:
где С – жесткость пружины, определяется из тарировочного графика.
Рис. 14.1. Схема установки СМ-20:
1 – образец; 2 – корпус; 3 – верхняя опора;
4 – ограничительные упоры;
5 – нижняя опора; 6 –силовое устройство
Установка СМ-20 позволяет определить критическую силу для стержня с шарнирно опертыми концами ( μ = 1 ).
Порядок проведения испытаний и обработки результатов следующий.
- Измеряем длину и размеры поперечного сечения образца, определяем геометрические характеристики сечения и гибкость стержня (Imin, A, imin, λ ).
- Сравниваем значения λ и λ пр, выясняем, по какой формуле следует определять критическую силу.
- Вычисляем теоретическое значение критической силы.
- Устанавливаем стержень на опорах установки.
- Упоры при помощи винтов устанавливаем примерно на одинаковых расстояниях (2 – З мм) от испытуемого образца.
- Производим нагружение стержня путем плавного и медленного вращения маховика по часовой стрелке, с возрастанием нагрузки нужно непрерывно следить за поведением образца.
Если при F δ и заносим его в журнал испытаний, разгружаем образец вращением маховика против часовой стрелки. - Определяем по паспорту установки коэффициент жесткости пружины С.
- Вычисляем опытное значение критической силы
Fкр оп= С · δ . - Сравниваем величины Fкр оп и Fкр т, определяем процент расхождения и делаем соответствующие выводы.
Контрольные вопросы
- Какой изгиб называется продольным?
- Что понимается под критической силой?
- От чего зависит величина критической силы?
- Когда применима формула Эйлера?
- Что такое коэффициент приведения длины и чему он равен при различных случаях закрепления концов сжатых стержней?
- Как определяется критическое напряжение, если формула Эйлера неприменима?
- Чему равна гибкость стержня?
- Как определить предельную гибкость?
- Как опытным путем определить значение критической нагрузки?
Данные для расчета сжатых стержней на устойчивость
P – сжимающая сила;
Если стержень в разных плоскостях имеет различные радиусы инерции или различные условия закрепления, то в расчетах используется наибольшее значение гибкости.
Условие устойчивости можно представить в виде:
φ – коэффициент снижения основного допускаемого напряжения (коэффициент продольного изгиба), зависящий от гибкости λ и материала стержня:
В строительстве для сталей коэффициент продольного изгиба φ задается в зависимости от гибкости λ и расчетного сопротивления R y (СНиП II-23-81*):
Если для материала нет справочных значений φ, или необходимо определить реальный запас устойчивости, то используется условие устойчивости в виде:
σ кр — критическое напряжение, которое для стержней малой гибкости равно пределу текучести σ T , для стержней средней гибкости определяется по формуле Ясинского, для гибких стержней — по формуле Эйлера:
λ 0 — максимальное значение гибкости, при котором допустимо не учитывать эффект потери устойчивости (достаточно простого расчета на сжатие);
Для стержней средней и малой гибкости критическое напряжение можно (если, например, для материала отсутствуют справочные данные для формулы Ясинского) определить по параболическому закону:
Для хрупких материалов в формулы для определения критического напряжения вместо предела текучести σ T подставляют предел прочности на сжатие σ В .
Партнерская программа
Помощь: сопромат, строймеханика, прикладная механика ОТ АВТОРА САЙТА ВКонтакте Telegram: sopromat_xyz WhatsApp + Instagram
Читайте также: