Сигнал богатой смеси от лямбда зонда 1 при максимальном обеднении
В интернете мне очень часто попадаются криво переведенные статьи о трактовке показаний различных датчиков, причем их репостят все подряд без разбора и тем самым еще больше путают народ. Поэтому я нашел и перевел правильную статью о топливной коррекции (Fuel Trim), постарался сделать это близко к тексту но не теряя при этом смысл, поэтому местами я дополнял перевод своим текстом. Итак, поехали.
На форумах часто задают вопросы по поводу топливной коррекции и у меня даже есть некоторое количество электронных писем с просьбами осветить этот вопрос. Многие отмечают топливную коррекцию PIDS (идентификаторы параметра) на показаниях в реальном времени (datastream) своих сканирующих устройств и интересуются для чего она.
Итак, что такое топливные коррекции и что они делают ? Надеюсь мы сможем прояснить все недопонимания. Правильное понимание топливных коррекций может привести к ускорению диагностики и предупредить вас о будущих проблемах с вашим автомобилем.
В основе своей топливные коррекции – процент изменения в топливоподаче во(по) времени. Для того, чтобы двигатель работал хорошо соотношение воздух/топливо должно оставаться в границах небольшого окна 14.7/1. Такое соотношение должно сохраняться в этой зоне под воздействием всех изменяющихся условий с которыми двигатель сталкивается каждый день: холодный пуск (хотя по мне на холодном пуске явно не 14.7/1, но это оставим на совести автора), холостой ход в условиях длительных движений в пробках при движении по трассе и т.д.
Итак, компьютер двигателя пытается сохранить правильное соотношение воздух/топливо посредством точной настройки количества топлива поступающего в двигатель. В то время, как добавляется или уменьшается подача топлива, кислородный датчик следит за тем сколько кислорода в выхлопе и сообщает об этом ЭБУ. Кислородные датчики могут быть представлены как глаза ЭБУ, которые следят за смесью кислорода в выхлопе. ЭБУ следит за этими входными данными от горячих кислородных датчиков безостоновочно в замкнутом цикле. Если кислородный датчик информирует ЭБУ, что выхлопная смесь бедная, ЭБУ добавляет топливо путем увеличения времени открытия форсунки, для компенсации. И наоборот, если датчик кислорода информирует ЭБУ о том, что выхлопная смесь богатая, ЭБУ уменьшает время открытия форсунок, уменьшая тем самым подачу топлива для уменьшения обогащения смеси.
Эти изменения – добавление или уменьшение подачи топлива – называются Топливной Коррекцией или Fuel Trim. На самом деле, хоть датчики и называются кислородными, показывают они состояние топливной смеси. Изменения в напряжении кислородного датчика вызывают прямые изменения топливной смеси. Кратковременная топливная коррекция (STFT) относится к мгновенным изменениям топливной смеси – несколько раз в секунду. Долгосрочная топливная коррекция (LTFT) показывает изменения топливной смеси за длительный промежуток времени на основе показаний кратковременной коррекции (среднее значение за длительное время). Отрицательная топливная коррекция (отрицательные значения по сканеру) свидетельствует об обеднении смеси, а положительная топливная коррекция об обогащении соответственно. (Т.е. если лямбда постоянно видит бедную смесь, то она постоянно обогащает и это отразится на LTFT плюсовыми значениями).
Представим себе такую ситуацию – вы едете от пляжа, который на уровне моря в горы. За короткие промежутки времени вы можете несколько раз подниматься и опускаться вверх-вниз по холмам. Однако на длительном промежутке времени вы на самом деле плавно поднимаетесь от самой низкой точки горы до ее вершины, т.е. едете постоянно вверх, несмотря на временные перепады. Так можно представить себе краткосрочную и долгосрочную коррекции. STFT – кратковременные подъемы и опускания, а LTFT – то, что происходит за длительный промежуток времени в итоге.
Нормальная кратковременная коррекция
Обедненная смесь. Идет ее обогащение системой машины.
Краткосрочная топливная коррекция STFT начнет немедленно увеличиваться, чтобы показать, что компьютер добавляет топливо. Когда компьютер добавляет топливо, это становится заметно кислородному датчику и он следит таким образом до тех пор, пока кислородный датчик не покажет, что смесь больше не бедна и правильное соотношение топливо/воздух достигнуто. ЭБУ будет поддерживать повышенное добавление топлива до тех пор, пока подсос воздуха не будет устранен. Диагностический прибор при этом будет показывать положительные двузначные значения STFT, что будет свидетельствовать о том, что ЭБУ добавляет слишком много топлива для нормальной работы двигателя. Через некоторое время LTFT будет также показывать это увеличение как долгосрочное (постоянное на долгом промежутке времени). А если подсос воздуха слишком большой, то компьютер не сможет добавить достаточно много топлива, чтобы сбалансировать смесь и достичь правильного соотношения воздух/топливо. Корректировка достигнет своего максимального значения, обычно это 25%. Затем выскочит код ошибки, говорящий о том, что двигатель работает на слишком обедненной смеси (ошибка P0171 или P0174) и максимальный порог возможной кратковременной коррекции STFT уже превышен. И обратная ситуация будет, если двигатель будет работать на сверхобогащенной смеси из-за утечки топлива (например льют форсунки), появятся ошибки P0172 или P0175.
Обогащенная смесь. Идет ее обеднение мозгами машины.
Если вы будете ориентироваться на коды, возникающие в результате таких ложных состояний смеси и не сопоставите это все со всеми данными по кислородным датчикам (и от себя добавлю – обязательно смотрите на внешний вид налета на электродах свечей), то вы можете поставить неверный диагноз.
Также, на V-образных моторах на каждом выпускном тракте каждой из голов обычно стоит свой кислородный датчик и идет своя топливная коррекция для каждой головы (показания по Bank 1 и Bank 2). Если у вас 4х-цилиндровый двигатель, то у вас всего один банк данных – Банк 1. На V-образных моторах в этом смысле поудобнее по причине того, что если лямбда с одной стороны неисправна и врет вы можете сузить круг потенциальных причин проблемы ориентируясь на показания второго банка данных – Bank 2.
Современный автомобилист хочет владеть мощным, но в тоже время экономичным автомобилем. У экологов другое требование – минимальное содержание вредных веществ в выхлопе машины. И в данных вопросах интересы автомобилистов и экологов в итоге совпадают. И вот почему.
Известно, что когда двигатель не сжигает все топливо, расход горючего возрастает, растут затраты и на эксплуатацию автомобиля. Мощность двигателя (или ДВС) в условиях неполного сгорания топлива неизбежно падает, а крутящий момент снижается. Одновременно с этим увеличивается уровень вредных веществ в выхлопе автомобиля.
В этой связи одной из основных задач современного автомобилестроения является максимально полное сжигание топливной смеси в двигателе.
На сжигание смеси прямым образом влияет ее состав. Идеальной ситуацией является стехиометрический состав топлива. Говоря более простым языком, должна быть соблюдена пропорция – на 14,7 кг воздуха должен приходиться 1 кг топлива. Именно такое соотношение позволяет оптимально использовать и то, и другое. Владелец автомобиля получает больший крутящий момент и, как следствие, - адекватное ускорение автомобиля, равномерную работу двигателя во всех режимах работы. Также падает расход топлива, и автомобиль перестает загрязнять окружающую среду.
Отклонения от правильного состава топливной смеси – богатая и бедная смесь. Богатая топливная смесь образуется, когда в цилиндрах мало кислорода, но много топлива, которое, конечно же, из-за недостатка кислорода, полностью сгореть не сможет. Следовательно, автомобиль, работающий на богатой смеси, будет больше расходовать топливо, а избыток несгоревшего топлива, в этом случае, охладит камеру сгорания, мощность двигателя при этом будет падать, несгоревшое топливо попадет в атмосферу, загрязняя ее.
Другая ситуация: двигатель получает обедненную топливную смесь. В этом случае топливо в цилиндрах будет сгорать не полностью из-за недостатка топлива. Об экономичности, ради которой и разрабатывались такие двигатели, в этом случае также придется забыть. Ведь бедная смесь плохо горит, и это автоматически приводит к падению крутящего момента. Водителю приходится больше нажимать на газ, что в свою очередь, ведет к перерасходу топлива.
Таким образом, основное назначение лямбда- зонда заключается в том, чтобы компенсировать неизбежно возникающие в процессе эксплуатации автомобиля отклонения в составе топливной смеси.
Однако нужно понимать, что лямбда-зонд как таковой не является панацеей от всех бед, он лишь позволяет вернуть состав топливной смеси в состояние стехиометрии. Но это не устранение дефектов, а только их компенсация.
Рассмотрим осциллограмму работы лямбда- зонда. Датчик сам по себе не может отличить состояние стехиометрии от состояния богатой топливной смеси, так как и в том, и в другом случае кислорода в выхлопе нет. При отсутствии кислорода в топливе блок управления (ЭБУ – электронный блок управления) немного уменьшает количество подаваемого в цилиндр топлива. Как следствие, в выхлопе появляется кислород.
И в этом случае показания лямбда-зонда находятся ниже отметки 0,4 В, что для датчика является признаком того, что топливная смесь обеднела (LEARN). При низких показателях лямбда-зонда (ниже 0,4 В), блок управления увеличивает подачу топлива на несколько процентов, смесь становится богатой и показания датчика достигают уровня выше 0,6В. ЭБУ воспринимает это как признак того, что в топливной системе находится богатая смесь (RICH). Подача топлива уменьшается, показания лябда-зонда падают, цикл повторяется - состав смеси начинает колебаться. В такт изменению состава смеси меняются показания лямбда-зонда. Такие колебания ЭБУ понимает как нормальное явление, указывающее на то, что состав топливной смеси находится в зоне стехиометрии.
Вспомним также, что в катализаторе автомобиля обязательно есть цирконий, этот металл способен накапливать кислород. И в фазе бедной смеси кислород запасается в катализаторе, а в фазе богатой смеси он расходуется. В результате на выходе топливной смеси катализатор дожигает все ее остатки.
На холостом ходу такие колебания возникают с частотой одно колебание примерно в одну секунду. Время такого переключения – еще один важный показатель для лямба-зонда. В нашем случае (см. осциллограмму, Рис. 1) время переключения составило 88 мс, при этом нормой является – 120 мс.
Величины, при которых появляется эта ошибка, определяются, главным образом, настройками программного обеспечения блока управления.
То есть важно помнить, что показатель топливной коррекции и работа лямбда-зонда – это комплексный параметр, он указывает на наличие дефекта, но не указывает конкретную причину, которую придется найти и устранить на автосервисе.
Подводя итог, еще раз отметим, что при проверке лямбда-зонда необходимо обращать внимание на колебания датчика, если они есть, датчик исправен; если же система лямбда регулирования не совершает колебаний, это может указывать или на неисправность лямбда-зонда или на бедную или богатую топливную смесь. То есть сначала надо проверить сами датчики. Для этого нужно принудительно обогатить или обеднить смесь, чтобы получить колебания лямбды и убедиться в том, что он исправен.
Принципы их работы и особенности диагностики автомобиля по показаниям широкополосных лямбда-зондов будут рассмотрены в следующих публикациях.
Написать комментарий
Ваш комментарий: Внимание: HTML не поддерживается! Используйте обычный текст.
Индикация ошибки р0133
Условия возникновения ошибки
Кислородные датчики устанавливаются до и после катализатора. Информация от переднего датчика поступает на ЭБУ для правильного формирования топливовоздушной смеси (используется система с отрицательной обратной связью). Второй датчик (расположенный за катализатором) необходим для контроля работы самого каталитического нейтрализатора.
Ошибка Р0133 не возникает при первом же признаке неисправности. Например, на автомобилях Kia и Hyundai время диагностики датчика составляет 11 циклов. А включение контрольной лампы на приборной панели, сигнализирующей о неисправности (Check Engine), происходит лишь на третьем драйв-цикле.
Медленный отклик датчика кислорода, то есть ошибка Р0133, может возникать по самым разным причинам. Далее перейдем к их описанию.
Причины неисправности
Итак, перечислим возможные причины возникновения ошибки P0133 и соответствующие варианты их устранения:
График сигнала лямбда-зонда
Пример диагностики ЭБУ
- Для начала необходимо подключить диагностический модуль к компьютеру машины.
- Проверить наличие дополнительных ошибок. Если таковые имеются, то необходимо в первую очередь устранить их.
- Осмотреть катализатор на предмет наличия повреждений, в том числе внутренних. При необходимости узел необходимо заменить.
- Если с катколлектором все в порядке, то необходимо проверить состояние выпускной системы между нейтрализатором и основным глушителем (проверка герметичности и повреждений). Если повреждений нет, то необходимо заменить нейтрализатор.
В случае, если вы устранили все неполадки, то проверять наличие ошибки необходимо так:
С помощью компьютера еще раз просканировать ошибки. Если Р0133 исчезла, значит, все сделано правильно.
Дополнительные варианты устранения ошибки
Сброс ошибки на Mitsubishi Lancer 10
Диагностика и замена кислородного датчика на ВАЗ 2110
Перечислим для вас еще несколько вариантов, которые могут быть полезными автовладельцам разных машин, как отечественных, так и импортных:
Гофра выхлопной системы на Hyundai Accent
Итоги
Замедленное быстродействие в цепи переднего кислородного датчика (Bank 1 Sensor 1) на обогащение/обеднение не является критичным, и при возникновении кода р0133, автомобилем можно пользоваться. Однако все же рекомендуем как можно быстрее разобраться в проблеме и устранить ее. Ведь из-за этой ошибки зачастую возникает повышенный расход топлива, а также снижается динамика машины. Проверка и поиск причины сводится к прозвонке самого лямбда датчика, электроцепей до него и участка ECM работающего с ним в паре (опорное напряжение датчика кислорода на заглушенном моторе должно быть около 0,45 В, а на прогретом варьироваться от 0,1 до 0,9 В причем с быстрым изменением). В зависимости от результата — замена/ремонт неисправного элемента. Хотя возможно проблема может крыться и в некачественном топливе либо, некорректной работы форсунок.
Существует распространенное мнение, что лямбда-зонд является датчиком наличия кислорода в выхлопных газах. Это приводит к неправильному пониманию работы датчика и в некоторых случаях ведет к ошибкам при диагностике и в ремонте.
Существует распространенное мнение, что лямбда-зонд является датчиком наличия кислорода в выхлопных газах. Это приводит к неправильному пониманию работы датчика и в некоторых случаях ведет к ошибкам при диагностике и в ремонте.
Давайте рассмотрим работу системы управления двигателем подробнее и проведем несколько экспериментов для выяснения деталей работы датчика.
Если в цилиндр подавать больше бензина чем требуется для полного сгорания поступившего воздуха, то смесь будет богатой (λ 1), когда бензина подается меньше чем нужно для полного сгорания поступившего воздуха, в выхлопных газах будет присутствовать значительное количество кислорода (O2). По мере обеднения смеси концентрация кислорода будет увеличиваться, а углекислого газа и водяного пара уменьшаться. В выхлопе почти не образуется угарного газа (СО). В зависимости от степени обеднения смеси выхлопные газы могут содержать токсичные NOx и СН. Небольшое обеднение позволяет повысить экономичность двигателя, но снижает мощность. Сильное обеднение приводит к потере и мощности и экономичности.
Датчик способный измерить состав смеси называется лямбда зонд. Наиболее распространенные циркониевые датчики, которых еще называют датчиком кислорода. При работе двигателя на бедной смеси, и при значительном содержании кислорода в отработавших газах сигнал датчика будет иметь низкий уровень - напряжение в пределах 0,05. 0,1 В. А для богатой смеси соответственно высокий уровень сигнала - 0,9. 1 В.
Вышесказанное есть общеизвестная информация, и относится к идеальному сгоранию гомогенной смеси. В реальном двигателе процессы могут иметь значительное отличие от идеальных условий. Например, если в одном из цилиндров будет неисправна свеча, и не будет происходить сгорание топлива, тогда топливовоздушная смесь из данного цилиндра будет попадать в выхлопную систему, а это кислород (O2) и топливо (СН). Не зависимо от того какая смесь сгорает в других цилиндрах двигателя, хоть богатая, хоть бедная, в выхлопных газах всегда будет значительное количество кислорода и топлива. Второй пример, когда не работает форсунка одного из цилиндров, и весь воздух с данного цилиндра попадает в выпускную систему. Для любого состава смеси в остальных цилиндрах в отработавших газах двигателя будет большое содержание кислорода.
Если считать, что циркониевый лямбда-зонд реагирует на кислород в выхлопных газах, то можно предположить что в случае неисправности одной свечи или одной форсунки многоцилиндрового бензинового двигателя наш датчик будет всегда выдавать низкий уровень сигнала даже при работе исправных цилиндров на переобогащенной смеси.
Рассмотрим работу системы управления двигателем при работе с коррекцией состава смеси по сигналу датчика состава смеси. Если система управления двигателем получает низкий уровень сигнала с лямбда зонда (около нуля вольт), то на следующих циклах работы количество топлива увеличивается. Когда топлива станет слишком много, датчик зафиксирует богатую смесь и сигнал поднимется до 1 вольта. Реакцией системы будет уже плавное уменьшение количества топлива. И так далее. Такой режим называется работой по замкнутой петле по сигналу лямбда зонда.
Для примера взят автомобиль Audi 1994 года 2,6 V-образный 6-ти цилиндровый. Данный мотор работает как два 3-х цилиндровых и каждая сторона двигателя работает как отдельный банк а так же имеет свой выпускной тракт и состав смеси регулируется отдельно по сигналам двух лямбда зондов. Для проведения эксперимента важно, что система не отключает лямбда регулирование при возникновении пропусков воспламенения в цилиндрах.
Мы вывели на экран осциллографа сигналы с обоих лямбда зондов, а также на сканере отобразили график топливной коррекции для каждого банка цилиндров.
Прогрели двигатель и начали проводить эксперимент.
На записи видно, что оба банка работают по замкнутой петле - датчики попеременно фиксируют то богатую, то бедную смесь. Коррекция топливоподачи по сканеру в диапазоне 0,98 - 1.02 для обоих сторон двигателя.
Мы для эксперимента на данном двигателе под высоковольтные провода подставили контактные проводки, и можем искру любого цилиндра левой головки закоротить на массу. Таким образом, мы можем отключить искру во время работы мотора.
Вернем искру. Сгорание в цилиндре восстановилось, и лишний кислород перестал поступать в выхлопную систему. Датчик показал богатую смесь. Дождемся стабилизации работы двигателя. Топливные коррекции вернулись в норму и находятся в районе 1,00. Датчики снова попеременно показывают богатую - бедную смесь.
Отключим форсунку четвертого цилиндра. В выхлоп будет поступать весь кислород с неработающего цилиндра. Датчик снова показывает бедную смесь, Блок управления увеличивает топливные коррекции. Количество топлива поступающего в 5-й и 6-й цилиндр плавно растет, но весь кислород с 4-го цилиндра все равно поступает в выхлоп. Но когда топливная коррекция достигла 1,23- 1,25, датчик снова показал богатую смесь, не смотря на то, что в выхлопную систему данного банка поступает треть несгоревшего воздуха.
Подключаем разъем форсунки на место и ждем стабилизации работы двигателя. Топливная коррекция вернулась к исходным 0,98 - 1,02.
Теперь отключим искру сразу во всех цилиндрах левой стороны двигателя, Двигатель будет вращаться благодаря работе цилиндров только правой стороны. При этом горения в цилиндрах левой стороны не будет, и к левому датчику кислорода будет поступать воздух и топливо. Датчик видит избыток кислорода и выдает ОВ. Для эксперимента я обогащаю смесь дополнительным топливом из баллончика. Мы видим, что датчик кислорода может показать богатую смесь, даже если в выхлопную систему поступает весь кислород воздуха и топливо без выхлопных газов.
Почему циркониевый датчик кислорода может показать богатую смесь даже при значительном содержании кислорода в выхлопе?
Циркониевый датчик содержит оксид циркония с примесью оксида иттрия. Такой состав создает в кристаллической решетке ячейки со свободными двухвалентными связями, к которым может присоединяться ион кислорода и перемещаться через слой оксида циркония, и перемещать положительный заряд с одной поверхности на другую.
Оксид циркония с обеих сторон покрыт микропористым слоем платины, которая играет роль электродов. Но нагретая платина работает как микрокатализатор для окисления СО и СН на поверхности датчика. Мы знаем, что катализатор начинает выполнять свою функцию только после прогрева. Аналогично и датчик кислорода включается в работу только после прогрева, когда нагретая платина станет работать катализатором, и на поверхности датчика будет происходить реакция между кислородом, который присутствует в выхлопе и частицами угарного газа и несгоревшего топлива. Пока кислорода в выхлопе будет достаточно для реакции полного окисления СО и СН, до тех пор, ионы кислорода из оксида циркония не отбираются, нет движения заряженных частиц через слой оксида циркония, следовательно, напряжение на выходе датчика не возникает, и сигнал будет около ОВ. Платине, как катализатору легче взять кислород с выхлопных газов, чем отобрать его у оксида циркония и тратить энергию на генерирование электрического тока в датчике. Если кислорода в выхлопе станет недостаточно для полного каталитического окисления СО и СН на поверхности платины датчика тогда недостающий атом кислорода будет взят с оксида циркония. Это вызовет движение заряженных ионов кислорода изнутри датчика наружу, и напряжение нашего датчика поднимется до 1В. Такая конструкция датчика позволила получить скачек напряжения при переходе от бедной смеси к богатой.
Каждый раз, когда сигнал датчика имеет высокий уровень, ионы кислорода движутся с внутренней полости датчика в выхлопную систему. Для нормальной работы датчика кислород внутрь датчика должен постоянно поступать из атмосферы. Поскольку датчик генерирует очень слабый ток то и количество кислорода ему достаточно получать по проводам, внутри изоляции между токопроводящих жил.
Нужно следить, чтоб данный путь кислорода не перекрыть. Не допускается обрабатывать разъем датчика кислорода жидкостями типа WD-40. Не допускается пайка проводов с флюсом, который попадает внутрь изоляции провода, перекрывает путь кислороду. Даже использование термоусадочной трубки с клеевым слоем приводит к выходу из строя датчика. Соединять провода датчика кислорода можно только методом обжима и использовать обычную термоусадочную трубку.
Если на сигнальном проводе датчика по отношению к проводу массы или массе датчика появляется отрицательное напряжение более -450мB это результат недостаточного содержания кислорода в эталонной камере в результате герметизации проводов или трещины керамического купола или проникновение выхлопных газов внутрь датчика. В таком случае в режиме принудительного холостого хода, когда в выпускную систему попадает воздух, ионы кислорода движутся через слой оксида циркония в обратном направлении внутрь в эталонную камеру, и напряжение датчика меняет полярность.
Теперь мы можем назвать циркониевый лямбда зонд датчиком избытка кислорода в выхлопных газах. Только если кислорода в выхлопе будет недостаточно для полного каталитического окисления угарного газа и углеводородов, только тогда сигнал датчика примет высокий уровень и будет сигнализировать о богатой смеси.
Теперь становится ясно, почему циркониевый лямбда зонд меняет напряжение скачком, а не пропорционально содержанию кислорода в выхлопе и содержание кислорода в эталонной камере может быть менее 21%. Почему точка переключения находится строго в стехиометрии независимо от типа используемого топлива. Почему датчик может показывать богатую смесь даже при наличии в выхлопе кислорода.
Читайте также: