Схема подключения генератора тесла 250а
Евросамоделки - только самые лучшие самоделки рунета! Как сделать самому, мастер-классы, фото, чертежи, инструкции, книги, видео.
- Лучшие самоделки
- Самоделки для дачи
- Самодельные приспособления
- Автосамоделки, для гаража
- Электронные самоделки
- Самоделки для дома и быта
- Альтернативная энергетика
- Мебель своими руками
- Строительство и ремонт
- Самоделки для рыбалки
- Поделки и рукоделие
- Самоделки из материала
- Самоделки для компьютера
- Самодельные супергаджеты
- Другие самоделки
- Материалы партнеров
Бестопливный генератор Теслы (однофазный, Устройство от Dr Energie) своими руками
Всем доброго дня. На днях получил письмо от человека под ником Dr Energie.
Он написал, что хочет выложить на моем сайте схему безтопливного генератора, назвал ее БТГ Тесла (1-фазный).
Все схемы рисовал я, со слов и с корректировкой Dr Energie (могут быть небольшие ошибки).
Сам он сайты по альтернативной энергии не выходит и выходить не будет.
Описание блоков применяемых в данной установке:
Блок B1:
Блок представляет собой источник постоянного двухполярного напряжения 12 вольт. Источником являются две аккумуляторных батареи на 12 вольт. Можно применить источник и на 24 вольта или больше.
Блок B2:
Блок представляет собой двухполупериодный выпрямитель со средней точкой, на 12 вольт. В нем также стоят электролитические конденсаторы фильтра большой емкости.
Блок B3:
Это самый ответственный блок, он следит за работой всего устройства. В этом блоке находятся: задающий генератор промышленной частоты 50(60) герц, схема слежения за током генератора тока (B4), схема слежения за присутствием высокого напряжения соответствующего генератора (B5), схема контроля и регулирования выходного напряжения на выходе трансформатора TR3, индикация состояния всего устройства.
Блок B4:
Блок представляет собой усилитель тока, выполненный по схеме эмиттерного повторителя. Данный блок работает на низкоомную обмотку L1 выходного трансформатора TR3.
Блок B5:
Блок представляет собой преобразователь низкого напряжения 12 вольт в высокое напряжение 3000 вольт. Выполнен по схеме эмиттерного повторителя. Данный блок работает на низкоомную обмотку L2 выходного трансформатора TR2.
Трансформатор TR1:
Трансформатор представляет собой обычный измерительный трансформатор тока, мотается на обычном трансформаторном железе, соотношение обмоток 1:100. Можно заменить на измерительный шунт.
Трансформатор TR2:
Повышающий трансформатор с 12 вольт на 3000 вольт. Габаритная мощность 10-30 ватт. Мотается на обычном трансформаторном железе, сердечник для удобства лучше брать броневой ленточный. Обмотки для надежности мотаются на противоположных кернах, как на выходном трансформаторе строчной развертки телевизора. Высоковольтную обмотку лучше мотать на секционированном каркасе, как в некоторых неоновых трансформаторах. Соотношение витков L1:L2:L3.1:L3.2 1:1:250:250.
Трансформатор TR3:
Это основной элемент в этом устройстве, так сказать сердце всей системы. Пока могу сказать только одно, в нем не применяется сердечник, нет ни каких хитрых обмоток. Его также нельзя рассчитать как обычный классический трансформатор. Подробности о нем в соответствующем описании данного трансформатора.
Трансформатор TR4:
Обычный понижающий трансформатор с 220 вольт на 12 вольт со средней точкой. Мощность трансформатора 40-60 ватт. Можно применить готовый понижающий трансформатор на 50(60) герц, который имеет две выходные обмотки на 12 вольт.
Блок B1:
Это даже блоком назвать трудно. В нем два аккумулятора на 12 вольт емкостью 7 ампер часов. Два диода выполняют защитную функцию, отключают аккумуляторы от устройства после его запуска. Так же предусмотрен механический выключатель.
Блок B2:
Этот блок представляет собой обычный двухполупериодный выпрямитель, выполненный по мостовой схеме. На выходе выпрямителя стоят два фильтрующих конденсатора большой емкости. Конденсаторы шунтированы резисторами для их разрядки, когда установка выключена. Из-за малого напряжения на выходе выпрямителя, около 14 вольт, необходимости в них нет, поэтому резисторы можно не ставить.
Блок B3:
Данный блок на схеме нарисован в упрощенном виде, но достаточно для того чтобы устройство работало. В нем нет цепей контроля и стабилизации выходного напряжения, а так же контроля работы других блоков. Трансформатор 3TR1 сетевой понижающий трансформатор на 10-12 вольт, мощностью 5-10 ватт. Переменными резисторами 3R1 и 3R2 регулируют напряжение на клеммах X3-2 и X3-3.
В более совершенном устройстве этот блок имеет сложную схемотехнику, и выполняется на микропроцессоре и других специализированных ИС. Можно выполнить на дискретных элементах, но схема будет сложней. Этот блок сердце всей установки, от него зависит корректная работа устройства.
Блок B4, Блок B5:
Эти два блока выполняют одинаковую задачу, поэтому схемотехника у них одинаковая. На рисунке ниже представлена схема только одного блока B4. Блок представляет собой схему эмиттерного повторителя, выход которого работает на низкоомную нагрузку. Нагрузка представляет собой обмотки трансформаторов: для блока B4 обмотка L1 TR3, для блока B5 обмотка L2 TR2. Резисторы 4R1 и 4R2 ограничивают ток через базу транзисторов. Резисторы 4R3, 4R5 и 4R4, 4R6 представляют собой делители напряжения, которые задают рабочий режим транзисторов. Рассчитываются как для обычного усилителя, выполненного по схеме эмиттерного повторителя. Транзисторы 4VT1 и 4VT2 биполярные транзисторы, представляют собой комплементарную пару, что это такое ищите в интернете. Транзисторы должны быть рассчитаны на напряжение не ниже 50 вольт и ток не менее 5 ампер, по соображениям надежности. Устанавливаются на радиаторы площадью около 250 квадратных сантиметров.
Трансформатор намотан на диэлектрическом каркасе, примерный диаметр каркаса 50-75 миллиметров, длина 200-250 миллиметров. Вполне подойдет каркас из пластиковой канализационной трубы диаметром 50 миллиметров. Есть несколько вариантов намотки трансформатора, два из них показаны ниже.
Вариант 1.
Первыми мотаются обмотки L2.1 и L2.2. Намотка производится спаренным кабелем, подойдет обычный двухжильный, плоский кабель в одиночной изоляции. Сечение жилы кабеля 0.5-0.75 квадратных миллиметров. Намотка производится в один ряд до половины каркаса.
Второй мотается обмотка L3. Намотка производится обычным силовым, гибким кабелем. Сечение жилы 4-6 квадратных миллиметров. Намотка производится в два ряда до половины каркаса. Направление намотки такое же, как и обмоток L2.1 и L2.2. Между обмотками прокладывается изоляция толщиной 1-2 миллиметра.
На второй половине каркаса мотается обмотка L1 с отступом от обмоток L3, L2.1 и L2.2 примерно 3-5 миллиметров. Отступ применен для исключения электрического пробоя. Намотка производится обычным силовым, гибким кабелем. Сечение жилы 1.5-2.5 квадратных миллиметров. Намотка производится в два ряда до заполнения каркаса.
Вариант 2.
Первой мотается обмотка L2.1. Намотка производится обычным силовым, гибким кабелем. Сечение жилы кабеля 0.5-0.75 квадратных миллиметров. Намотка производится в один ряд до половины каркаса.
Второй мотается обмотка L3. Намотка производится обычным силовым, гибким кабелем. Сечение жилы 4-6 квадратных миллиметров. Намотка производится в два ряда до половины каркаса. Направление намотки такое же, как и обмоток L2.1 и L2.2. Между обмотками прокладывается изоляция толщиной 1-2 миллиметра.
Третьей мотается обмотка L2.2. Намотка производится обычным силовым, гибким кабелем. Сечение жилы кабеля 0.5-0.75 квадратных миллиметров. Намотка производится в один ряд до половины каркаса. Между обмотками прокладывается изоляция толщиной 1-2 миллиметра.
На второй половине каркаса мотается обмотка L1 с отступом от обмоток L3, L2.1 и L2.2 примерно 3-5 миллиметров. Отступ применен для исключения электрического пробоя. Намотка производится обычным силовым, гибким кабелем. Сечение жилы 1.5-2.5 квадратных миллиметров. Намотка производится в два ряда до заполнения каркаса.
Упрощенный вариант.
Этот вариант отличается от варианта 2 тем, что не мотается обмотка L2.2. Меняется так же трансформатор TR2, из него исключается обмотка L3.2. В таком варианте уменьшается выходная мощность установки, но как вариант тоже подходит.
Еще два варианта выходного трансформатора TR3.
От первых двух вариантов различаются расположением обмоток. В детальном описании этих двух вариантов нет необходимости. Они практически идентичны описанным выше, за исключением одного. Обмотка L3 разбивается на две части. Эти два варианта более оптимальные по сравнению с первыми.
Описание и принцип работы устройства:
Это индуктивно-емкостной трансформатор. Обмотки L2, L3 представляют собой емкость, между ними существует емкостная связь, поэтому эту часть трансформатора можно назвать емкостной трансформатор. Обмотки L1, L3 образуют индуктивный трансформатор с малой индуктивной связью. Влияния обмоток L2 и L3 между собой почти не происходит. Емкостная связь между ними очень маленькая, из-за взаимного расположения. Индуктивная связь такая же, как между L1 и L3, но тока в обмотке L2 почти нет, так как цепь обмотки L2 разомкнута для тока. Вариантов выполнения выходного трансформатора много, лучший вариант можно определить экспериментальным путем.
Изменения и дополнения:
Схема рабочего генератора Тесла, дающего бесплатную электроэнергию . Генератор позволяет экономить на энергоносителях до 95%. В статье дано понятие "электрического" тока, электрон. Даны рисунок, видео работы генератора бесплатного электричества.
Перед тем как рассмотреть схему генератор Тесла, проясним что представляет собой -"электрический" ток- с точки зрения эфиродинамики и микроквантовой физики.Согласно эфиродинамике :
Магнитное поле, вызываемое током,-это ротор-увлекаемого током потока внешнего эфира. Таким образом- ток по всей длине проводника будет пропорционален количеству движения потока эфира, проходящему через проводник за единицу времени.
Согласно микроквантовой теории , если представить провод как некую трубу по которой передается "электрическая" мощность, то агентом передающим мощность является пространство внутри провода (трубы) и внешнее пространство, сама же мощность - это поток микроквантов . Эти два пространства находятся в неразрывной связи, поскольку представляют собой одно и то же пространство только разной плотности. А электроны (это фотоны захваченные внешней оболочкой атома ) , которые являются непременной составляющей обычного (в школьной физике) "электрического" тока, тут только мешают процессу передачи электрической мощности. Поскольку именно они обуславливают активные и индуктивные ёмкостные сопротивления провода.
Образно говоря если представить "электрический" ток в проводнике - в виде воды текущей в трубе, то электроны - это булыжники двигающиеся в обратном течению воды направлении, а молекулы воды- это микрокванты (амеры эфира) мощности электрического тока.
Теперь разберём микроквантовые эфирные потоки, в т.ч. потоки "электрической" мощности, или "электрические" токи. Микроквант в микроквантовой физике, аналогичен амеру эфира в эфиродинамике. В отличие от электронов микрокванты передвигающиеся по проводу методом телепортации изначально движутся со скоростями превышающими скорость света, и к тому же они гасят тепловые фотоны в момент перехода их в линейное состояние. Согласно микроквантовой теории:
"Электрический" ток - это поток микроквантов в проводнике, тормозимый "электронами" в проводнике.[А.Хажакян, Теория микроквантов , Яндекс].
Поэтому напряженность магнитного поля и мощность которую можно передать или получить используя микроквантовые токи без разрушения структуры проводника может быть на десятки порядков выше. Как использовать микроквантовые токи для генерации мощности впервые придумал Никола Тесла. Его схему с незначительными доработками Вы видите ниже.
Данное устройство опасно делать самостоятельно! Возможны форс-мажорные обстоятельства и ухудшение здоровья испытателей.
Краткое содержание представляемого видео:
- Модель движения электронов в проводнике
- Модель движения микроквантов в материи под действием напряжения
- Объяснение работы микроквантового усилителя мощности
- Объяснение приемопередатчика микроквантов
- Объяснение эффекта схлопывания пространства
- Автомобиль Теслы
- Мотор Эдвина Грея.
Данное изобретение можно смело отнести к альтернативным источникам электроэнергии. Благодаря своим возможностям, генератор Тесла является возможной заменой солнечным батареям. Он отличается простой конструкцией, которая легко собирается и минимальным количеством используемых материалов. Соответственно, и финансовые затраты тоже незначительные. Отдельно взятое устройство конечно не сравнится с аналогичной солнечной панелью, но если соединить в одно целое сразу несколько единиц, то может вполне получиться приемлемый результат.
Многие ученые до сих пор ведут споры об использовании действия свободной энергии при создании такого устройства. Однако, большинство современных технических достижений в самом начале их открытия, тоже считались недосягаемыми для практической реализации. До настоящего времени остались неисследованными многие сферы, связанные с энергией и физическими полями. Хорошо изучены лишь те виды, которые поддаются исследованиям, измерениям и прочим ощущениям. Тем не менее, существуют явления, не поддающиеся каким-либо замерам, поскольку отсутствуют даже приборы для этих целей.
В категорию неисследованного попал и трансформатор Тесла, поскольку принципы его работы расходятся с общепринятыми теориями, связанными с производством электроэнергии. Многим ученым он кажется своеобразным вечным двигателем, не требующим энергии для своей работы, да еще и способным производить другие виды энергии – электрическую или тепловую. Эти утверждения связаны с использованием генератором свободной энергии, происхождение которой до сих пор никак теоретически не обосновано. То есть, на основе известных законов, понятий и определений делается вывод, что такая конструкция на практике не будет работать, поскольку она идет вразрез с законом сохранения энергии и не соблюдает его принцип.
Пока ученые спорят, некоторые домашние умельцы создают вполне работоспособные модели, подтверждающие на практике теоретические предположения. Для более глубокого понимания процессов, следует внимательно изучить конструкцию и принцип действия этих устройств.
Современный взгляд и новые разработки
Следует отметить, что с точки зрения физики понятия свободной энергии как такового не существует. Но практика показала, что энергия обладает постоянством. Если рассматривать этот вопрос детально, то генераторное устройство выделяет мощность, которая после выработки возвращается обратно. Это приводит к тому, что приток энергии посредством гравитации и времени не виден пользователю. Если образуется процесс больше трех измерений, то появляется свободное перемещение частиц.
Одним из самых известных ученых, который интересовался такими разработками, был Джоуль. С целью выработки мощности использование схем генераторных устройств приведет к серьезным потерям. Это связано с тем, что распределение в системе централизовано и выполняется под контролем.
Из последних новых разработок следует выделить простой двигатель Адамса, а ученый Флойд смог вычислить состояние материала в нестабильном виде.
Ученые создали много конструкций и изобретений по получению энергии, но на рынке пока еще не появилось ни одного устройства, которое можно использовать в быту.
Андрей Тиртха рассказал о получении свободной энергии в домашних условиях.
Принцип работы генератора Тесла
Представленное генераторное устройство работает под влиянием внешних процессов или окружающей среды. Источниками энергии становятся вода, ветер, различные вибрации, создающие колебания и другие факторы. В этом состоит его главный принцип работы.
Простейший магнитный генератор состоит из катушки с двумя обмотками. Работа вторичного элемента осуществляется под действием вибрации, в результате, так называемые эфирные вихри взаимодействуют с его поперечным сечением. Это приводит к образованию напряжения во всей системе и к дальнейшей ионизации воздуха. Данные процессы возникают на самом конце обмотки, образуя электрические разряды.
В конструкции прибора используется трансформаторный металл, усиливающий индуктивные связи. Между элементами обмотки возникают колебания, а разряды образуются в виде плотных сплетений.
Другая схема генератора использует мощность, вырабатываемую самим оборудованием. Для того чтобы запустить генератор необходим внешний толчок в виде импульса, создаваемого аккумулятором. Прибор состоит из двух металлических пластин, одна из которых монтируется наверху, а другая устанавливается в землю. Между ними в цепь включается конденсатор.
Общие принципы действия
Последовательность функционирования такого БТГ заключается в следующем:
Исходная мощность от питающей батареи (например, солнечной) накапливается высокоемкостным конденсатором.
По достижении заданной разности потенциалов конденсатор разряжается, и передает импульс на первичную обмотку трансформатора. В качестве промежуточного звена используется емкостной каскад из двух параллельно соединенных диодов и конденсатора, который сглаживает неизбежные пульсации напряжения.
Мощность воспринимается катушкой индуктивности, которая подключена к первичной обмотке трансформатора. Вторичная обмотка представляет собой последовательно соединенные колебательный контур и ещё одну катушка индуктивности, параллельно с которой работает диодный мост, Назначение последнего – ограничить пиковые значения мощности, которые теоретически могут достигать бесконечности.
Часть первичной обмотки трансформатора резервируется под нагрузку, а часть подсоединяется к земле. Это необходимо для ограничения вырабатываемой мощности и продления срока службы элементов схемы.
Во избежание самопроизвольного импульсного разряда все остальные элементы схемы – первичный колебательный контур, а также выводы первичной и вторичной обмоток трансформатора заземляются.
Таким образом, потребляемая схемой энергия является постоянной и достаточной для питания нагрузки –системы локального освещения, а также приводов каких-либо небольших приборов или устройств. Вместе с тем, ввиду импульсности выходного напряжения, БТГ на трансформаторе нельзя применять для питания двигателей постоянного тока.
Важно! Следует учесть, что любой внешний источник энергии – солнечная батарея, магниты и пр. – не отличается регулярностью мощности
Поэтому, несмотря на отсутствие механических систем передачи, часть энергии будет рассеиваться в контурах и теряться из-за электрического сопротивления проводов.
Машина для генерирования свободной энергии, изобретенная Джоном Бедини, состоит из следующих узлов:
- Электромагнитной двухслойной катушки.
- Сердечника из скрепленных вместе сварочных прутков.
- Пары магнитов.
- Ротора, располагаемого над сердечником.
- Изолирующей основы – подставки из дерева или плексигласа.
- Диодного моста с транзистором и сглаживающим конденсатором.
Нагрузки, один вывод которой соединяется с вторичной цепью, а второй – с питающей внешней батареей. Батарею можно подключить к усилителю, тогда мощность установки возрастет.
Двигатель Бедини работает так. Двухслойная катушка представляет собой обычный СЕ-генератор на трансформаторе с кз витком. При этом внешний провод получает питание от батареи, а внутренний передает мощность во вторичную цепь, формируя при этом в массивном сердечнике электромагнитное поле (оно тем сильнее, чем массивнее сердечник, и чем больше витков в первичной обмотке). Вращаясь в переменном магнитном поле, этот сердечник образует ротор двигателя. Корпус транзистора является коллектором, один из полюсов которого подключается к излучателю. Второй полюс подсоединяется ко вторичной обмотке трансформатора. При достаточно надежной изоляции обмоток вся энергия, генерируемая вращающимся ротором, будет направляться в нагрузку.
При сборке схемы двигателя Бедини следует придерживаться следующих обязательных правил:
Позаботиться о надежном креплении всех деталей составного сердечника первичной обмотки, поскольку при вращении ротора часть прутков может рассоединиться между собой, и существенно ослабить магнитное поле первичной обмотки. Рекомендуется склеивать стержни суперстойким клеем;
Для контроля параметров вырабатываемой мощности рекомендуется использовать неоновую следящую лампу, которая подсоединяется параллельно излучателю и коллектору. При включении схемы эта лампа не должна загораться (пороговое напряжение 80…100 В); в противном случае ток во вторичной обмотке слишком велик, что приведет к порче транзистора.
Батареи питания должны быть полностью исправными, в заряженном состоянии и не иметь утечки на корпус, иначе они могут взорваться.
Параметры и характеристики
В работе электрогенератора Тесла используется принцип трансформатора с отсутствующим сердечником. Конструкция состоит из первичной катушки с витками проводов большого диаметра, и вторичной катушки с витками из более тонких проводов. В приборе без магнита отсутствует традиционный ферромагнитный сердечник, что и отличает его от обычного трансформатора. Благодаря такой конструкции, уровень взаимной индуктивности катушек значительно снижается. Большое количество витков на вторичной катушке, способствует образованию высокого напряжения при минимуме энергетических затрат.
Данная теория нашла наглядное практическое подтверждение. Домашние умельцы, используя генератор свободной энергии мощностью 40 Вт, получают напряжение до 500 киловольт. Это приводит к образованию длинных красивых разрядов, достигающих двух или трехметровой величины. Попадая в атмосферу, высоковольтный разряд становится похож на своеобразную корону. С обычным трансформатором невозможно достичь такой продуктивной работы и наглядных результатов.
Помимо воздушных эффектов, происходит образование длинных мобильных зарядов при контакте с заземленными предметами. Следует отметить, что все разряды обладают определенными частотами, а другие частоты кратны первоначальному значению.
Каждый такой высоковольтный заряд состоит из определенного набора частот, способных разбивать молекулы газов, независимо от устойчивости любой из них. Процесс расщепления сопровождается появлением темно-синего цвета зеленоватого оттенка.
Можно ли сделать бестопливный генератор своими руками
Если вы всё ещё сомневаетесь, попробуйте собрать такой генератор самостоятельно. В сети есть много разных схем по сбору БТГ в домашних условиях. Среди них нашлось два довольно простых способа: мокрый (или масляный) и сухой.
Масляный способ сбора БТГ
- Трансформатор переменного тока – необходим для создания постоянных сигналов тока;
- Зарядное устройство – обеспечивает бесперебойную работу собранного устройства;
- Аккумулятор (или обычная батарея) – помогает накоплению и сохранению энергии;
- Усилитель мощности – увеличит подачу тока;
Трансформатор нужно подключить сначала к батарее, а затем к усилителю мощности. Теперь к этой конструкции подсоединяется зарядное устройство, и портативный БТГ готов!
Сухой способ
- Трансформатор;
- Прототип генератора;
- Незатухающие проводники;
- Динатрон;
- Сварка.
Объедините трансформатор с прототипом генератора при помощи незатухающих проводников. Используйте для этого сварку. Динатрон нужен для контроля работы готового прибора. Такой генератор должен проработать около 3 лет.
Успех и эффективность этих конструкций во многом зависят от вашей удачи. Она же потребуется, чтобы найти все необходимые элементы, указанные в инструкции. Но наверно вы уже догадались, что всё это вряд ли будет работать.
Практическая реализация проектов
Приведенный в предыдущем пункте пример описывает только часть устройства. Там нет точного указания электрических величин, формул.
Своими руками сделать подобную конструкцию можно. Но придется искать схемы возбуждающего генератора, совершать многочисленные эксперименты по взаимному расположению блоков в пространстве, подбирать частоты и резонансы.
Говорят, что кому-то удача улыбнулась. Но в открытом доступе найти полные данные, или заслуживающие доверия доказательства невозможно. Поэтому далее будут рассмотрены только реальные изделия, которые действительно можно сделать дома самому.
На следующем рисунке изображена принципиальная электрическая схема. Она собирается из недорогих стандартных деталей, которые можно приобрести в любом специализированном магазине. Их номиналы и обозначения указаны на чертеже. Затруднения могут возникнуть при поиске лампы, которая не выпускается в настоящее время серийно. Для замены можно использовать 6П369С. Но надо понимать, что этот вакуумный прибор рассчитан на меньшую мощность. Так как элементов немного, допустимо использование простейшего навесного монтажа, без изготовления специальной платы.
Электрическая схема генератора
Обозначенный на рисунке трансформатор – это катушка Тесла. Ее наматывают на трубке из диэлектрика, руководствуясь данными из следующей таблицы.
Количество витков в зависимости от обмотки и диаметра проводника
Свободные провода высоковольтной катушки устанавливают вертикально.
Чтобы обеспечить эстетичность конструкции, можно сделать своими руками специальный корпус. Он же пригодится для надежной фиксации блока на ровной поверхности и последующих экспериментов.
Один из вариантов конструкции генератора
После включения аппарата в сеть, если все сделано правильно, а элементы исправны, можно будет любоваться коронарным свечением.
Приведенную в предыдущем разделе схему из трех катушек, можно использовать совместно с этим устройством для опытов с целью создания личного источника бесплатной электроэнергии.
Коронарное излучение над катушкой
Если предпочтительна работа с новыми комплектующими деталями, стоит рассмотреть следующую схему:
Схема генератора на полевом транзисторе
Основные параметры элементов приведены на чертеже. Пояснения к сборке и важные дополнения указаны в следующей таблице.
Пояснения и дополнения к сборке генератора на полевом транзисторе
Безграничный источник бесплатной энергии
Пусть читателя не смущает отсутствие множества деталей, формул и объяснений. Все гениальное – просто, не правда ли? Здесь изображена принципиальная схема одного изобретения Тесла, которое до наших дней дошло без искажений, исправлений. Эта установка вырабатывает ток из солнечного света без специальных батарей и преобразователей.
Но не стоит спешить в магазин. Производительность такой системы минимальна (ниже таблица с информацией по устройству).
Точные данные эксперимента
В солнечный день после 10 часов измерительный прибор показал 8 вольт на клеммах конденсатора. За несколько секунд в таком режиме разряд полностью был израсходован.
Всем хеллоу, сегодня речь пойдет о младшем брате катушек Теслы, генераторе факельного разряда, или "факельнике". Этот экземпляр был собран мной больше года назад, но мне не хватило терпения настроить его до конца, да и были существенные косяки в конструкции и исполнении. Недавно же я довел устройство до ума, и, раз уж пошла речь о высоковольтных устройствах, таких как ZVS-генератор и генератор Ройера, описанных в недавних статьях, решил написать статейку на Хабр, может кому будет интересно.
Что это такое, зачем нужно и как работает?
Генератор факельного разряда представляет собой вполне стандартный высокочастотный генератор, собранный по схеме типа "емкостная трехточка" на MOSFET-транзисторе со стабилизацией частоты LC-контуром (см. схему ниже).
Схема устройства
Практического применения схема не имеет, разве что для слишком уж специфичных задач, где необходимы температуры в несколько тысяч градусов, и создается как и все катушки Теслы / лестницы Иакова / качеры Бровина чисто в рамках спортивного интереса и для получения эстетического удовольствия при виде взрывающихся транзисторов высокочастотного факела на кончике плавящегося терминала.
Но как же достигается образование факела на кончике разрядника? Все достаточно просто: сам генератор достаточно мощный, вся система настроена в резонанс, и в колебательном контуре L2-C2-C3 образуется высокочастотное напряжение большой амплитуды, а поскольку к "горячему" концу контура подключена катушка L3, которая, по сути, является вторым колебательным контуром, так как ее резонансная частота должна быть равна резонансной частоте контура L2-C2-C3, на втором конце катушки L3 напряженность высокочастотного поля достигает таких значений, что выход энергии с острия терминала наблюдается в виде коронного разряда, который из-за большой частоты работы устройства чем-то напоминает пламя свечи. Потребляемая мощность при питании от источника напряжением 30 вольт около 200 ватт, длина факела при этом 4.5 см.
Сборка и настройка устройства
Сразу скажу, что настройка каждого такого генератора проводится исключительно экспериментально, рассчитать что либо кроме резонатора практически невозможно, поскольку схема высокочастотная, резонансная, и влияние паразитных емкостей и индуктивностей будет отличаться в каждом конкретном варианте сборки. Советую делать все провода как можно короче (этим я немного пренебрег) и набраться терпения, если еще не страшно, продолжаем, я постараюсь объяснить все как можно подробнее :)
НЕБОЛЬШОЙ ДИСКЛЕЙМЕР: не подносите ближе одного метра к работающему генератору любое оборудование и электронику, это может повлиять на ее работу, или вывести из строя, не стоит использовать в качестве источника питания импульсные блоки питания, лучше всего аккумулятор или блок питания на основе сетевого трансформатора с выпрямителем. Температура факела превышает несколько тысяч градусов. Будьте осторожны!
Перед сборкой не помешает рассмотреть основные составные части генератора. Одной из них является обычный усилитель A-класса на MOSFET-транзисторе Q1. Цепь R1-R2-RP1-D1 задает необходимое начальное напряжение на затворе, и, как следствие, ток покоя каскада. Проще говоря, эта цепь позволяет как-бы "приоткрыть" транзистор для введения его в нужную область вольт-амперной характеристики и обеспечения работы транзистора "в режиме". Дроссель L1 является нагрузкой каскада, и образует с конденсатором C1 Г-образный LC фильтр, подавляющий высокочастотные помехи, создаваемые генератором в цепях питания. Следующая часть - резонансный контур L2-C2-C3, образуемый индуктивностью и емкостным делителем напряжения C2-C3, к точке соединения конденсаторов которого подключен затвор транзистора Q1, обеспечив таким образом положительную обратную связь мы превратили усилитель в автогенератор, частота работы которого зависит от параметров колебательного контура L2-C2-C3. Последняя часть генератора - катушка L3, которая, как было описано выше, в паре с терминалом образует второй колебательный контур. На этом рассмотрение узлов устройства считаю исчерпывающим, переходим к сборке и настройке генератора.
Для начала соберем основу генератора: усилитель A-класса с Г-образным фильтром и цепью смещения затвора. Транзистор необходимо установить на массивный радиатор, нагрев в процессе работы будет адским. Хорошо подходят радиаторы охлаждения центральных процессоров ПК. В качестве основания я выбрал стеклотекстолит, а также добавил винтовой зажимной разъем и выключатель в конструкцию
Основа генератора
По центру разместился транзистор с обвязкой. Хорошо работают IRFP250N, IRFP260N, их я проверял лично, есть информация что подходит IRFP460N. Стабилитрон любой от 5.6 до 12 вольт (возможно, подойдет супрессор, сам не пробовал), резистор R1 1-1.5K, мощность не менее 0.5 ватта, R2 1-5.1K, мощность любая, подстроечный резистор PR1 10-100K, очень рекомендую взять многооборотистый, проще будет настраивать ток покоя.
Транзистор Q1 с обвязкой R1-R2-RP1-D1
Слева от транзистора разместился керамический фильтрующий конденсатор, набранный из 20 элементов поверхностного монтажа емкостью по 4.7 мкФ каждый. Данная сборка должна иметь емкость 90-100 мкФ, рабочее напряжение в два раза больше питающего и обязательно состоять из любого количества керамических конденсаторов, обычные электролитические или танталовые конденсаторы при таком уровне и частоте пульсаций просто взрываются.
Фильтрующий конденсатор C1
Далее мотаем и добавляем в конструкцию дроссель L1. Магнитопровод обязательно ферритовый, другие не работают, даже не всякие ферритовые хорошо работают, форма любая, габаритная мощность не менее 100 ватт, количество витков около 20, провод любой 0.8 и более мм диаметром, предпочтительно литцендрат или многожильный, количество витков и сердечник подбираются экспериментально. У меня лучше всего работало на двух ферритовых кольцах-фильтрах с проводов мощных блоков питания, соединенных вместе, намотал 22 витка каким-то проводом МГТФ, он хоть и тонковат, но многожильный и хорошо держит нагрев. Именно такой дроссель я и оставил в итоге.
Дроссель L1
Теперь пора отрегулировать ток покоя. Подключаемся микроамперметром в разрыв точки соединения дросселя L1 и стока транзистора Q1, при этом контур L2-C2-C3 и катушка L3 должны быть отключены, выкручиваем подстроечный резистор RP1 в минимум и подаем 15-20 вольт на схему, этого более чем достаточно чтобы получить факел в сантиметр-полтора и настроить систему. При этом все должно быть так как на схеме ниже. Медленно подкручиваем резистор RP1, пока ток покоя не будет в районе 150 мА, в дальнейшем его можно изменять при настройке, но после 250 мА сильно вырастает нагрев, а при токе ниже 100 мА может срываться или не запускаться генерация, оптимально 150-200 мА.
Схема подключения миллиамперметра
Настало время подключить контур L2-C2-C3. Катушка L2 особо не критична, должна иметь диаметр оправки 30-35 мм и 7-12 витков толстого провода, 1 и более миллиметра диаметром. Можно найти готовые катушки как на фото ниже, они достаточно распространены и идеально подходят для этой схемы, в странах постсоветского пространства их несложно найти практически на любом радиорынке ил радиобарахолке, параметры особо не критичны. Характеристики моей катушки: диаметр керамического основания 35 мм, 8 витков посеребренным медным проводом 2.5 мм диаметром. Катушка будет слегка нагреваться.
Контурная катушка L2
Контурный конденсатор C3 должен быть обязательно высококварным, то есть должен работать с большими реактивными мощностями, идеально подходят конденсаторы К-15У, я испытывал два как на фото ниже, 100 пФ и 150 пФ, оба работают нормально, нагрев не более 40 градусов. Другие конденсаторы, я испытывал КВИ-2 и КВИ-3, очень сильно греются, их диэлектрик не предназначен для работы на таких частотах и мощностях.
Контурные конденсаторы C3
Конденсатор C2 в нижней части емкостного делителя напряжения любой керамический 250 и более вольт, но, почему-то хорошо работают именно КСО. Поскольку для настройки нужен большой ассортимент конденсаторов, а у меня есть мешок КСО, именно их я и испоьзовал.
Конденсатор C2
Точного номинала C2 сказать невозможно, этот конденсатор подбирается исключительно экспериментально, поэтому убираем миллиамперметр, и собираем схему полностью, но без катушки L3 и терминала. Ставим с начала конденсатор C2 1нф, подаем питание и отверткой проверяем дугу с точки подключения резонатора. Если дуги нет, увеличиваем емкость C2. Проверить, началась ли генерация, можно неоновой лампочкой, поместив внутрь L2, если светится, значит все хорошо. При дальнейшем увеличении емкости C2 потребляемая мощность и дуга будет расти, до какого-то предела, затем генерация сорвется (то есть, при увеличении емкости, после какого то предела, дуга пропадет, а ток потребления резко упадет), нам надо подобрать емкость на 100-300 пФ ниже чем емкость, при которой происходит срыв. Проще говоря, подбираем емкость C2 до тех пор, пока дуга и мощность не станет максимальной, но генератор будет стабильно запускаться и работать. У меня срывалась генерация при номинале C2 более 3,6 нФ, в итоге я оставил 3,4 нФ. Дуга при 15 вольтах питания получалась как на фото ниже. На этом настройка первого резонансного контура закончена.
Настройка первого резонансного контура
Итак, финал близко! Переходим к расчету резонатора L3 и изготовлению терминала, для этого нам надо знать частоту работы генератора, измерить ее можно осциллографом или частотомером (НЕ ПОДКЛЮЧАЙТЕ измерительное оборудование напрямую к контуру, для измерения достаточно просто положить провод на расстоянии нескольких десятков сантиметров от работающего генератора) или поймать на SDR-радио и посмотреть центральную частоту на спектре. Частота моего экземпляра составила 11.75 МГц. Далее, исходя из диаметров оправки и провода рассчитываем катушку, так чтобы ее резонансная частота была равна частоте генератора, которую мы измерили, мотать надо проводом 0.8 и более мм в диаметре, и на 20-30 процентов больше расчетного количества витков. Если рассчитывать не вариант, мотаем заведомо больше витков. Подсоединяем катушку L3 на свое место, и, отматывая по одному витку, начинаем поиск резонанса, который ознаменуется появлением факела. Когда факел будет максимально длинным, подключаем терминал. Резонанс немного уйдет, и надо будет отмотать еще несколько витков, чтобы факел с нашим терминалом был максимально большим. если вы отмотали лишнее, можно добавить виток снизу (так сделал я) или немного увеличить терминал. Катушка у меня получилась 64 витка по расчету, а фактически больше 70, диаметр оправки 32 мм, мотал проводом диаметром 1 мм. Фото катушки L3 вместе с терминалом ниже.
Катушка-резонатор L3 с разрядником
С разрядником отдельная история, он будет постоянно выгорать, лучше всего чтобы конструкция была модульной, например, как у меня, на винтовых зажимах, для того чтобы иметь возможность заменить рабочее тело терминала. А вот с материалом не все так просто, в идеале - вольфрам, но я использовал медь, благодаря хорошей теплопередаче на небольших мощностях выгорания практически не было, хороший вариант - графит, но он должен быть чистым, иначе стержень трескается, помимо этого графит после каждого остывания будет немного осыпаться. Тело разрядника должно быть достаточно массивным, чтобы успевать рассеивать тепло от электрода без расплавления, но не иметь слишком большую длину, иначе окажет сильное влияние на емкость резонатора и уведет резонанс. На этом разбор отдельных элементов и настройку системы можно считать оконченной!
Собранный и настроенный генератор
Заключение
Итак, статья вышла достаточно длинной, но я постарался объяснить все максимально подробно, если будут вопросы, вы можете задать их в комментариях, как увижу, непременно отвечу. Желаю удачи всем, кто собрался повторить проект, и давайте посмотрим на то, ради чего все мы здесь собрались - на электронный огонь:
Электронное пламя
Буду рад, если статья оказалась полезной или интересной! Всем добра :)
Читайте также: