Принцип работы турбины на бензиновом двигателе вольво
Турбокомпрессор или попросту турбина – это дополнительное устройство двигателя, которое для своей работы использует энергию отработавших газов. Что позволяет увеличить мощность двигателя на величину от 25% до 100%. Прежде чем понять, как работает турбокомпрессор, стоит рассмотреть функционирование двигателя внутреннего сгорания.
Принцип работы ДВС
Любой двигатель внутреннего сгорания, дизельный или бензиновый, работает на принципе получения энергии, образующейся от воспламенения топливовоздушной смеси в камерах сгорания. Через впускные клапаны в цилиндр подается отфильтрованный внешний воздух и впрыскивается топливо, причем при пассивной подаче воздуха, в цилиндр подается дозированное количество топлива. Именно эта смесь сгорает в цилиндре и заставляет двигаться поршень, который передает свою кинетическую энергию на ходовую систему автомобиля. Чем больше такой смеси подается и сгорает в цилиндрах, тем больше выходной крутящий момент и соответственно выше общая мощность мотора.
Принцип работы турбины
Для увеличения подачи воздуха в цилиндр, без изменения объема самого цилиндра, используют турбокомпрессор. При работе турбины используются продукты сгорания топливной смеси, которые приводят в действие роторный механизм турбокомпрессора, с помощью которого атмосферный воздух принудительно нагнетается в цилиндры (турбонаддув). И, благодаря этому, в цилиндр подается и большая дозировка топлива. Во время нагнетания, воздух может нагреваться, из-за чего уменьшается его плотность и масса в цилиндрах. Для подачи большего количества воздуха, его необходимо охладить. Для лучшего охлаждения используется радиаторное устройство, называемое интеркулером, который устанавливается на выходе из холодной части турбокомпрессора и через который проходит воздух перед попаданием в цилиндры. На следующем этапе поршень всасывает этот охлажденный воздух через впускные клапаны и одновременно в камеру сгорания подается топливо, образуется топливовоздушная смесь. Возгорание топливной смеси происходит от искры (бензиновые двигатели), либо от сжатия (дизельные двигатели). После того, как произошло сгорание порции смеси, продукты горения выбрасываются через выпускной клапан и попадают снова в турбину, на ее ротор. Таким образом, она работает без участия движущих частей двигателя, используя энергию потока выхлопных газов.
Для каждого двигателя турбокомпрессор подбирается индивидуально, исходя из его собственной мощности и объема. Причем величина наддува зависит от геометрических параметров (размеров) улиток, компрессорного колеса, ротора турбины. Некоторые конструкции двигателей оборудуют не одной турбиной, а двумя: одинакового размера – би-турбо, разного размера – твин-турбо. В последнее время широкое распространение получили турбокомпрессоры с механизмом изменяемой геометрии. Стоит отметить, что сложность, а соответственно и стоимость ремонта турбины зависит от ее конструктивных особенностей и модификации.
Механизм изменяемой геометрии
Такой механизм позволяет дозировать подачу отработавших газов на колесо в турбине (ротор). Тем самым, позволяет оптимизировать работу турбокомпрессора на различных оборотах.
Это достигается за счет движения специальных лопаток, смонтированных на кольце геометрии. Они синхронно передвигаются, получая движение от вакуумного актуатора или электронного сервопривода в определенный момент, и контролируют наддув. Как правило, устанавливаются они на дизельных ДВС, потому как температура выхлопных газов у бензиновых моторов выше, чем у дизеля, соответственно лопатки геометрии могут деформироваться. Такие турбины позволяют оптимизировать процесс турбонаддува, что приводит к уменьшению расхода топлива и вредных выбросов при одновременном повышении мощности и крутящего момента.
Многие автомобилисты ошибочно полагают, что турбокомпрессор начинает включаться в работу с оборотов мотора от 1500-2000 об/мин. На самом деле, он запускается сразу после заводки автомобиля и работает на холостом ходу. А оптимальных оборотов достигает в диапазоне свыше 1500 об/мин.
Турбокомпрессор достаточно надежный агрегат, однако если Вы столкнулись с его поломкой, решить проблему Вам помогут специалисты ТурбоМикрон. Мы производим замену турбины на автомобиле, а также ремонт снятых с авто турбокомпрессоров.
В этой статье описываются основы конструкции турбокомпрессора Volvo Trucks, а также возможные проблемы в эксплуатации. Понимание данных вопросов способствует определению причин выхода из строя турбины Вольво. Купить, заказать новый и бу.
Причины выхода из строя турбокомпрессора Вольво. Турбина Volvo Trucks представляет собой агрегат со свободно вращающейся турбиной, частота вращения которой может превышать 80 000 об/мин. При максимальных оборотах линейная скорость рабочей поверхности подшипника скольжения может превышать 30 м/с (100 футов/с), а энергия, накопленная во вращающихся узлах, может равняться мощности самого двигателя Данные конструктивные особенности требуют практически идеальной балансировки турбины и соосности всех вращающихся деталей, а также тщательного соблюдения правил эксплуатации и технического обслуживания турбины. Помимо отказов самого турбокомпрессора, большинство его отказов обычно связаны с неправильной эксплуатацией турбины, например, блокировкой впускного воздуха в воздушном фильтре.
При отказе турбокомпрессора обследованию обычно подвергается только отказавшие узел или деталь. Однако помимо этого необходимо также своевременно получить информацию о состоянии систем смазки турбины, впуска воздуха и выпуска отработавших газов до отказа турбокомпрессора поскольку данные узлы непосредственно влияют на его долговечность турбины и чаще других приводят к его выходу из строя турбины. Следует зарегистрировать все данные о параметрах давления турбины , имевшихся утечках, помехах, инородных материалах, высоких температурах, ослабленных соединениях в системе газораспределения двигателя или недавнем ремонте турбины.
В большинстве случаев причиной отказа турбокомпрессора служат дефекты систем впуска воздуха и выпуска отработавших газов в двигателе. Например, при значительной блокировке впускного воздуха может произойти следующее:
1. Чрезмерная торцевая нагрузка может вызвать ускоренный износ упорного подшипника в турбине
2. Кроме того, в этом случае могут существенно возрасти обороты турбокомпрессора
Чрезмерно высокие температуры отработавших газов могут нарушить работу системы смазки турбины и разрушить структуру металла в двигателе. Посторонние материалы могут попасть в турбокомпрессор через системы впуска воздуха и выпуска отработавших газов турбины. Следовательно, при анализе причин отказа турбокомпрессора необходимо зафиксировать основные параметры данных систем турбины.
Состояние системы смазки турбины также играет важную роль в обеспечении безотказной работы турбокомпрессора, поскольку она выполняет три главные функции: уменьшение трения, охлаждение и очищение. Перебои в подаче масла длительностью всего несколько секунд могут привести к катастрофическим последствиям. Исключительно важно, чтобы при работе турбины через его систему смазки проходило достаточное количество масла, способное обеспечить работоспособность полностью разгруженной системы подвески и стабилизации, а также отвод избыточного тепла в турбине. Существует множество причин, по которым поток масла через турбокомпрессор может быть нарушен или заблокирован. В масле могут содержаться крупные абразивные частицы, которые способны нарушить масляную пленку и вызвать механическое повреждение вращающихся деталей турбины. Таким образом, помимо достаточного количества масла в системе смазки необходимо поддерживать его высокое качество. Перед проверкой отказавшего турбокомпрессора необходимо определить следующие основные параметры системы смазки турбины, характеризующие количество и качество масла:
1. Тип и вязкость применяемого масла в двигателе
2. Уровень масла по мерному щупу в двигателе
3. Определение состояния масляного фильтра в двигателе, а также проверка бумажного фильтрующего элемента для двигателя
4. Плановый отбор проб масла S•O•S. в двигателе
5. Информация от оператора машины об отклонениях от нормы показаний давления в системе смазки или других проблемах двигателя, предшествовавших отказу турбины
Адрес: Московская область, поселок Октябрьский, ул. Ленина, д. 41
Как работает система PowerPulse против турболагов?
Смотрите также: По турбине на каждый цилиндр? Почему бы и нет!
Смысл задержки наддува заключается в том, что крыльчатка турбины конструктивно не способна мгновенно отреагировать на резкое нажатие педали газа водителем. Для ее раскручивания на максимальные обороты требуется определенное время. Соответственно, потребуется временной промежуток для того, чтобы в цилиндры поступило больше воздуха, и так далее.
Единственным эффективным решением проблемы в такой ситуации могла стать постоянная работа турбокомпрессора на максимальных оборотах даже в моменты, когда педаль газа полностью отпущена. В Volvo создали именно такую систему и назвали ее PowerPulse.
В систему входит компрессор, нагнетающий воздух из воздушного фильтра в двухлитровый воздушный бак, затем воздух порционно при необходимости подается в выпускной коллектор, тем самым поддерживая постоянное вращение турбокомпрессора и устраняя турболаги.
На сегодняшний день система Volvo PowerPulse доступна только на 2.0-литровом дизельном моторе.
Конечно, если вы предпочитаете бензиновые двигатели, шведская компания также может предложить плагин-гибридную версию Т8, которая сочетает в себе наддув и турбонаддув с электрическим двигателем для того, чтобы убедиться, что вы никогда не испытаете задержек с вашей управляемой дроссельной заслонкой.
Количество выпускаемых автомобилей с турбированными двигателями постоянно растет, поскольку подобные авто пользуются спросом на рынке. Однако далеко не все автовладельцы знают, как работает турбина на бензиновом двигателе, хотя и проявляют интерес к этой тематике. Дело тут вовсе не в лени, а в чрезмерно сложной подаче материала, делающей его недоступным для понимания большинства автомобилистов.
Для начала необходимо понять, для чего нужна турбина: она позволяет увеличить мощность небольшого по объему мотора без вреда для него и без увеличения расхода горючего. Но существуют определенные особенности эксплуатации, соблюдение которых даст возможность повысить эффективность, и продлить общее время работы силового агрегата.
Устройство турбонаддува
Турбина двигателя, работающего на бензине, состоит из таких элементов:
- Корпус подшипников, размещающий в себе ротор с валом и кольцами с лопастями. Вращаясь, они перенаправляют воздух в цилиндры.
- Каналы, проходящие через весь корпус. Их функция заключается в доставке масла к вращающимся и трущимся друг о друга элементам, что способствует увеличению срока их службы.
- Подшипник скольжения, гарантирующий плавную работу ротора, смазываемого и охлаждаемого маслом.
- Корпус, по форме чем-то напоминающий улитку, защищающий составные элементы механизма от механических повреждений.
Турбонаддув: принцип работы
Задача турбины – нагнетать воздух в цилиндры, что осуществляется при помощи компрессора. Благодаря этому, смесь из топлива и воздуха насыщается кислородом, что приводит к увеличению КПД и улучшению сгораемости топлива. Таким образом, движок начинает работать эффективнее при прежнем объеме.
Чтобы понять принцип работы турбины на двигателе, сначала стоит разобраться с тем, как именно работает обычный двигатель. Его функционирование обеспечивается четырьмя последовательными тактами:
- Впуск – движение поршня обеспечивает попадание в камеру сгорания топливно-воздушной смеси.
- Компрессия – горючая смесь сжимается.
- Расширение – выработанная свечами искра приводит к возгоранию смеси.
- Выпуск – поршень перемещается вверх, освобождаются и выводятся выхлопные газы.
Чтобы повысить эффективность работы мотора, идти можно по одному из трех путей:
- установить турбонаддув;
- увеличить объем двигателя;
- повысить количество оборотов коленвала.
Увеличение объема, безусловно, приведет к повышению эффективности, но это неизбежно повлечет за собой повышенный расход горючего. Повышение оборотов коленчатого вала не всегда возможно по техническим причинам, к тому же, не избежать снижения эффективности из-за потерь энергии во время каждого из тактов.
Как работает турбонаддув? Он нагнетает в цилиндр предварительно сжатый воздух, вследствие чего количество поступаемого воздуха повышается, а мощность силового агрегата растет без увеличения его объема.
Когда бензиновый двигатель запускается, газы поступают в турбину, приводя с помощью своей энергии в движение ротор, раскручивающий колесо компрессора, захватывающее воздух, подаваемый в цилиндры. Компрессор увеличивает давление воздуха примерно на 80%.
Турбина на бензиновом двигателе позволяет повысить мощность примерно на 30%.
Принцип работы турбины на бензиновом двигателе
Статья на тему как работает турбина на бензиновом двигателе, принцип работы турбины с изменяемой геометрией. Принцип работы турбины на Фольксваген, ВАЗ, Opel Astra J и Opel Insignia.
Как работает турбина на машине. Принцип работы турбины на бензиновом двигателе Фольксваген, ВАЗ, Opel Astra J, Opel Insignia, Audi A4, Шкода Октавия.
Что такое турбокомпрессор – турбина
Турбокомпрессор — это агрегат, предназначением которого является обеспечение высокого давления газов, прошедших путь через поршневую систему, для повышения мощности автомобиля. Благодаря этому улучшается динамика автомобиля при разгоне без повышения рабочего объема цилиндров.
Расход топлива также остается на прежнем уровне. Существует два типа исполнения турбированного компрессора.
Первый, устанавливаемый на силовые установки с малой мощностью, имеет центробежный тип вращения потока выхлопных газов. Во втором эти газы движутся по осевой траектории. Радиус компрессорного колеса для легковых автомобилей составляет 25 мм.
Как работает турбина на машине
Компрессор приводится во вращение с помощью кинетической энергии выхлопных масс. Корпус турбины снаружи похож на форму улитки. При поступлении в него, отработавшие газы перемещаются по специальным каналам вплоть до соприкосновения с поверхностью лепестков турбинного колеса.
С помощью этого данное колесо набирает частоту вращения около 250 тыс. об/мин. К нему присоединен вал, передающий эту энергию вращения дальше, на компрессорное колесо.
Выхлопные газы проходят путь огибающий колесо с лопастями, которое придает им дополнительную энергию движения. После чего двигаются в направление центра турбокомпрессора, в котором расположено отверстия для удаления этих газов в выхлопную систему автотранспортного средства.
- Компрессор турбины, а также другие изделия выполнены из материалов, которые обладают устойчивостью к работе на высоких температурах.
- Колесо компрессора изготовлено из смеси железа и никеля, а осевой диск из стали, имеющей устойчивость к жару.
- Тип и размер турбированного агрегата напрямую влияет на мощностные параметры компрессорной установки.
Крупные габариты означают, что внутри установлен компрессор для автомобилей с высокой мощностью и большим рабочим объемом цилиндров. Поэтому объем потока также будет большим и для обработки его, лопасти компрессорного колеса должны быть соответствующих размеров.
Все это способствует тому, что давление потока выхлопных газов достигает максимальной величины, на выходе из турбины. Турбокомпрессоры меньших габаритов развивают рабочую скорость движения потока вредных газов быстрее, однако в показателях мощности и производительности уступают крупногабаритным установкам.
Перепускной клапан
В состав рассматриваемой установки также входит такой элемент, как перепускной клапан. Предназначением его является: уменьшение или увеличение давления наддува воздушной смеси, в зависимости от необходимых динамических параметров разгона автомобиля.
За его функционирование отвечает электронный блок управление силовой установкой транспортного средства. Принцип работы заключается в том, что этот блок получает сигнал от органов управления, обрабатывает его, рассчитывает требуемые параметры давления, которое необходимо создать на выходе из турбины и затем посылает его на клапан.
После этого, с помощью пневматического привода, происходит изменения угла открытия заслонки клапана, в необходимую сторону, благодаря этому происходит уменьшение или увеличение объема газов, поступающих в турбокомпрессор.
Место расположения компрессорного вала — центральная зона турбины. Данное конструктивное решение позволяет избежать трения лопастей о корпус изделия, а также способствует достижению максимального значения скоростных параметров вращения и, как следствие, получения высоких результатов динамики разгона.
Для осуществления вращения вала необходима установка одного или двух подшипников. В основном используются подшипники, имеющие тип скольжения.
Шариковый тип использовался в самом начале производства автомобильных турбин. Однако этот тип потерял свою актуальность из-за низких показателей долговечности и устойчивости к работе на высоких температурах. Этому способствует то, что функционирование агрегата осуществляется на очень высоких скоростях.
Для нормального функционирования турбины достаточно системы смазки, которая установлена на двигателе. При нормальной эксплуатации и современном обслуживании автомобиля, а также использовании качественных расходуемых материалов для этого, все составные части компрессора, в том числе вал и подшипники смазываются с помощью поступления моторного масла в корпус турбины по специальным каналам, предназначенным для этого.
Масло
Также масло выполняет функцию охлаждения системы на элементы, температура которых, во время работы, достигает больших величин. Эффективность охлаждения турбины в основном зависит от типа двигателя, на котором она установлена.
Двигатели, зажигание в которых является искрового типа, имеют самую оптимальную конструкцию для хорошей эффективности сопротивлению нагревания турбоустановки.
Это достигается благодаря расположению данного элемента вблизи системы понижения температуры двигателя, и вхождение его основного корпуса напрямую в эту систему.
Центробежный компрессорный агрегат дает возможность создания давления объема выхлопных газов, которое является дополнительным. Конструктивное устройство его не многим отличается от подобного механического нагнетателя.
В его состав входят: выплавленный из алюминия диск, на поверхности которого располагаются лопасти и стальной корпус. Воздушный поток входит через центр колеса и выходит сквозь отверстие, также расположенное в центральной зоне.
Эксплуатация турбины
Устройство турбокомпрессора делает его зависимым от качества масла, поэтому пытаться сэкономить на нем не стоит. Несвоевременно поменянное масло может стать причиной нарушений в работе механизма.
Автомобиль, оснащенный турбиной, нуждается после покупки в замене масла и тщательной прочистке топливной системы, при этом смешивать разные масла нельзя.
После продолжительной поездки сразу глушить двигатель не рекомендуется, дав ему немного поработать и охладиться. Резкое выключение может сказать на снижении прочности элементов конструкции, вызванном перепадом температуры.
Турбированный мотор: достоинства и недостатки
Популярность турбодвигателей вызвана их преимуществами перед обычными, заключающимися в:
- увеличении мощности до 30% и уменьшении расхода топлива (турбомотор будет потреблять меньше горючего, нежели ДВС аналогичной мощности, но без турбины);
- уменьшении загрязнения окружающей среды;
- лучшем соотношении веса агрегата к развиваемой мощности;
- более тихой работе механизма;
- возможности оптимизировать другие параметры двигателя.
Однако есть и свои минусы:
- требовательность к качеству масла и бензина, что в конечном итоге повышает расходы на эксплуатацию авто;
- сложный ремонт, требующий применения специального оборудования, выполнить который своими силами маловероятно. Нередко турбина и вовсе оказывается непригодной к ремонту, а её полная замена заметно ударяет по кошельку автовладельца.
Устройство и принцип работы турбины
Турбина (турбокомпрессор) стала определяющим агрегатом в деле увеличения мощности моторов.
Что такое турбина и для чего она нужна?
Турбина — устройство в автомобиле, которое направлено на увеличение давления во впускном коллекторе автомобиля для того, чтобы обеспечить большее поступление воздуха, а значит и кислорода, в камеру сгорания. Главное назначение турбины – с ее помощью можно значительно увеличить мощность автомобиля. При увеличении давления во впускном коллекторе на 1 атмосферу в камеру сгорания попадет в два раза больше кислорода, а значит от небольшого турбового двигателя можно ожидать мощности как от атмосферника с объемом в два раза больше — грубая теоретическая арифметика не лишенная смысла…
Принцип работы турбокомпрессора
Принцип работы турбины несложен: горячие выхлопные газы через выпускной коллектор поступают в горячую часть турбины, проходят через крыльчатку горячей части приводя ее и вал на который она крепится в движение. На этом же вале закреплена крыльчатка самого компрессора в холодной части турбины, эта крыльчатка при вращении создает давление во впускном тракте и впускном коллекторе, что обеспечивает большее поступление воздуха в камеру сгорания.
Устройство турбины
Турбина состоит из двух улиток — улитки компрессора, через которую всасывается воздух и нагнетается во впускной коллектор, и улитки горячей части, через которую проходят выхлопные газы вращая колесо турбины и выходят в выхлопной тракт. Из крыльчатки компрессора и крыльчатки горячей части. Из шарикоподшипникового картриджа. Из корпуса, который соединяет обе улитки, держит подшипники, так же в корпусе находится охлаждающий контур.
В процессе работы турбина подвергается очень большим термодинамическим нагрузкам. В горячую часть турбины попадают выхлопные газы очень большой температуры 800-9000 °С, поэтому корпус турбины изготавливают из чугуна особого состава и особого способа отливки.
Частота вращения вала турбины достигает 200 000 об/мин и более, поэтому изготовление деталей требует большой точности, подгонки и балансировки. Помимо этого в турбине высокие требования к используемым смазочным материалам. В некоторых турбинах система смазки служит так е системой охлаждения подшипниковой части турбины.
Система охлаждения турбин
Система охлаждения турбин двигателя служит для улучшения теплоотдачи частей и механизмов турбокомпрессора. Существует два самых распространенных способа охлаждения деталей турбокомпрессора — охлаждение маслом, которое используется для смазки подшипников и комплексное охлаждение маслом и антифризом из общей системы охлаждения автомобилем.
Оба способа имеют ряд преимуществ и недостатков. Охлаждение маслом. Преимущества:
- Более простая конструкция
- Меньшая стоимость изготовления самой турбины
- Меньшая эффективность охлаждения по сравнению с комплексной системой
- Более требовательна к качеству масла и к его более частой смене
- Более требовательна к контролю за температурным режимом масла
Изначально, большинство серийных двигателей с турбонаддувом оснащались тубинами с масляным охлаждением. При прохождении через шарикоподшипниковую часть масло сильно нагревалось. Тогда, когда температура выходила за пределы нормального рабочего температурного диапазона, масло начинало закипать, коксоваться забивая каналы и ограничивая доступ смазки и охлаждения к подшипникам. Это приводило к быстрому износу, заклиниванию и дорогостоящему ремонту. Причин у неполадки могло быть несколько — некачественной масло или не рекомендованное для данного типа двигателей, превышение рекомендованы сроков замены масла, неисправности в системе смазки двигателя и пр.
Комплексное охлаждение маслом и антифризом Преимущества:
- Более сложная конструкция самого турбокомпрессора, как следствие большая стоимость
При охлаждении турбины маслом и антифризом повышается эффективность и такие проблемы, как закипание и коксование масла, практически не встречаются. Но данная систем охлаждения имеет более сложную конструкцию т.к. имеет раздельные масляный контур и контур охлаждающей жидкости. Масло как и прежде служит для смазки подшипников и для охлаждения, а антифриз, который используется из общей системы охлаждения двигателя, не дает перегреться и закипеть маслу. Как следствие увеличивается стоимость самой конструкции.
При работе турбины воздух под действием компрессора сжимается и, как следствие, очень сильно греется, что приводит к нежелательным последствиям т.к. чем выше температура воздуха, тем меньшее количество кислорода в нем содержится — тем меньше эффективность наддува. С этим явлением призван бороться интеркулер — промежуточный охладитель воздуха.
Twin-turbo (твин-турбо) — система при которой используются две одинаковые турбины. Задача данной системы повысить объем или давление поступающего воздуха. Используется когда необходима максимальная мощность на высоких оборотах, например в драг-рейсинге. Такая система реализована на легендарном японском автомобиле Nissan Skyline Gt-R с двигателем rb26-dett.
Такая же система, но с маленькими одинаковыми турбинами позволяет добиться прироста мощности при небольших оборотах и держать наддув постоянным до красной зоны.
Такая систем турбонаддува используется в автомобилях BMW biturbo.
Турбина с изменяемой геометрией (VGT) — система при которой лопатки крыльчатки в горячей части могут изменять угол наклона к потоку выхлопных газов.
Twin-scroll ( двойная улитка) — система состоит из двойного контура движения выхлопных газов энергия которых вращает один ротор с крыльчаткой и компрессором. При этом существует два типа реализации когда выхлопные газы идут по обоим контурам сразу, при этом система работает как twin-turbo в одном корпусе — выхлопные газы делятся на два потока каждый из которых идут в свой контур горячей части раскручивая ротор турбины. Второй тип реализации работает на подобии системы biturbo — горячая часть имеет два контура с разной геометрией, при низких оборотах выхлопные газы направляются по меньшему контуру, который увеличивает скорость и энергию прохождения за счет небольшого диаметра, при повышении оборотов двигателя выхлопные газы двигаются по контуру диаметр которого больше — тем самым сохраняется рабочее давление в системе впуска и не создается запора на пути выхлопных газов. Это все регулируется клапанами, которые переключают поток из одного контура в другой.
Читайте также: