Показательное распределение с параметром лямбда
Рассмотрим некоторый поток событий, в котором события наступают независимо друг от друга и с некоторой фиксированной средней интенсивностью $lambda$ (событий в единицу времени). Тогда случайная величина $X$, равная числу событий $k$, произошедших за фиксированное время, имеет распределение Пуассона. Вероятности вычисляются по следующей формуле:
Для пуассоновской случайной величины математическое ожидание и дисперсия совпадают с интенсивностью потока событий:
$$M(X)=lambda, quad D(X)=lambda.$$
Распределение Пуассона играет важную роль в теории массового обслуживания . При увеличении $lambda$ данное распределение стремится к нормальному распределению $N(lambda, sqrt)$. В свою очередь, оно само является “приближенной” моделью биномиального распределения при больших $n$ и крайне малых $p$ (см. теорию про формулу Пуассона ).
Распределение Пуассона – определение
Распределение Пуассона — вероятностное распределение дискретного типа, моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга. Другими словами, если событие происходит с некоторой периодичностью, то мы можем определить вероятность, что такое событие произойдёт n раз за интересующий нас период.
Параметр лямбда – λ
Распределение Пуассона зависит только от одного параметра – λ, данный параметр зависит от вероятности успешного события и общего количества событий.
Успешное событие: распределение Пуассона применяется только тогда, когда есть разделение на результат “да” и “нет”, например, лампочка перегорела: да – успешное событие; шина прокололась: да – успешное событие и так далее.
λ = n*p, где p – вероятность успешного события, а n – общее количество событий, для которых ведётся расчёт.
Например, если гроза проходит раз в месяц и мы хотим посчитать вероятность грозы за 24 месяца, то вероятность равна единице, а количество событий равно 24, откуда лямбда равна 24.
Можно считать по-другому, вероятность грозы в конкретный день – 1/30, количество событий – 730 дней, лямбда равна 24.3.
Пример
В тысяче ящиков с антоновками в одном попадается голден, какова вероятность, что в 5000 ящиках будет меньше 4 ящиков с яблоком голден?
Вероятность ящика с яблоком голден – 0.1% (1 ящик на 1000 = 1/1000, если в процентах – 1/1000 * 100 = 0.1%)
Общее количество событий – 5000 ящиков
Из вышесказанного следует:
λ = 5000 * 0.001 = 5
Функция вероятности (формула Пуассона)
Вероятность, что успешное событие произойдёт k раз:
Пример
В тысяче ящиков с антоновками в одном попадается голден, какова вероятность, что в 5000 ящиках будет 2 ящика с яблоком голден?
Из предыдущего примера мы знаем, что λ=5, теперь мы ищем вероятность, что k будет равно 2, для этого используем формулу функции вероятности:
f(4) = P(k = 4) = λ k e -λ / k! = 5 2 * e -5 / 2! = 0.084 = 8.4%
Условия возникновения распределения Пуассона
Рассмотрим условия, при которых возникает распределение Пуассона.
Во-первых, распределение Пуассона является предельным для биномиального распределения, когда число опытов n неограниченно увеличивается (стремится к бесконечности) и одновременно вероятность p успеха в одном опыте неограниченно уменьшается (стремится к нулю), но так, что их произведение np сохраняется в пределе постоянным и равным λ (лямбде):
В математическом анализе доказано, что распределение Пуассона с параметром λ = np можно приближенно применять вместо биномиального, когда число опытов n очень велико, а вероятность p очень мала, то есть в каждом отдельном опыте событие A появляется крайне редко.
Во-вторых, распределение Пуассона имеет место, когда есть поток событий, называемым простейшим (или стационарным пуассоновским потоком). Потоком событий называют последовательность таких моментов, как поступление вызовов на коммуникационный узел, приходы посетителей в магазин, прибытие составов на сортировочную горку и тому подобных. Пуассоновский поток обладает следующими свойствами:
- стационарность: вероятность наступления m событий в определённый период времени постоянна и не зависит от начала отсчёта времени, а зависит только от длины участка времени;
- ординарность: вероятность попадания на малый участок времени двух или более событий пренебрежимо мала по сравнению с вероятностью попадания на него одного события;
- отсутствие последствия: вероятность наступления m событий в определённый период времени не зависит от того, сколько событий наступило в предыдущий период.
Характеристики случайной величины, распределённой по закону Пуассона
Характеристики случайной величины, распределённой по закону Пуассона:
Распределение Пуассона и расчёты в MS Excel
Вероятность распределения Пуассона P(m) и значения интегральной функции F(m) можно вычислить при помощи функции MS Excel ПУАССОН.РАСП. Окно для соответствующего расчёта показано ниже (для увеличения нажать левой кнопкой мыши).
MS Excel требует ввести следующие данные:
- x – число событий m;
- среднее;
- интегральная – логическое значение: 0 – если нужно вычислить вероятность P(m) и 1 – если вероятность F(m).
Почему Пуассон изобрел свое распределение?
Чтобы предсказывать количествобудущихсобытий!
Или более формально: чтобы предсказывать вероятность данного числа событий, происходящих в определенный интервал времени.
В продажах, например, “событие” это покупка (сам момент покупки, не просто выбор). Событием может быть количество посетителей в день на веб-сайте, кликов на рекламном объявлении в следующем месяце, число звонков в рабочее время или число людей, которые умрут от смертельных заболеваний в следующем году, и так далее.
Недостатки биномиального распределения
a) Биномиальная случайная величина бинарна — 0 или 1.
В примере выше у нас было 17 лайков в неделю. Это 17/7 = 2.4 человека в день и 17/(7*24) = 0.1 в час.
Если моделировать вероятность успеха в часах (0.1 человек в час), используя биномиальную случайную величину, получим, что в большем количестве часов лайков будет 0, а в некоторые часы ровно 1 лайк. Также возможно, что в час будет больше 1 лайка (2, 3, 5 и т.д.).
Проблема с биномиальным распределением в том, что оно не может содержать более одного события в единицу времени (1 час в примере).
Так может разделить 1 час на 60 минут и принять за единицу времени минуту? Тогда в 1 час поместится несколько событий. (Помним, что 1 минута содержит только ноль или одно событие).
Теперь проблема решена?
Вроде бы. Но что если в течение одной минуты мы получим несколько лайков? (например, кто-то поделился постом в Твиттере, и трафик вырос в эту минуту). Что тогда? Можно разделить минуту на секунды. Тогда единицей времени становится секунда, и в минуту помещается несколько событий. Но проблема бинарного контейнера будет существовать для все меньших единиц времени.
Дело в том, что биномиальная случайная величина может содержать несколько событий, если делить единицу времени на все меньшие единицы. В результате изначальная единица времени будет содержать более одного события.
Математически это означает n → ∞. Если предположим, что среднее значение фиксировано, тогда p → 0. В противном случае n*p — количество событий — чрезмерно возрастет.
Единица времени с использованием этого лимита может быть бесконечно мала. Больше не нужно беспокоиться о более чем одном событии в единицу времени. Так получается распределение Пуассона.
b) В биномиальном распределении количество попыток (n) должно быть известно заранее.
Нельзя посчитать вероятность успеха при помощи биномиального распределения, зная только среднее значение (17 человек в неделю). Нужно больше информации (n и p), чтобы использовать формулу.
Распределение Пуассона же не обязывает вас знать ни n ни p. Предположим, что n бесконечно велико, а p бесконечно мала. Единственный параметр распределения — значение λ (ожидаемое значение x). В реальной жизни чаще известно только значение (например, с 2 до 4 часов дня я принял 3 телефонных звонка), а не значения n и p.
Решение задачи на распределение Пуассона в Excel
Пример 1. Отдел технического контроля определил, что среднее число не соблюденных допусков в размерах производимых деталей составляет 6. Определить вероятности следующих событий обеими рассматриваемыми функциями (для сравнения результатов вычислений):
- Вероятность наличия 3 и менее погрешностей в случайно отобранной детали.
- Вероятность наличия ровно 3 погрешностей в случайно выбранной детали.
Вид таблицы данных:
Рассчитаем вероятность наличия трех и менее дефектов с помощью функций:
- B3 – среднее значение;
- B2 – предполагаемое значение, для которого рассчитывается вероятность;
- ИСТИНА – указатель на интегральный тип функции.
Для нахождения вероятности выбора детали с наличием ровно трех дефектов используем функции:
Для расчета вероятности точного совпадения третий аргумент задан в качестве логического ЛОЖЬ.
Как видно, результаты вычислений обеих функций идентичны.
Числовые характеристики случайной величины Х
Математическое ожидание распределения Пуассона
M[X] = λ
Дисперсия распределения Пуассона
D[X] = λ
Пример №1 . Семена содержат 0.1% сорняков. Какова вероятность при случайном отборе 2000 семян обнаружить 5 семян сорняков?
Решение.
Вероятность р мала, а число n велико. np = 2 P(5) = λ 5 e -5 /5! = 0.03609
Математическое ожидание: M[X] = λ = 2
Дисперсия: D[X] = λ = 2
Пример №2 . Среди семян ржи имеется 0.4% семян сорняков. Составить закон распределения числа сорняков при случайном отборе 5000 семян. Найти математическое ожидание и дисперсию этой случайной величины.
Решение. Математическое ожидание: M[X] = λ = 0.004*5000 = 20. Дисперсия: D[X] = λ = 20
Закон распределения:
X | 0 | 1 | 2 | … | m | … |
P | e -20 | 20e -20 | 200e -20 | … | 20 m e -20 /m! | … |
Пример №3 . На телефонной станции неправильное соединение происходит с вероятностью 1/200. Найдите вероятность того, что среди 200 соединений произойдет:
а) ровно одно неправильное соединение;
б) меньше чем три неправильных соединения;
в) больше чем два неправильных соединения.
Решение. По условию задачи вероятность события мала, поэтому используем формулу Пуассона (15).
а) Задано: n = 200, p = 1/200, k = 1. Найдем P200(1).
Получаем: . Тогда P200(1) ≈ e -1 ≈ 0,3679.
б) Задано: n = 200, p = 1/200, k . Тогда P200(1) ≈ e -1 ≈ 0,3679.
б) Задано: n = 200, p = 1/200, k
в) Задано: n = 200, p = 1/200, k > 2. Найдем P200(k > 2).
Эту задачу можно решить проще: найти вероятность противоположного события, так как в этом случае нужно вычислить меньше слагаемых. Принимая во внимание предыдущий случай, имеем
Рассмотрим случай, когда n является достаточно большим, а p — достаточно малым; положим np = a, где a — некоторое число. В этом случае искомая вероятность определяется формулой Пуассона:
Вероятность появления k событий за время длительностью t можно также найти по формуле Пуассона:
где λ — интенсивность потока событий, то есть среднее число событий, которые появляются в единицу времени.
Пример №4 . Вероятность того, что деталь бракованная, равна 0.005. проверяется 400 деталей. Укажите формулу вычисления вероятности того, что больше 3 деталей оказались с браком.
Пример №5 . Вероятность появления бракованных деталей при их массовом производстве равна p. определить вероятность того, что в партии из N деталей содержится а) ровно три детали; б) не более трех бракованных деталей.
p=0,001; N = 4500
Решение.
Вероятность р мала, а число n велико. np = 4.5
Найдем ряд распределения X.
Здесь λ = np = 4500*0.001 = 4.5
P(0) = e – λ = e -4.5 = 0.01111
P(1) = λe -λ = 4.5e -4.5 = 0.04999
Найдем ряд распределения X.
Здесь λ = np = 4500*0.001 = 4.5
P(0) = e – λ = e -4.5 = 0.01111
P(1) = λe -λ = 4.5e -4.5 = 0.04999
Тогда вероятность того, что в партии из N деталей содержится ровно три детали, равна:
Тогда вероятность того, что в партии из N деталей содержится не более трех бракованных деталей:
P(x Пример №6 . Автоматическая телефонная станция получает в среднем за час N вызовов. Определить вероятность того, что за данную минуту она получит: а) ровно два вызова; б) более двух вызовов.
N = 18
Решение.
За одну минуту АТС в среднем получает λ = 18/60 мин. = 0,3
Считая, что случайное число X вызовов, поступивших на АТС за одну минуту,
подчиняется закону Пуассона, по формуле найдем искомую вероятность
Найдем ряд распределения X.
Здесь λ = 0.3
P(0) = e – λ = e -0.3 = 0.7408
P(1) = λe -λ = 0.3e -0.3 = 0.2222
Найдем ряд распределения X.
Здесь λ = 0.3
P(0) = e – λ = e -0.3 = 0.7408
P(1) = λe -λ = 0.3e -0.3 = 0.2222
Вероятность того, что за данную минуту она получит ровно два вызова:
P(2) = 0,03334
Вероятность того, что за данную минуту она получит более двух вызовов:
P(x>2) = 1 – 0,7408 – 0,2222 – 0,03334 = 0,00366
Пример №7 . Рассматриваются два элемента, работающих независимо друг от друга. Продолжительность времени безотказной работы имеет показательное распределение с параметром λ1 = 0,02 для первого элемента и λ2 = 0,05 для второго элемента. Найти вероятность того, что за 10 часов: а) оба элемента будут работать безотказно; б) только Вероятность того, что за 10 часов элемент №1 не выйдет из строя:
Рещение.
P1(0) = e -λ1*t = e -0.02*10 = 0,8187
Вероятность того, что за 10 часов элемент №2 не выйдет из строя:
P2(0) = e -λ2*t = e -0.05*10 = 0,6065
а) оба элемента будут работать безотказно;
P(2) = P1(0)*P2(0) = 0,8187*0,6065 = 0,4966
б) только один элемент выйдет из строя.
P(1) = P1(0)*(1-P2(0)) + (1-P1(0))*P2(0) = 0.8187*(1-0.6065) + (1-0.8187)*0.6065 = 0.4321
Пример №7 . Производство даёт 1% брака. Какова вероятность того, что из взятых на исследование 1100 изделий выбраковано будет не больше 17?
Примечание: поскольку здесь n*p =1100*0.01=11 > 10, то необходимо использовать теорему Лапласа .
Формула Пуассона
Давайте получим формулу Пуассона математически из формулы функции биномиального распределения.
Таким образом, показательное распределение определяется только одним параметром.
Найдем функцию распределения показательного закона:
.
Графики плотности и функции распределения показательного закона изображены на рис.13.1.22, 13.1.23.
Найдем вероятность попадания в интервал (a;b) непрерывной случайной величины X, которая распределена по показательному закону, заданному функцией распределения F(x).
Для этого используем формулу
ПРИМЕР 13.1.47 Непрерывная случайная величина Х распределена по показательному закону
Найти вероятность того, что в результате испытания Х попадет в интервал (0,6;2).
Решение. По условию, . Тогда
.
Показательное распределение — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.
Содержание
Определение
имеет экспоненциальное распределение с параметром , если её плотность имеет вид
.
:
.
Оба способа одинаково естественны, и необходима лишь договорённость, какой из них используется.
. Сам параметр " width="" height="" />
тогда может быть интерпретирован, как среднее число новых покупателей за единицу времени.
задана первым уравнением, и будем писать: (\lambda )>" width="" height="" />
.
Функция распределения
Моменты
Несложным интегрированием находим, что производящая функция моментов для экспоненциального распределения имеет вид:
,
откуда получаем все моменты:
.
, [X]=<\lambda ^<2>>>>" width="" height="" />
.
Отсутствие памяти
. Тогда .
Пример. Пусть автобусы приходят на остановку случайно, но с некоторой фиксированной средней интенсивностью. Тогда количество времени, уже затраченное пассажиром на ожидание автобуса, не влияет на время, которое ему ещё придётся прождать.
Связь с другими распределениями
Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Экспоненциальное распределение. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .
Показательное распределение — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.
Содержание
Определение
Случайная величина X имеет экспоненциальное распределение с параметром λ > 0 , если её плотность имеет вид
.
Иногда семейство экспоненциальных распределений параметризуют обратным параметром 1 / λ :
.
Оба способа одинаково естественны, и необходима лишь договорённость, какой из них используется.
Пример. Пусть есть магазин, в который время от времени заходят покупатели. При определённых допущениях время между появлениями двух последовательных покупателей будет случайной величиной с экспоненциальным распределением. Среднее время ожидания нового покупателя (см. ниже) равно 1 / λ . Сам параметр λ тогда может быть интерпретирован, как среднее число новых покупателей за единицу времени.
.
Функция распределения
Моменты
Несложным интегрированием находим, что производящая функция моментов для экспоненциального распределения имеет вид:
,
откуда получаем все моменты:
.
[X] = \frac<\lambda>" width="" height="" />
, [X] = \frac<\lambda^2>" width="" height="" />
.
Отсутствие памяти
Пусть (\lambda)" width="" height="" />
. Тогда (X > s+t \mid X > s) = \mathbb(X > t)" width="" height="" />
.
Пример. Пусть автобусы приходят на остановку случайно, но с некоторой фиксированной средней интенсивностью. Тогда количество времени, уже затраченное пассажиром на ожидание автобуса, не влияет на время, которое ему ещё придётся прождать.
Связь с другими распределениями
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое "Показательное распределение" в других словарях:
показательное распределение — экспоненциальное распределение — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы экспоненциальное распределение EN exponential distribution … Справочник технического переводчика
Показательное распределение — распределение вероятностей на действительной прямой с плотностью вероятностей (См. Плотность вероятности) р (х), равной при х ≥ 0 показательной функции λe λx, λ > 0 [отсюда название П. р.] и при х … Большая советская энциклопедия
ПОКАЗАТЕЛЬНОЕ РАСПРЕДЕЛЕНИЕ — непрерывное распределение вероятностей случайной величины X, задаваемое плотностью (1) Плотность р(х).зависит от положительного масштабного параметра l. Формула для моментов: , в частности для математич. ожидания и дисперсии ; характеристич.… … Математическая энциклопедия
ОТРИЦАТЕЛЬНОЕ ПОКАЗАТЕЛЬНОЕ РАСПРЕДЕЛЕНИЕ — то же, что показательное распределение … Математическая энциклопедия
РАСПРЕДЕЛЕНИЕ ВЕРОЯТНОСТЕЙ — одно из основных понятий вероятностей теории и математической статистики. При современном подходе в качестве математич. модели изучаемого случайного явления берется соответствующее вероятностное пространство, где W множество элементарных … Математическая энциклопедия
Экспоненциальное распределение — Показательное распределение Плотность вероятности Функция распределения … Википедия
НЕПРЕРЫВНОЕ РАСПРЕДЕЛЕНИЕ — распределение вероятностей, не имеющее атомов. Если атомы суть отдельные точки, то Н. р. противоположно дискретному распределению (см. также Атомическое распределение). Вместе с дискретным распределением Н. р. образует основные типы распределений … Математическая энциклопедия
ЭРЛАНГА РАСПРЕДЕЛЕНИЕ — эрланговское распределение, сосредоточенное на распределение вероятностей с плотностью где целое и действительное параметры. Характеристич. функция Э. р. имеет вид а математич. ожидание и дисперсия соответственно и … Математическая энциклопедия
ЛАПЛАСА РАСПРЕДЕЛЕНИЕ — непрерывное распределение вероятностей с плотностью где параметр сдвига, а a>0, масштабный параметр. Плотность Л. р. симметрична относительно точки x=b, производная плотности имеет разрыв при x=b. Характеристич. функция Л. р. с параметрами a и … Математическая энциклопедия
ЭКСПОНЕНЦИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ — то же, что показательное распределение … Математическая энциклопедия
Читайте также: