Показания лямбды при подсосе воздуха
Когда тепло (летом) пропуски или не заметны или нет (короче не досаждают)
Понятное дело, что лямбду надо поменять. Но интересна сама загадка - значения она показывает хорошие, но когда она в системе - пропуски. Когда она не корректирует - ровная работа двигла.
И ещё такое заметил: с лямбдой - выхлоп без запаха почти, просто пар. Без неё немного, чуть чуть попахивает переобогащённой смесью.
Расход с лямбдой в норме. Без лямбды пока не измерял.
Просто интересно понять почему так может быть?
ПыСы: Давайте по делу, кому есть что сказать. Интересует именно данный случай. Всякие рассказы кто как чинил зажигание в Калине не надо писать.
Понятное дело, что лямбду надо поменять. Но интересна сама загадка - значения она показывает хорошие, но когда она в системе - пропуски. Когда она не корректирует - ровная работа двигла.
И ещё такое заметил: с лямбдой - выхлоп без запаха почти, просто пар. Без неё немного, чуть чуть попахивает переобогащённой смесью.
Расход с лямбдой в норме. Без лямбды пока не измерял.
Доморощенные диагносты подтянулись
Когда ты отключаешь лямбду, не она перестаёт корректировать, а мозги переходят в аварийный режим работы, обогащая смесь на турбовом двигателе относительно "нормальных" режимов работы, чтобы ты не бегал потом по дороге, собирая вылетевшие из движка запчасти после детонации.
Это обогащение может доходить до 25%. Разумеется, машина выровняется, а из выхлопухи начнёт несгоревшим бензином вонять.
Доморощенные диагносты подтянулись
Когда ты отключаешь лямбду, не она перестаёт корректировать, а мозги переходят в аварийный режим работы, обогащая смесь на турбовом двигателе относительно "нормальных" режимов работы, чтобы ты не бегал потом по дороге, собирая вылетевшие из движка запчасти после детонации.
Это обогащение может доходить до 25%. Разумеется, машина выровняется, а из выхлопухи начнёт несгоревшим бензином вонять.
Млять..а для чего тогда форум? мне вот например интересно изучать это всё. Все когда то все были доморощенными диагностами, потом как то учились.
Ближе к делу.
А как она корректирует, если она отключена физически? разъём вытащил.
да мозги уходят в аварийный режим, выставляют фиксированное среднее значение вроде 0,45В что ли. То есть это не переобогащение вовсе.
Я не говорю что пахнет сильным переобогащением, я говорю что чуть чуть совсем.
А детон там как бы по датчикам детона ЭБУ отслеживает же. По идее что с лямбдой что без - увидев детон, ЭБУ должен начать углы двигать.
Млять..а для чего тогда форум? мне вот например интересно изучать это всё. Все когда то все были доморощенными диагностами, потом как то учились.
Я бы понял твои претензии ко мне, если бы я тебя сходу нахер послал. Но я ж объясняю, как оно работает, как раз, чтобы ты учился. Если вдруг моих объяснений не хватит - будет пища для поисков в интернете
Ближе к делу.
А как она корректирует, если она отключена физически? разъём вытащил.
да мозги уходят в аварийный режим, выставляют фиксированное среднее значение вроде 0,45В что ли. То есть это не переобогащение вовсе.
0,45В - это подтяжка напряжения с мозгов. При отключенной лямбде на большинстве из них будет именно такие показания.
Только ты изучи сначала, что такое аварийный режим. В аварийном режиме мозги вообще не реагируют на показания лямбды, ибо знают, что они недостоверные.
25% - это не сильное переобогащение. Вот 100% - да, учуял бы носом точно. А потом бы ногами вперёд из гаража вынесли.
А детон там как бы по датчикам детона ЭБУ отслеживает же. По идее что с лямбдой что без - увидев детон, ЭБУ должен начать углы двигать.
Да ладно, снимал я логи специально под нагрузкой когда есть детон в жару- видел как это всё работает. Может на других движках как то по другому, но на этом быстро система реагирует. Но таки идея интересная - надо будет снять логи без лямбды.
0,45В - это подтяжка напряжения с мозгов. При отключенной лямбде на большинстве из них будет именно такие показания.
Только ты изучи сначала, что такое аварийный режим. В аварийном режиме мозги вообще не реагируют на показания лямбды, ибо знают, что они недостоверные.25% - это не сильное переобогащение. Вот 100% - да, учуял бы носом точно. А потом бы ногами вперёд из гаража вынесли.
Да понятно, что мозги не смотрят на эти показания лямбды. В аварийном режиме, как я понимаю, ЭБУ строит смесь по датчику коленвала, ДТОЖ, углу дроселя, температуре во впуске, может по ретардам. По ним же он сможет сделать около стехиометрическую смесь? Зачем ЭБУ переливать будет?
Я готов сделать смелое заявление — люди совершенно ничего не знают о лямбда-зонде. Половина клиентов сводят все свои неисправности двигателя к датчику кислорода. "Двигатель не держит холостой ход — я думаю глючит лямбда". "Мой двигатель постоянно трясётся — мне сказали это лямбда". "У меня пропала динамика — я грешу на лямбда-зонд" и.т.д. Клиентам позволено быть не образованными, они компенсируют это деньгами. Но проблема затронула и людей, оказывающих услуги компьютерной диагностики BMW. "Я делал диагностику в другом сервисе, мне сказали что лямбда-зонд не меняет показания — значит пора менять датчик". А на деле у двигателя просто сильный подсос воздуха.
В этой статье я попытаюсь научить диагностировать неисправность лямбда-зонда, а дальше диагностировать неисправности двигателя на основе показаний лямбда-зонда.
Первым делом нужно твёрдо для себя понять — лямбда-зонд никогда не оказывает негативного влияния на работу исправного двигателя. Из-за него не будет: стрелять в глушитель, плохо запускаться или работать двигатель, плавать обороты, глохнуть, пропадать динамика и.т.д. Лямбда-зонд — это очень точный датчик финальной корректировки работы двигателя. Если сказать проще, то полностью исправному двигателю он даже не требуется, но это в вакууме.
На деле у любого бензинового двигателя есть различные поломки, износы, процессы старения и.т.д. Всё это приводит к проблеме плохого смесеобразования и дальнейшего сгорания. По сути любая неисправность двигателя — это только неправильное смесеобразование. Ремонт неисправности — возврат смесеобразования к норме. Лямбда-зонд позволяет частично, по уровню кислорода, проанализировать сгоревшую смесь и скорректировать режим работы двигателя. По сути это газоанализатор, который постоянно адаптирует двигатель под меняющуюся окружающую среду и под неисправности самого двигателя. Если появился подсос воздуха — DME узнает об этом и скорректирует подату топлива. Если автомобиль поднялся высоко в горы, где воздух разряжен и содержит меньше кислорода — DME узнает об этом и адаптирует подату топлива. Лямбда-зонд никогда не будет причиной плохой работы двигателя, он наоборот помогает ему, а так же упрощает поиск неисправностей.
Если углубляться в тему, то лямбда-зонд нужен больше для правильной работы катализатора. Катализатор может нейтрализировать количество вредных веществ только в определённом составе выхлопных газах. Сильное отклонение от состава выхлопных газов снижает КПД катализатора или даже может сломать его. Но даже без наличия на автомобиле катализатора, возможность постоянной адаптации двигателя к окружающим условиям перевешивают высокую цену датчика кислорода.
Не прогретый или не рабочий лямбда-зонд
Первым делом нужно определить работоспособность датчика кислорода. В 90% случаях DME может самостоятельно распознать неисправность и сохранить соответствующую ошибку. При отсутствии ошибки требуется самостоятельно проверить работоспособность лямбда-зонда с помощью данных реального времени в DIS.
На системе управления двигаталем DME Bosch, напряжение ещё не прогретого или не рабочего лямбда-зонда всегда будет находиться в пределах 0,45 вольт. Напряжение может постоянно меняться, но не в большом диапазоне, около 0,4 — 0,5 вольт. При этом интегратор лямбда-зонда принимается за единицу, а DME будет ждёт прогрева и включения датчика кислорода.
На системе управления DME Siemens, напряжение ещё не прогретого или не рабочего датчика всегда будет находиться на отметке 0,09 В. Интегратор принимается за единицу, а DME будет ждать прогрева датчика кислорода.
Но если на системе управления двигателем DME Bosch напряжение не рабочего датчика находится между бедной и богатой смесью (в стехиометрическом значении), то на системе управления двигателем DME Siemens напряжение не рабочего датчика будет находиться в зоне максимально богатой смеси. По этому только по одному напряжению не получится точно определить наличие неисправность лямбда-зонда на системе управления двигателем DME Siemens, так как датчик кислорода может работать и сообщать об очень богатой смеси, которую DME просто не может скорректировать.
Нам на помощь приходит параметр реального времени Регулировка состава смеси с лямбда-зондом, который сообщает статус прогрева датчика и его участие в работе двигателя. Этот статус доступен для просмотра во всех системах управления двигателем DME Sienems, но не во всех системах управления двигателем DME Bosch.
Рабочий лямбда-зонд на полностью исправленном двигателе
На системе управления двигателем DME Bosch, напряжение лямбда-зонда постоянно будет меняться в диапазоне 0,1 — 0,9 вольт. По принципу Обеднение смеси — Обогащение смеси .
На системе управления двигателя DME Siemens, напряжение лямбда-зонда так же постоянно будет меняться, но уже в диапазоне 0,1 — 4,9 вольт. По принципу Обогащение смеси — Обеднение смеси .
Почему напряжение лямбда-зонда должно постоянно меняться?
ЭБУ двигателя самостоятельно постоянно изменяет, на небольшое значение, сигнал впрыска. Обычно не больше ± 0.1 мс, а лямбда-зонд фиксирует эти изменения в смесеобразовании. Катализатор имеет способность накапливать кислород. Если кратко — DME сначала делает смесь богатой кислородом (чтобы катализатор его накопил), а после бедной кислородом (чтобы катализатор использовал накопленный кислород для нейтрализации ОГ).
В ЭБУ двигателя есть 2 режима работы. С и Без лямбда-зонда, даже на прошивке подразумевающей использование датчки кислорода.
В первом случае DME будет ждать включения (прогревания) лямбда-зонда, и постоянно менять сигнал впрыска в пределах ± 0.1 мс. Ибо так устроена работа прошивки DME с регулировкой по лямбда-зонду. Лямбда-зонд может быть не рабочим, но если DME об этом не знает то всё равно будет изменять смесь, надеясь что вот-вот датчик прогреется и заработает. До включения датчика DME будет опираться на сохранённые в памяти значения множительной и суммирующей коррекций.
Во втором случае DME знает что лямбда-зонда нет (фишка датчика разъединена) или он неисправен, и уже не будет изменять сигнал впрыска. В этом случае либо будет сохранена ошибка по лямбда-зонду, либо придется сэмитировать её самостоятельно. Чтобы принудительно перевести DME на безлямбдовый режим работы.
По этому если лямбда-зонд не работает, а DME не может самостоятельно идентифицировать неисправность, то можно самостоятельно сэмитировать неисправность — разъединив фишку датчика. DME сразу перейдёт на безлямбдовый режим работы.
У двигателя слабая бедная смесь
Рассмотрим пример когда у двигателя с системой управления DME Bosch обеднённая смесь, например, из-за подсоса воздуха.
95% входящего воздуха проходит через ДМРВ, а 5% через дырку в гофре после расходомера воздуха. В данном случае в двигатель поступает нормальное количество воздуха, но расходомер воздуха сообщает информацию DME о меньшем количестве входящего воздуха. Сигнал впрыска рассчитывается по большей части на основе показаний расходомера. Конечно учитываются и другие факторы, например: температура воздуха и двигателя, но их влияние в разы меньше. Без лямбда-зонда мы получаем обеднённую смесь у двигателя.
Лямбда-зонд информирует DME о неправильной (обеднённой) смеси, и DME начинает добавлять количество топлива (увеличивать время впрыска). У режима работы по лямбда-зонду есть ограничение на максимальную возможную коррекцию, DME может добавить или убавить 0,5 мс сигнала впрыска. По мнению инженеров BMW — это максимальная возможная коррекция для изношенного двигателя, которая не требует ремонта.
Если у DME получилось скорректировать топливную смесь не выходя за это ограничение, то двигатель начинает работать хорошо, а лямбда-зонд начинает информировать DME о правильном смесеобразовании (напряжение датчика будет постоянно меняться между обеднением — обогащением ).
На анмиции видно, что сначала сигнал впрыска находится между 2.7 — 2.8 мс, а лямбда-зонд информирует о бедной смеси. После чего DME увеличивает сигнал впрыска (добавляет количество топлива) до тех пор, пока лямбда-зонд не начнёт сообщать о правильном смесеобразование. В примере правильная смесь находится между сигналом впрыска 3.2 — 3.3 мс. Интегратор лямбда-зонда, становится больше единицы, 1.17 .
У двигателя слабая богатая смесь
Рассмотрим пример когда у двигателя с системой управления DME Siemens обогащённая смесь, например, из-за неисправного датчика температуры охлаждающей жидкости.
Датчик постоянно сообщает DME о 5°С. Хоть все остальные датчики двигателя исправны, DME всё равно будет задавать повышенный сигнал впрыска, для стабильной работы двигателя в фазе прогрева. Хотя на самом деле этого не требуется.
Лямбда-зонд информирует DME о неправильной смеси, и DME начинает уменьшать количество топлива (уменьшать сигнал впрыска). У режима работы по лямбда-зонду есть ограничение на максимальную возможную коррекцию, DME может добавить или убавить 0,5 мс сигнала впрыска. По мнению инженеров BMW — это максимальная возможная коррекция для изношенного двигателя, которая не требует ремонта.
Если у DME получилось скорректировать топливную смесь не выходя за это ограничение, то двигатель начнёт хорошо работать, а лямбда-зонд начинает информировать DME о правильном смесеобразовании (напряжение датчика будет постоянно меняться между обогащением — обеднением ).
На анимации видно, что сначала сигнал впрыска находится между 3.5 — 3.6 мс, а лямбда-зонд информирует о богатой смеси. После чего DME уменьшает сигнал впрыска (уменьшает количество топлива) до тех пор, пока лямбда-зонд не начнёт сообщать о правильном смесеобразовании. В примере правильная смесь находится между сигналом впрыска 3.1 — 3.2 мс. Интегратор лямбда-зонда становится меньше единицы, 0.9 .
Слишком богатая или слишком бедная смесь
Рассмотрим пример когда у двигателя c системой управления DME Bosch слишком богатая смесь.
На анимации видно, что сначала сигнал впрыска находится между 3.1 — 3.2 мс, а лямбда-зонд информирует DME о богатой смеси. После чего DME начинает уменьшать сигнал впрыска (уменьшать количество топлива), в попытках настроить нормальное смесеобразование: 3.0 — 2.9 — 2.7 — 2.6 — 2.5 мс, но лямбда-зонд по прежнему информирует о богатой смеси. DME уже уменьшил сигнал впрыска на допустимые 0.5 мс (интегратор лямбда-зонда равен 0.8 ), по этому сохраняется ошибка.
Ошибка информирует о том, что DME достиг максимальный предел регулирования, а смесь всё равно осталась слишком бедной или слишком богатой. После чего DME переходит на безлямбдовый режим работы, а интегратор принимается за единицу.
Интегратор лямбда-зонда
Зная только напряжение лямбда-зонда невозможно узнать, корректирует ли DME смесь на основе его показаний (имеется ли в двигателе перелив или недолив топлива) или смесь идеальна, а датчик просто информирует о правильного смесеобразования в двигателе (отсутствие неисправностей).
Для этого в DIS отображается корректировочное значение Интегратора. По которому можно узнать, корректируется ли смесь на основе информации от лямбда-зонда, а если корректирует — то в какую сторону и на сколько.
Если описать проще — напряжение лямбда-зонда, даже с подсосом воздуха, будет находиться в правильном диапазоне. Просто благодаря информировании со стороны лямбда-зонда, DME смог скорректировать смесь до правильного значения. Благодаря знанию значения интегратора мы можем узнать о различных неисправностях в двигателе. Которые, по мнению инженеров BMW, не требуют экстрненного устранения. По этому не сохраняются ошибки, хотя небольшая неисправность имеется.
Как это работает?
- На основе входящей в DME, от различных датчиков, информации: расходомера воздуха, датчиков температуры, потенциометра дроссельной заслонки и пр., рассчитывается необходимая порция топлива. Так формируется сигнал впрыска.
- Происходит впрыск топлива и поджигание образованной смеси (работа двигателя).
- Лямбда-зонд анализирует выхлопные газы и информирует DME о количестве в них кислорода.
- DME рассчитывает значение интегратора для дальнейшей коррекции смесеобразования. Если проблем со смесью нет или лямбда-зонд не работает, то интегратор будет равен единицы. Если смесь бедная, то её нужно обогатить и значение интегратора будет больше единицы . Если смесь богатая, то её нужно обеднить и значение интегратора будет меньше единицы .
- DME умножает время впрыска на значение интегратора и получает скорректированный сигнал впрыска. Если интегратор равен 1, то время впрыска не изменяется. Если интегратор меньше 1, то время впрыска уменьшается. Если интегратор больше 1, то время впрыска увеличится.
- машина неадекватно реагирует на нажатие педали газа;
- появляется запах топлива в салоне;
- существенно увеличивается расход топлива (до 2 раз);
- выхлоп имеет резкий запах.
- АЕМ performance electronics;
- INNOVATE motorsports;
- Depo Racing.
Пример: сигнал впрыска 3.55 мс, лямбда-зонд сообщает о богатой смеси. DME рассчитывает на сколько надо обеднить смесь. Получается интегратор равный 0.8895 . DME умножает число 3.55 на 0.8895 и получает скорректированный сигнал впрыска, равный 3.15 мс. Происходит впрыск и поджигание смеси (работа двигателя). Этот процесс продолжается бесконечно и позволяет постоянно поддерживать состав смеси и адаптировать работу двигателя к окружающей среде.
Интегратор работает только в паре с лямбда-зондом. Если лямбда-зонд не работает, то DME не будет рассчитывать интегратор, а примет его за единицу. Умножение числа на единицу не изменяет число. Для коррекции смеси до прогревания лямбда-зонда, DME рассчитывает и сохраняет в память множительную и суммирующую коррекцию.
DME рассчитывает интегратор до миллионных значений, за счёт чего поддерживается очень точная коррекция смеси.
Множительная и суммирующая коррекция рабочей смеси
Для включения лямбда-зонда, датчику требуется прогреться до высокой температуры. Если нагревательный элемент в датчике исправен, то после запуска холодного двигателя лямбда-зонд прогреется минут за 5. В противном случае лямбда будет нагреваться только за счёт выхлопных газов и время увеличивается на 15 минут. Всё это время DME не знает на какой смеси работает двигатель, а не правильная смесь ускоряет деградацию катализатора.
По этому DME заранее рассчитывает (во время работы лямбда-зонда) коррекции и сохраняет их памяти. И на время прогрева лямбда-зонда DME использует сохранённые коррекции для временной регулировки смеси. А после прогревания лямбда-зонда, DME корректирует смесь уже в режиме реального времени, рассчитывая значение интегратора. Одновременно с этим DME постоянно обновляет в памяти множительную и суммирующую коррекцию. На основе этих данных можно так же судить о различных неисправностях двигателя.
Суммирующая — коррекция холостого хода
Количество входящего воздуха, на холостом ходу, оказывает наибольшее влияние на работу двигателя, нежели количество впрыскиваемого топлива. По этому на основе показаний лямбда-зонда, DME может узнать о наличии: подсосов, неисправности расходомера воздуха и.т.д. Коррекция рассчитывается в процентах, максимальное значение коррекции смеси ±20%.
Пример: на холостом ходу сигнал впрыска 4.4 мс. Лямбда зонд сообщает о бедной смеси. DME рассчитывает корректировочное значение равное +4%. Чтобы скорректировать бедную смесь, нужно увеличить время впрыска на 4%. Теперь скорректированное время впрыска составляет 4.57 мс.
Множительная — коррекция при частичной нагрузки
На повышенных оборотах в двигатель поступает настолько много воздуха, что подсосы уже не оказывают сильного влияния. Куда важнее — количество впрыскиваемого топлива. По этому на основе показаний лямбда-зонда, DME может узнать о исправности: форсунок, топливного насоса, топливного фильтра и.т.д. Коррекция рассчитывается в мс, максимальное значение коррекции ±0.5 мс.
Пример: у автомобиля не герметичны топливные трубки, из-за чего в топливной магистрали низкое давление. На 2000 оборотах DME открывает форсунки на 6.3 мс, но лямбда-зонд сообщает о бедной смеси. DME рассчитывает корректировочное значение, равное +0.15 мс. Чтобы скорректировать бедную смесь, нужно увеличить время впрыска на 0.15 мс. Теперь скорректированное время впрыска составляет 6.45 мс.
Не обязательно что суммирующая коррекция распознаёт только подсосы воздуха, а множительная только количество топлива. Неисправностей может быть огромное множество, но именно эти факторы преобладают.
Датчик кислорода или лямбда-зонд – устройство, устанавливаемое в выпускном коллекторе. Его основная задача контролировать количество кислорода, оставшегося после сгорания топливной смеси. По стандартам эта смесь формируется в пропорции 1 к 14,7, при отклонении данного показателя лямбда-зонд передает команду в ЭБУ о нарушении качества воздушно-топливной смеси. В некоторых автомобилях устанавливают второй зонд после катализатора. Если работа датчика кислорода нарушена или он вообще вышел из строя, возникают проблемы в работе двигателя:
Зачем нужен кислородный датчик
Этот конструктивный элемент появился в 1976 году, и первые лямбда-зонды были выпущены немецким концерном Bosch. Его появление было вызвано тем, что в середине 70-х годов прошлого века случился резкий скачок цен на нефть, поэтому большинство автовладельцев задумались об экономичности своих машин. Благодаря датчику удалось достигнуть ощутимой экономии топлива без снижения мощности.
Датчик лямбда-зонд анализирует количество несгоревшего в выхлопе кислорода. Если его много, то подаваемая в цилиндры смесь – бедная, когда его мало – воздушно-топливная смесь слишком обогащена. Благодаря этим данным электронный блок управления регулирует соотношение воздуха и горючего в смеси, что позволяет достигнуть максимально эффективности при работе, а это приводит к экономии топлива. Идеальный показатель – на сгорание 1 кг топлива должно потребляться 14,7 кг воздуха. Стандартный кислородный датчик находится в выпускном коллекторе.
С 90-х годов на автомобили стали устанавливать два лямбда-зонда – верхний кислородный датчик непосредственно на выходе из двигателя, а нижний датчик после катализатора. Первый зонд контролирует качество подаваемой топливной смеси, а второй – следит за состоянием катализатора, что важно для соблюдения экологических норм.
Из-за плохого качества топлива и других проблем нижний датчик кислорода часто выходит из строя. Решать эту проблему пытаются разными способами, один из них – программное отключение, другой – механическая обманка лямбда-зонда. Такая обманка датчика кислорода работает очень просто – в ней делается дополнительное отверстие или устанавливается сеточка для доступа воздуха извне. В результате концентрация выхлопа и вредных веществ в нем снижается и зонд считает, что с экологией все нормально. Более надежный вариант — перепрошивка ЭБУ.
Устройство лямбда-зонда
Чтобы понять принцип работы датчика кислорода, нужно знать его устройство. В лямбда-зонде установлены два электрода. Внешний электрод взаимодействует непосредственно с выхлопом, внутренний электрод взаимодействует с атмосферным воздухом. Между этими электродами располагается слой диоксида циркония. Существуют титановые зонды, которым не требуется контакта с атмосферой, но они встречаются очень редко и стоят дорого.
В результате взаимодействия с различными средами на электродах возникает разное напряжение, результирующее значение которого передается по проводу в ЭБУ. Из этих данных делается вывод о богатстве или бедности смеси. При значениях от 0,1 до 0,45 В – смесь обедненная, в диапазоне 0,45-0,9 В – смесь обогащенная. Идеальное соотношение воздушно-топливной смеси достигается при 0,45 В.
Первые модели датчиков кислорода работали только до 3000 оборотов двигателя, а после этого он переходил на усредненные параметры обогащения смеси. Но современные лямбда-зонды работают во всем диапазоне оборотов, что обеспечивает лучшую эффективность и экономичность.
Диагностика
Проверку лямбда-зонда осуществляют, не снимая его с автомобиля. Для этого берется специальное приспособление и присоединяется к эклектической системе, после заводится двигатель. Чтобы датчик начал работать, его нужно разогреть до 300 градусов, а титановый зонд – до 700.
Значения напряжения на устройстве должны меняться в диапазоне от 0,1 до 0,9 В примерно 8 раз в 10 секунд. Это означает, что датчик работает правильно и никаких проблем с ним не возникает. Если частота смены показателей уменьшается, зонд не работает нормально и скоро выйдет из строя. При полном выходе из строя на экране диагностического аппарата высвечивается одно значение.
Что происходит при неисправном кислородном датчике
В случае неисправности лямбда-зонда, когда напряжение на нем не меняется, ЭБУ начинает обогащать рабочую смесь, обеднять ее он не будет, поскольку это приводит к более серьезным последствиям.
Специфический запах начинает проникать в салон, а расход топлива возрастает в 2 раза. При этом разгоняется автомобиль гораздо хуже, поскольку топливо заливает цилиндры, иногда из выхлопной трубы доносятся характерные хлопки.
Что приводит к поломке лямбда-зонда
Устройство датчика кислорода таково, что главным его врагом являются высокие температуры. При удалении катализаторов, без соответствующей компенсации, температура выхлопных газов увеличивается, что со временем это приводит к выходу зонда из строя.
Вторая проблема – попадание антифриза в выхлопные газы. Но если охлаждающая жидкость попадает в камеры сгорания, а из них в выхлопной коллектор, поломка кислородного датчика – это наименьшая из проблем.
Третья распространенная причина поломки – попадание масла на электроды. Это происходит, когда выкинутое из мотора масло попадает на турбину, где оно выгорает, а пары попадают в лямбда-зонд, который выходит из строя. Выгорающие масляные брызги существенно поднимают температуру в выхлопном коллекторе.
При изготовлении тюнингованных систем выхлопа датчик кислорода иногда устанавливают снизу. Это ошибка, поскольку образующийся конденсат и твердый осадок приведут к быстрой коррозии электродов, и устройство сломается. Поэтому лямбда-зонд устанавливают сверху магистрали и еще под углом 45 градусов, чтобы поток выхлопных газов заходил правильнее.
Сколько времени работает лямбда-зонд
Первые варианты кислородных датчиков, с двумя проводами, при нормальном режиме эксплуатации работали в районе 50 тыс. км пробега. Новая конструкция зондов с тремя или четырьмя проводами проработает в районе 80 тыс. км. Лямбда-зонды, устанавливаемые в современные автомобили способны отработать до замены около 150 тыс. км.
Отдельный подвид этих датчиков – широкополосные лямбда-зонды, которые проходят не менее 150 тыс. км., обладая рядом преимуществ. Они оборудованы отдельной шкалой вывода, поэтому водитель может в реальном времени видеть, какая смесь подается в двигатель. Это устройство работает во всем диапазоне оборотов и обрабатывает информацию с гораздо большей скоростью. Особенно полезны такие датчики для автовладельцев, которые любят заниматься тюнингом своих моторов.
Видео: Лямбда! Датчик Кислорода и Повышенный расход топлива
Датчики от сторонних производителей
Чтобы улучшить работу двигателя или просто заметить кислородный датчик, вышедший из строя, автовладельцы обращаются к вариантам от сторонних производителей, выпускающих, в том числе, и широкополосные датчики. Для этого лучше брать продукцию известных компаний, среди которых популярны:
Каждый из этих брендов предлагает несколько типов и поколений датчиков кислорода, которые отличаются приемлемым уровнем точности и надежности. Есть определенные нарекания к широкополосным зондам от Depo Racing, но и здесь многие специалисты поспорили бы.
Зонды от INNOVATE motorsports требуют предварительной калибровки. Для этого их нужно подключить на воздухе, чтобы они установили нужное значение, и только после этого устанавливать в выхлопную систему. Иногда в них возникают проблемы с контроллерами и другой электронной начинкой. Наименьшее количество проблем возникает с АЕМ performance electronics, но они стоят дороже всего.
При установке широкополосного лямбда-зонда нужно знать, что он не переносит перегрева. Поэтому они устанавливаются на расстоянии не менее 40, а лучше 50 см от турбины или начала штанов выпускного коллектора.
Заключение
Датчик кислорода – необходимый элемент любого современного двигателя. Благодаря ему мотор понимает, что происходит в камерах сгорания, достаточно ли топлива в них поступает или нужно увеличить количество воздуха в смеси. Бедные смеси приводят к детонации и преждевременному износу двигателя, разрушению поршневой группы и цилиндров. При излишне богатой смеси в камерах сгорания образуется нагар, кроме того, она смывает масло со стенок цилиндров, что тоже приводит к ускоренному износу.
При замене лямбда-зонда можно обращаться к сторонним производителям, перепиновав несколько проводов и получив более точное и надежное устройство. При этом ускоренная передача информации позволяет работать по более адекватному алгоритму, оперативно реагируя на изменившиеся условия. В результате это поможет сэкономить деньги на топливе, избежать проблем с богатой или бедной смесью, а двигатель будет работать в идеальном для него режиме.
Напомню, что такое вредные выбросы. Это не сгоревшее топливо. При полном сгорании углеводородов всего топлива образуется только СО2 (углекислый газ) и Н2О (вода). Если топливо сгорает не полностью, в выхлопе образуются продукты неполного сгорания. Пресловутые СО и СН. Ну а если топливо полностью не сгорает, что происходит с крутящим моментом? Правильно – он падает! Что происходит с расходом топлива (если вы просто выливаете его в выхлопную трубу)? Правильно – он растет! И вот здесь полностью пересеклись интересы экологов, производителей автомобилей и нас – специалистов автосервисов. Исправный автомобиль имеет прекрасную динамику, низкий расход топлива и еще атмосферу не загрязняет! От чего зависит крутящий момент, расход топлива и вредные выбросы? Основное требование – система управления двигателем должна поддерживать стехиометрический состав смеси. По современным стандартам отклонение не должно превышать 2%. Для контроля над этим параметром как раз и служат датчики кислорода в выхлопе.
Выхлопные газы 1 из выхлопной трубы 2 через канал поступают в диффузионную щель 6. Здесь они подвергаются каталитическому дожиганию (как в обычном катализаторе) и в ней (в зависимости от первоначального состава смеси в двигателе) образуется либо избыток, либо недостаток кислорода. Поскольку толщина щели невелика – около 50 мкм, процесс происходит очень быстро. Но для протекания реакции каталитического дожигания нужна температура (в зависимости от конструкции – от 200 до 300 градусов Цельсия). Учитывая тот факт, что температура отработавших газов (ОГ) на холостом ходу может и не достигать указанных значений, необходимым элементом является нагреватель3. Непрогретый лямбда-зонд не работоспособен.
Ток ионного насоса прямо пропорционален разности концентраций кислорода на разных его сторонах. Таким образом, по полярности и величине тока этого элемента сразу же определяется состав смеси. Получив указание от ЭБУ, ионный насос пытается привести состав ОГ в щели, соответствующий стехиометрии. По его току ЭБУ понимает, куда и насколько отклонилась смесь, и сразу принимает меры по корректировке времени впрыска в ту или иную сторону. Колебания смеси ему не нужны – ЭБУ сразу видит абсолютные величины отклонений и выводит стехиометрию в идеал.
Если ток не нулевой. Это означает, что системе вывести стехиометрию не удалось. Причин тут две:
Действия диагноста в этих случаях заключаются:
А. Проверка самого лямбда-зонда.
В. Если зонд исправен, определяем состав смеси. Стандарт OBD2 гласит однозначно: положительный ток – бедная смесь. Отрицательный ток – смесь богатая. График зависимости тока от состава смеси приведен на рис.3. Ну а причины и способы устранения отклонения состава смеси достаточно подробно описаны в Интернете и учебных пособиях. Не будем повторяться.
ПРОВЕРКА: Необходимо в воздухозаборник работающего автомобиля добавить немного горючего вещества (принудительно обогатить смесь). На нашем автотехцентре мы используем обычный очиститель карбюратора. При наличии изменений показаний датчика однозначно говорим о его исправности и определяем, в какой полярности выводятся его показания на экран сканера.
Самый сложный случай, когда при этой проверке реакции широкополосного лямбда-зонда нет. Однозначного ответа – где дефект, дать невозможно. Вернемся опять к Рис.1 .
Дефект возможен в зонах А и В (сам датчик), зоне С (проводка) либо в самом ЭБУ – зона D. На большинстве сервисов все предлагают замену датчика, как наиболее вероятную причину. Но учитывая его стоимость, есть смысл обратиться к зоне С (проводке и разъему) для более глубокого поиска дефекта.
Pin 1. Ток ионного насоса. Проводиться миллиамперметром на 10 mA и в большинстве случаев этот замер затруднителен.
Pin 3. Сигнал элемента Нернста. При отключенном разъеме должен составлять 450 mV. При подключенном разъеме – напряжение должно находиться в пределах 0…1v. Но некоторые производители могут отклоняться от этого правила. Принудительное обогащение смеси позволяет определить исправность этой цепи.
Pin 4 и 5. Напряжение подогревателя. На современных автомобилях управляется с помощью Широтно-Импульсной Модуляции (ШИМ). Проверка необязательна, ибо в случае ее отказа код ошибки с Р0036 по Р0064 (Heater Control HO2S) пробивается практически моментально.
Но способы проверки точно такие же. Принудительное обогащение смеси позволяет определить исправность датчика, а просмотр топливной коррекции позволяет понять, в каком состоянии находиться система топливоподачи автомобиля.
Ответ дают сами производители автомобилей.
Ставить нужно только те датчики, которые рекомендовал завод-изготовитель. В противном случае, производитель не состоянии гарантировать правильную работу системы.
Читайте также: