Почему в ионных двигателях используется ксенон
Минувшая неделя ознаменовалась успешным стартом первой в мире исследовательской станции, оснащенной ионным двигателем в качестве основного. SMART 1 – первая европейская экспедиция для исследования Луны. В то же время, это уникальная исследовательская станция нового типа, первая в новой программе ESA под названием Small Missions for Advanced Research in Technology, в ходе которой запланирована апробация целого ряда новых технологий.
Старт Ariane 5, несущая SMART 1 на борту |
Спутник создан по заказу ESA (European Space Agency, Европейское космическое агентство) Шведской космической корпорацией при участии почти 30 субподрядчиков из 11 европейских стран и США. Общая стоимость проекта составила 110 млн. евро.
SMART 1 — первая автоматическая станция ESA для исследования Луны. В то же время, это уникальная исследовательская станция нового типа, первая в новой программе ESA под названием Small Missions for Advanced Research in Technology. В ходе выполнения программы запланирована апробация целого ряда новых технологий, например, связь в Ка-диапазоне и лазерная связь, автономная навигация и многое другое.
Solar Orbiter
При достаточно большом количестве аппаратуры, SMART 1 отличается малым весом (370 кг, в том числе научная аппаратура — 19 кг) и компактностью. Со сложенными солнечными батареями он представляет собой прямоугольник размером в метр. Стоимость SMART 1 примерно раз в пять меньше, чем типичной межпланетной станции ESA. Но самая главная особенность нового космического аппарата в том, что впервые в истории космонавтики ионный двигатель будет использован в качестве основного. В ближайших планах ESA — запуск еще двух аппаратов, оснащенных ионной двигательной установкой. Это BepiColombo для исследования Меркурия и Solar Orbiter — для изучения Солнца.
BepiColombo
Установленный на SMART 1 ионный двигатель потребляет 1350 Ватт электроэнергии, вырабатываемой солнечными батареями, и развивает тягу в 0,07 Ньютон, что примерно соответствует весу почтовой открытки. Рабочим веществом служит ксенон (запас топлива 82 кг). При этом для выхода на эллиптическую полярную орбиту вокруг Луны станции потребуется 16 месяцев. Выведение SMART 1 на расчетную орбиту представляет собой сложный многоступенчатый процесс, состоящий из нескольких этапов.
|
Переход SMART 1 на лунную орбиту |
Строго говоря, ионные двигатели уже устанавливались на космических аппаратах — в последние годы, в частности, на исследовательской станции НАСА Deep Space 1 (DS 1) и на экспериментальном геостационарном спутнике связи ESA Artemis. В последнем случае, благодаря наличию на борту ионных двигателей, удалось спасти казавшийся окончательно утраченным спутник ценой в миллионы долларов.
|
Телекоммуникационный спутник Artemis |
Благодаря экстренно принятым мерам и ценой расходования практически всего запаса химического топлива, имевшегося на борту, спутник удалось перевести на круговую орбиту высотой 31 тыс. км. Но после этого надо было перевести Artemis на расчетную геостационарную (высотой около 36 тыс. км). Тогда и было принято решение воспользоваться четырьмя ионными двигателями, установленными на борту попарно. Они изначально предназначались для управления ориентацией (наклоном) спутника. Что бы осуществить переход вектор тяги двигателей был направлен перпендикулярно плоскости орбиты. Но для спасения аппарата ему необходимо было придать импульс в плоскости орбиты, и таким образом перевести на более высокую геостационарную орбиту. Artemis требовалось повернуть на 90 градусов по отношению к его нормальной ориентации.
По своей конструкции основной двигатель SMART 1 существенно отличается от двигателей, установленных на DS 1 и на Artemis. В случае с последними двумя аппаратами, для ускорения ионов использовалась решетка с поданным на нее потенциалом (так называемый gridded ion engine). В отличие от них SMART 1 оснащен ионным двигателем Холла, который существенно отличается по своей конструкции.
Ионный двигатель в работе
Важным преимуществом двигателей на эффекте Холла является отсутствие решетки, подвергающейся постоянной бомбардировке высокоэнергетичными ионами, вследствие чего происходит ее быстрая деградация. Что касается других характеристик ионных двигателей различной конструкции, то ситуация выглядит не столь очевидной. В общем, двигатели с решеткой позволяют получать больший удельный импульс и расходуют примерно в два раза меньше топлива (рабочего тела), чем двигатели Холла. Однако при этом двигатели Холла позволяют развить большую удельную тягу при одинаковом потреблении электроэнергии. Обе конструкции имеют свои достоинства и недостатки, и выбор предпочтительного варианта зависит в каждом случае от характера задач, стоящих перед аппаратом, и от его энергетических возможностей.
Несмотря на то, что задумывался SMART 1 в первую очередь для отработки новых и перспективных технологий исследования космического пространства, информация о Луне, которую ему предстоит собрать, также можно назвать уникальной.
Связь по лазерному лучу между SMART 1 и центром слежения в Тенерифе, Канарские острова
На Луне SMART 1 проведет поиск следов наличия воды (в форме льда) в кратерах, получит данные о химическом составе поверхности нашего спутника и протекающих в нем тектонических процессах. Станции предстоит впервые провести картографирование всей поверхности Луны с помощью рентгеновского и инфракрасного спектрометров с различным разрешением. Одновременно будет проводиться съемка поверхности в нескольких участках видимого спектра. Ничего подобного прежде не проводилось.
Как ожидается, собранная новым исследовательским аппаратом информация идеально дополнит данные, полученные американскими зондами Clementine (1994) и Lunar Prospector (1998), исследовавшими Луну в минувшем десятилетии. В центре внимания те вопросы, на которые у научного сообщества еще не сформировалось определенного мнения. Это происхождение нашего спутника и его эволюции. Научная программа полета рассчитана на шесть месяцев, но если к концу этого периода запас топлива еще не будет исчерпан, предполагается перевести SMART 1 на более низкую орбиту, в том числе для повышения разрешения снимков поверхности.
На борту SMART 1 находится большое количество приборов, предназначенных для исследований Луны и изучения перспективных технологий.
Компоновка SMART 1
1. SIR – Инфракрасный спектрометр
2. Солнечные датчики
3. Стрела сенсора SPEDE (назначение - исследование свойств плазмы в окрестностях станции)
4. Камера AMIE (сверхминиатюрная, для работы в видимом и ИК-диапазоне)
5. Рентгеновский телескоп D-CIXS
6. Антенна системы связи
7. Датчики для исследования эффектов, вызванных работой ионного двигателя (EPDP)
8. Топливный бак двигателей ориентации
9. Звездный датчик
10. Двигатель для изменения ориентации солнечных батарей
11. Транспондер системы связи
12. Электроника управления ионным двигателем
13. Двигатели системы ориентации
14. Ионный двигатель с механизмом управления вектором тяги (его направление должно меняться по мере изменения положения центра масс, вызванного расходованием топлива)
EPDP и SPEDE
Для широкого использования ионных двигателей в длительных космических полетах необходимо досконально изучить побочные эффекты их длительной эксплуатации, а также характер взаимодействия с естественной электромагнитной средой, окружающей станцию. К возможным проблемам относится отклонение вектора тяги ионного двигателя от первоначальной ориентации, эрозия поверхностей, короткие замыкания, интерференция с радиосигналами, а также аккумуляция пылевых частиц. Для исследования этих эффектов предназначены приборы EPDP (исследование побочных эффектов работы ионного двигателя) и SPEDE (исследование свойств плазмы в окрестностях станции).
KaTE и RSIS
Основная задача прибора KaTE (микроволновая связь) — изучение перспектив связи в новом диапазоне электромагнитного излучения с длиной волны около 9 мм (Ка-диапазон).
Прибор RSIS (исследование радиоволн) предназначен для изучения малых вариаций движения SMART 1, вызванных нестабильностью тяги ионного движителя, с помощью Доплеровского эффекта. Регистрироваться при этом будет радиоизлучение прибора KaTE.
Laser-Link и OBAN
Laser-Link (лазерная связь) предназначен для изучения перспектив использования лазеров для связи с аппаратами, находящимися в глубоком космосе. В настоящее время ESA уже применяет лазерную связь с телекоммуникационными спутниками на геостационарной орбите.
Исследование возможности применения компьютерных технологий для автономной навигации космических аппаратов будет осуществляться посредством прибора OBAN (космическая навигация).
Технологии
Когда мы смотрим на зрелищные пуски космических кораблей, у многих невольно возникает вопрос — почему двигатели в них до сих пор работают на химическом топливе? Неужели взрывать кучу водорода или керосина — это лучшее, что мы можем сделать?
Преимущества и недостатки обычных двигателей
Принцип работы ракет кажутся очень примитивными — берем тонны жидкого или твердого топлива, поджигаем его с помощью окислителя, а затем используем энергию вырывающихся газов, чтобы получить ускорение.
Несмотря на примитивность, такой тип двигателей вполне подходит для своих задач — струя газа дает ракете достаточное ускорение, чтобы преодолеть земное притяжение и выйти в космос. Кроме того, такому двигателю не нужны атмосфера — окислитель ракета несет на своем борту.
Преимущество химического двигателя заключается в том, что он вырабатывает огромное количество энергии за короткое время — как раз то, что нужно, чтобы поднять большое количество груза в космос. Однако критический недостаток этих двигателей заключается в том, что они невероятно неэффективны.
Вполне предсказуемо, что перечисленные недостатки химических ракет, подтолкнули ученых к поиску других принципов работы двигателей, особенно для аппаратов, уже выведенных в открытый космос. И одним из самых удачных вариантов сегодня, является ионный двигатель.
Ионный двигатель
Одна из важнейших характеристик эффективности космического двигателя — скорость выброса вещества. Самая эффективная химическая ракета может выбрасывать горячие газы из сопла со скоростью 5 км/с. Ионные двигатели, могут выбрасывать отдельные атомы со скоростью 90 км/с — такая скорость выброса дает космическому аппарату гораздо более эффективное ускорение.
Лучшие химические ракеты имеют КПД около 35%, в то время как ионные двигатели имеют коэффициент полезного действия 90%.
Принцип работы ионного двигателя
Глядя на то, как работает ионный двигатель, невольно вспоминаешь научную фантастику. Вместо горячих газов ионные ускорители выбрасывают ионы — заряженные частицы вещества, образованные из атомов или молекул, когда те приобретают или теряют один, или несколько электронов.
В случае с ионным двигателем они испускают положительно заряженные ионы, которые потеряли свой электрон. С помощью магнитного поля, двигатель ускоряет их до невероятных скоростей и выбрасывает из сопла, передавая ускорение космическому аппарату.
Откуда берутся ионы
Двигатели создают их, генерируя плазму внутри аппарата. Нейтральные атомы газа, например, ксенона, бомбардируются электронами. Эти столкновения высвобождают еще больше электронов, превращая их в положительно заряженные ионы. Эта плазменная смесь из электронов и положительно заряженных ионов имеет общий нейтральный заряд.
При этом электроны удерживаются в камере, что приводит к еще большей ионизации, в то время как положительные ионы откачиваются через специальную сетку. Когда они проходят через эту сетку, высокое напряжение ускоряет их до 90 км/с. Каждый вылетевший из сопла ион придает крошечное ускорение аппарату.
Вся система работает от солнечных батарей, поэтому нет необходимости в дополнительной системе питания или аккумуляторах, что значительно увеличивает полезную нагрузку аппарата.
Большая проблема заключается в том, что ускорение от ионов действительно крошечное. Тяга ионных двигателей измеряется в миллиньютонах, то есть в тысячных долях ньютона. Это можно сравнить с удержанием листка бумаги в руке — вот какие силы задействованы.
Однако эти двигатели могут непрерывно работать в течение нескольких дней, недель и даже месяцев, ускоряясь и постепенно набирая скорость. У химических ракет, для сравнения, топливо закончилось бы за несколько минут. Поэтому если космический аппарат уже выведен из гравитационного поля планеты, ионный двигатель становится весьма эффективным.
Некоторые космические агентства уже использовали ионные двигатели в своих миссиях в космосе. И хотя разработки велись на протяжении десятилетий, применить их долгое время не решались из-за большого риска.
Где использовались
Поиск решения
Как уже упоминалось, основная проблема ионных двигателей заключается в очень малой тяге, однако у ученых уже есть некоторые идеи для ее увеличения.
Космический аппарат планировалось вывести на орбиту Земли по частям, произвести сборку, после чего запустить к Юпитеру с помощью 8 ионных двигателей. Полет до точки назначения длился бы от 5 до 8 лет. На изучение Каллисто, а затем Ганимеда отводилось 6 месяцев, затем аппарат должен был выйти на орбиту Европы и через 30 дней покинуть место назначения. При удачном течении экспедиции, аппарат мог бы посетить еще орбиту Ио — еще одного спутника Юпитера. Миссия была отменена в 2005 году.
Альтернативные решения
Одна из перспективных идей для ионных ускорителей разрабатывается в Европейском Космическом Агентстве. Это прямоточный ионный двигатель, для которого не требуются топливные баки — на низких орбитах, он втягивает молекулы воздуха прямо из атмосферы, ионизирует их и выбрасывает из сопла, создавая тягу. Поскольку электроника будет работать на солнечной энергии, а топливо для двигателей будет забираться прямо из атмосферы, он сможет работать без дозаправки в течение неограниченного количества времени. Такую технологию можно применять не только на орбите Земли — ее можно использовать везде, где есть атмосфера: на Марсе, Венере или Титане.
Российские двигатели
Ионные двигатели уже внесли свой вклад в освоение космоса, и в ближайшие годы мы увидим еще больше миссий, оснащенных ими. Они могли бы стать первым шагов в освоении Марса в ближайшие десятилетия.
МОСКВА, 19 марта. /ТАСС/. Исследовательский центр им. М. В. Келдыша (входит в Роскосмос) планирует изучить вопрос использования альтернативы ксенону в ионных двигателях. Об этом сообщил ТАСС генеральный директор предприятия Владимир Кошлаков.
"Мы сейчас планируем изучать вопросы использования альтернативных ксенону рабочих тел, в ближайшее время на борту наших космических аппаратов они не востребованы", - сказал Кошлаков.
По словам гендиректора центра, ксенон используется, потому что на орбите стоимость килограмма ксенона очень близка к стоимости килограмма условного "воздуха" (с учетом стоимости выведения этого килограмма на орбиту). Более того, ксенон очень хорошо хранится длительное время, обеспечивая наилучшую эффективность решения задач двигательной установкой космического аппарата.
"Насчет количества газа - это вопрос каждой конкретной задачи и миссии", - пояснил Кошлаков.
В качестве примера он привел двигатель ИД-200КР, предназначенный для коррекции орбит геостационарных аппаратов. Его мощность составляет 3 кВт, а расход - 2 мг/ с. "При планируемом ресурсе в 10 000 часов, что эквивалентно более чем одному году непрерывной работы, один двигатель может израсходовать около 70 кг ксенона", - добавил гендиректор предприятия.
Стоимость одного двигателя будет зависеть от его параметров. "Называть стоимость изделий под конкретные требования заказчиков не позволяют условия сохранения коммерческой тайны, но открыто опубликовано, что стоимость двух блоков коррекции на базе ионного двигателя для последующего проведения автономных испытаний, согласно сайту госзакупок, составляла 26 млн 605 тыс. рублей в 2019 году", - сказал Кошлаков.
Ионные двигатели
Ионный двигатель - один из типов электроракетных двигателей. Он представляет собой ускоритель частиц, в котором разделены процессы ионизации и ускорения, что позволяет добиться высоких скоростей истечения рабочего тела и эффективного преобразования электрической мощности в кинетическую энергию струи, однако плотность тяги ограничена.
Ранее в Центре Келдыша рассказали ТАСС, что предприятие создало изделия мощностью от 200 Вт до 35 кВт. В настоящий момент подтверждаются их ресурсные характеристики. Также ведется предварительная проработка создания двигателя мощностью 100 кВт. Проведение летных испытаний новых российских ионных двигателей запланировано в 2025-2030 годах.
Сейчас на околоземной орбите находятся тысячи искусственных спутников, выведенных туда гигантскими (или не очень) ракетами-носителями с мощными реактивными двигателями на химическом топливе. Пока человечество не смогло придумать альтернативу таким двигателям, поскольку для преодоления гравитации Земли и развития первой космической скорости необходима мощная тяга: ее могут дать только обычные двигатели.
При этом уже в космосе спутники используют другой тип двигателей — электрические. Самым используемым является ионный двигатель — устройство, принцип работы которого основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле.
Типы электрических и альтернативных двигателей:
Тип реактивного двигателя, который использует электрическую энергию для получения тяги от топлива: ионизированного газа. Многие из таких спутников не имеют ракетные сопла.
Электродвигатели для космических кораблей могут быть сгруппированы в три семейства в зависимости от типа силы, используемой для ускорения ионов плазмы: электростатический (собственно, классический ионный двигатель), электротермический (в них электромагнитные поля используются для генерации плазмы, что приводит к повышению температуры топлива, а тепловая энергия, передаваемая газообразному топливу, преобразуется в кинетическую) и электромагнитный (или плазменный, тут ионы ускоряются путем воздействия электромагнитных полей, как правило, земного и искусственного у аппарата).
Это электрические двигатели, также использующие нехимическую энергию для своей работы, однако работающие по другим принципам, нежели ионные. Например, фотонный двигатель, позволяющий космическому кораблю перемещаться на энергии фотонов. Гипотетически так смогут работать космические аппараты, управляемые лазерными сигналами с Земли или Луны.
К этой же категории относятся эксперименты по созданию так называемого электродинамического троса, когда спутник может выбрасывать вокруг себя длинные металлические нити с разными электрическими зарядами.
Сейчас ученые разрабатывают еще несколько гипотетических видов двигателей, которые в будущем смогут давать энергию для движения космических спутников: вакуумный двигатель, двигатель внутренних радиочастот и устройство, которое будет брать энергию от полей самых маленьких частиц, например, бозонов. Работоспособность всех этих гипотез пока не доказана с точки зрения физики.
Первым человеком, который еще в 1911 году публично предложил идею создания ионного двигателя, стал российский и советский ученый, пионер космонавтики Константин Циолковский. При этом первый документ, в котором упоминается электрическая тяга для движения космических объектов, был за авторством другого пионера космонавтики, американского ученого Роберта Годдарда.
6 сентября 1906 года Годдард писал в своем дневнике, что сможет использовать энергию ионов для работы двигателей. Первые эксперименты с ионными двигателями были проведены Годдардом в Университете Кларка в 1916 году. В итоге ученый заявил, что сможет использовать их в полноценном формате только в условиях, приближенных к вакууму, тогда как в рамках тестирования их показывали при атмосферном давлении Земли.
Первый работающий ионный двигатель был построен инженером НАСА Горальдом Кауфманом только в 1959 году. В качестве топлива, в отличие от современных аналогичных двигателей, которые перерабатывают ионы газа ксенона, он использовал ртуть. Суборбитальные испытания двигателя прошли в 1964 году, когда в космос на ракете-разведчике был запущен научный зонд Sert 1 — первое в истории устройство, использующее конструкцию ионного двигателя в космосе. В 70-х годах США провели ряд повторных испытаний этой технологии.
Принцип работы ионного двигателя
Ионные двигатели используют пучки ионов — электрически заряженных атомов или молекул — для создания тяги. Основным рабочим телом ионизации является газ, иногда ртуть. В ионизатор подается это топливо, после чего туда же запускают высокоэнергетические электроны. В этой камере образуется смесь из положительных ионов и отрицательных электронов. После этого в камеру вводят специальный фильтр, который притягивает к себе отрицательные электроны, тогда как положительные ионы притягиваются к ряду сеток с большой разницей электростатических потенциалов (+1090 В на внутренней против -225 В на внешней). В результате такой мощной разницы ионы начинают разгоняться по кругу, пока не выбрасываются из устройства, ускоряя движение корабля. За ними выбрасываются и электроны, которые должны обезвредить ионы и не позволить им притягиваться обратно к двигателю.
На сегодняшний день ионные двигатели необходимы спутникам, чтобы маневрировать в космосе, например, для изменения своего курса или уклонения от космического мусора. Существует также несколько проектов, предполагающих использование ионных двигателей для дальних космических путешествий.
Самый яркий пример использования ионных двигателей для дальних путешествий — автоматическая исследовательская миссия Dawn от НАСА. В сентябре 2007 года она была запущена для исследования астероида Веста и карликовой планеты Церера.
Dawn оборудована тремя ксеноновыми ионными двигателями NSTAR. Они установлены в нижней части аппарата: один вдоль оси, еще два — на передней и задней панелях. Принцип работы этих двигателей состоит в ускорении в электрическом поле ионов ксенонового топлива. Двигатели длиной в 33 см, диаметром сопла в 30 см и массой 8,9 кг разгоняют атомы до скорости в десять раз выше, чем могут это сделать современные химические двигатели. Ускорение и торможение обеспечивается за счет установленных на борту Dawn солнечных батарей и уровня подачи топлива.
Для полета Dawn было необходимо всего 3,25 мг топлива в секунду. Из 425 кг рабочего тела (ксенона), имеющегося на борту, на полет Земля — Веста предполагалось израсходовать 275 кг, на полет Веста — Церера — 110 кг.
Миссия Dawn стала не только одной из самых энергоэффективных в истории космонавтики, но и установила несколько рекордов скорости. 5 июня 2016 года — спустя девять лет после запуска — станция Dawn разогналась до 39 900 км/час (11,1 км/с).
1 ноября 2018 года НАСА официально закончила миссию Dawn, поскольку ионные двигатели полностью выработали топливо. Последние несколько лет инженеры НАСА занимаются разработкой новых двигателей, рассчитанных на увеличенное количество ксенона. В этих разработках пока есть сложность, поскольку увеличение веса станции за счет топлива негативно сказывается как на скорости передвижения аппарата, так и на дальности полета.
НАСА пришло к решению отменить тестирование Vasimr, поскольку ученые до конца не смогли найти источник энергии, на котором бы работал этот двигатель. Самым перспективным источником энергии могла стать термоядерная установка, однако ее использование на МКС могло быть небезопасной.
Из-за этого сейчас ионные двигатели продолжают рассматриваться в основном в качестве дополнительных двигателей на различных спутниках, с помощью которых зонды смогут совершать маневры в космосе. Другим перспективным направлением для использования двигателей такого типа может стать космическая уборка. На орбите Земли с каждым годом появляется все больше космического мусора, а спутники с ионными двигателями могут стать идеальным решением этой проблемы.
Читайте также: