Педаль газа с датчиком холла схема
Электронная педаль акселератора.
С появлением в 2010 ‑м году модификаций E‑GAS (система с электронной педалью) расширился список оригинальных датчиков и исполнительных механизмов, применяемых на автомобилях ВАЗ и работающих с новыми контроллерами M 74 и Bosch M 17 . 9 . 7 .
В первую очередь это, конечно, собственно электронный (без использования троса) узел педали акселлератора (МПА) расположенный на кронштейне у правой ноги водителя, который представляет собой два независимых датчика положения педали, передающие контроллеру информацию о текущем положении педали газа (акселератора).
Оба датчика, для исключения взаимовлияния друг на друга, запитываются раздельно, от разных выводов контроллера, калиброванным напряжением 3 . 3 V. Т.к к достоверности данного сигнала предъявляются особые требования, контроллер осуществляет постоянный мониторинг датчиков и, при малейших отклонениях в питании или рассогласовании выходных сигналов выставляет ошибки (Р 2122 -Р 2123 , Р 2127 -Р 2128 , Р 2138 ).
Получив аналоговый сигнал от модуля электронной педали акселлератора (МПА) контроллер формирует сигналы для управления дроссельной заслонкой.
Дроссельный патрубок с электронным управлением.
На автомобилях семейства ВАЗ применяется два типа дроссельных патрубков (ДП) 21116 – 1148010 - 00 (применяется с контроллерами М 74 ) и 21126 – 1148010 - 00 (применяется с контроллерами Bosch M 17 . 9 . 7 )
Для установки данных парубков на автомобили предназначены оригинальные впускные коллекторы.
Открытие и закрытие дроссельной заслонки осуществляется с помощью электропривода по сигналам с контроллера. Категорически запрещается принудительное открытие заслонки механическим путем. Текущее положение дроссельной заслонки определяется так же двумя независимыми датчиками положения заслонки.
Датчик Массового Расхода Воздуха (ДМРВ)
Главной особенностью систем с E‑GAS стала возможность применения Датчика Массового Расхода Воздуха (ДМРВ) частотного типа, знакомого нам еще по первым системам распределенного впрыска GM. В таких датчиках, в зависимости от измеренной массы воздуха, меняется не напряжение в канале АЦП, а частота выходного сигнала. Контроллер М 17 . 9 . 7 ( 21214 – 1411020 - 20 ) выдает для данного датчика отдельное напряжение питания 5 V (контакт Х 1 – 37 ), на М 74 ( 11183 – 1411020 - 01 / 02 ; 51 / 52 ) ДМРВ питается совместно с датчиками положения дроссельной заслонки (Х 1 -К 1 ).
Тип применяемого ДМРВ зависит от типа контроллера, с которым согласуются его электрические параметры. Для 16 кл. двигателей 21126 , 11194 и а/м Нива 4 х 4 21214 предназначен ДМРВ 21700 – 1130010 - 00 , на 8 ‑кл модификации 11183 (с ECU M 74 ) предназначен датчик 11180 – 1130010 - 00 .
ДМРВ частотного типа производства GM, устанавливаемые на первые отечественные инжекторные автомобили, зарекомендовали себя как очень надежное устройство, некоторые экземпляры до сих пор (уже более 10 лет) встречаются на автомобилях.
Датчик педали акселератора (он же датчик ускорения, датчик педали газа или датчик положения дроссельной заслонки), предназначен для электронного управления подачей топлива в автомобилях В большинстве современных двигателей используется так называемая электронная педаль газа, когда управление дроссельной заслонкой осуществляет контроллер, выполняющий команды водителя. Формирование команд производится посредством датчика, механически соединённого с педалью акселератора. Датчик представляет собой потенциометр, ползунок которого перемещается педалью. Датчик положения педали акселератора устанавливается в составе объединенного модуля электронной педали газа. Конструктивно - это датчик углового перемещения. Для оценки положения педали акселератора используются контактные и бесконтактные датчики перемещения.
Возникает вопрос, зачем такие сложности? Ведь есть давно испытанная схема, при которой дроссельная заслонка управляется тросиком, соединённым с педалью газа. Причин несколько. Включение посредника в виде контроллера между водителем и дросселем позволяет реализовать наиболее оптимальные законы управления двигателем,- оптимальные в смысле экологичности, экономичности, комфорта (в частности комплексное управление двигателем/АКП путём снижения крутящего момента для уменьшения толчков при переключении передач) и так далее. Правда, такое вмешательство контроллера не нравится некоторым любителям “позажигать”. По их мнению электронная педаль душит двигатель и “тупит” машину. Некоторые умельцы пытаются перепрограммировать контроллер или использовать датчик положения от других марок автомобилей с другим, более агрессивным законом формирования управляющего сигнала.
Характерными признаками неисправности датчика являются повышенные или нестабильные обороты холостого хода. В последнем случае они могут уменьшиться настолько, что двигатель будет глохнуть. Кроме того, возможны рывки при разгоне и, особенно, при трогании автомобиля. Это может быть связано с износом датчика или необходимостью обучения контроллера при замене датчика.
Проверка датчика педали
Проверить датчик можно подключив к его контактам омметр и плавно перемещая педаль акселератора. Сопротивление должно плавно, без рывков изменяться во всём диапазоне перемещения педали. При замене датчика или контроллера может потребоваться обучение контроллера новому исходному положению педали акселератора. Это связано с тем, что при отпущенном положении педали сигнал датчика не равен нулю, а имеет некоторое небольшое начальное значение. Контроллер должен запомнить этот сигнал в качестве опорного, соответствующего начальному положению педали газа и дальнейший отсчёт положения педали вести от этого начального значения сигнала. Замена датчика влияет на величину начального сигнала, что приводит к изменению оборотов холостого хода. Обучение необходимо проводить даже при отсоединении разъёма от датчика или контроллера. Процедура обучения отпущенному положению педали акселератора заключается в следующем:
Для каждой марки автомобиля предусмотрен свой вид потенциометра педали акселератора, для того, чтобы выбрать необходимое в данном случае вам устройство, лучше всего воспользоваться специальным каталогом или обратиться к автоэлектрику.
Здесь вы найдете полезные основные сведения и важные советы о датчике педали акселератора или педали газа/датчике положения педали газа для автомобилей.
Датчик педали акселератора передает данные о положении педали акселератора на блок управления двигателем. Исходя из этой информации, запрос нагрузки водителя может быть выполнен незамедлительно. На этой странице мы расскажем вам о принципе действия современных датчиков положения педали акселератора и признаках, указывающих на неисправность в зоне этого датчика. Вы также узнаете о том, как выполняется проверка датчиков педали акселератора в автосервисе.
Важное указание по технике безопасности
Следующая информация и практические советы были составлены HELLA для профессиональной помощи автомастерским. Информация, предоставленная на этом веб-сайте, должна применяться только соответствующим образом подготовленными специалистами.
Принцип действия датчика педали акселератора
Признаки неисправности датчика педали акселератора
Неисправность датчика педали акселератора
Проверка датчика педали акселератора
ПРИНЦИП РАБОТЫ ДАТЧИКА ПОЛОЖЕНИЯ ПЕДАЛИ АКСЕЛЕРАТОРА : ПРИНЦИП ДЕЙСТВИЯ
Доля электронных компонентов в современных автомобилях постоянно растет. Помимо прочего, это обусловлено нормами законодательства, например, в области сокращения выбросов и потребления. Спрос на электронные компоненты также постоянно растет, поскольку они повышают уровень активной и пассивной безопасности и комфорта вождения. Одним из наиболее важных компонентов является датчик педали акселератора.
В автомобильной промышленности все чаще применяется бесконтактный датчик, основанный на индуктивном принципе. Этот датчик состоит из статора, включающего катушку возбуждения, приемные катушки и обрабатывающую электронику, и ротора, включающего один или несколько замкнутых контуров определенной геометрии.
При подаче напряжения переменного тока на передающую катушку создается магнитное поле, индуцирующее напряжение в приемных катушках. Ток также индуцируется в петлях проводников ротора, что воздействует на магнитное поле приемных катушек. В зависимости от положения ротора по отношению к приемным катушкам в статоре, генерируются амплитуды напряжения. Они обрабатываются электроникой, а затем соответствующие данные передаются на блок управления в виде постоянного напряжения. Он обрабатывает сигнал и направляет соответствующий импульс, например, на регулятор положения дроссельной заслонки. Характеристика сигнала напряжения зависит от нажатия на педаль акселератора.
На автомобилях Лада Приора, Лада Калина и Лада 4х4 с дроссельным патрубком с электроприводом (ЭДП) 21126-1148010-00, BOSCH 0 280 750 526, применяется электронная педаль акселератора (ЭПА) 21700-1108500-00/01 (Bosch 0 280 755 113), 11183-1108500-00/01 (Bosch 0 280 755 112), 21214-1108500-00 (Bosch 0 280 755 114) соответственно. Она электрически передает сигнал о положении педали акселератора контроллеру. ЭПА располагается на кронштейне под правой ногой водителя.
Проверка электронной педали акселератора 21700-1108500 (Bosch 0 280 755 113), 11183-1108500 (Bosch 0 280 755 112), 21214-1108500 (Bosch 0 280 755 114), схема подключения, коды ошибок и неисправностей, диагностическая карта проверки.
В ЭПА используются два датчика положения педали акселератора (ДППА). ДППА представляют собой резисторы потенциометрического типа, на которые подается питание от контроллера 3,3 В. ДППА механически связаны с приводом от рычага педали. Две независимые пружины между рычагом педали и корпусом создают возвратное усилие. Получая аналоговый электрический сигнал от ЭПА, контроллер формирует сигнал для управления положением дроссельной заслонки.
Выходное напряжение ДППА меняется пропорционально нажатию педали акселератора. При отпущенной педали акселератора сигнал ДППА 1 должен быть в пределах 0,31-0,56 В, сигнал ДППА 2 в пределах 0,15-0,28 В. А при нажатой педали акселератора сигнал ДППА 1 увеличивается до 1,9 В, сигнал ДППА 2 увеличивается до 0,95 В. При любом положении педали акселератора сигнал ДППА 1 должен быть в два раза больше сигнала ДППА 2.
Диагностическая информация.
При обнаружении неисправности цепи ДППА А или ДППА В система управления двигателем будет работать в аварийном режиме до конца текущей поездки. Возможны следующие аварийные режимы:
— Ограничение мощности двигателя, если исправна цепь ДППА А или ДППА В.
— Холостой ход, если неисправны цепи ДППА А и ДППА В.
При отпущенной педали акселератора сигнал ДППА А должен находится в диапазоне 0,31-0,56 В, сигнал ДППА В должен находится в диапазоне 0,15-0,28 В. Для расчета положения педали акселератора, выраженного в процентах (WPED), используется минимальный сигнал из UPWG1ROH и 2 × UPWG2ROH. При каждом включении зажигания, контроллер определяет нулевое положение педали акселератора. Положение 100 % достигается при напряжении 1,52 В / 0,76 В с датчика ДППА А / ДППА В.
Схема подключения электронной педали акселератора 21700-1108500 (Bosch 0 280 755 113), 11183-1108500 (Bosch 0 280 755 112), 21214-1108500 (Bosch 0 280 755 114).
Код ошибки Р2122 — Цепь датчика положения педали А, низкий уровень сигнала.
Код неисправности Р2122 заносится, если:
— Зажигание включено.
— Сигнал датчика положения педали акселератора А (UPWG1ROH) меньше 0,3 В в течение 0,2 с.
Сигнализатор неисправностей загорается через 5 c после возникновения кода неисправности.
Описание проверок электронной педали акселератора 21700-1108500, 11183-1108500, 21214-1108500.
Последовательность соответствует цифрам на карте.
Диагностическая карта проверки исправности цепи датчика положения педали А.
После ремонта запустить двигатель, сбросить коды ошибок и убедиться в отсутствии неисправности.
Код неисправности Р2123 — Цепь датчика положения педали А, высокий уровень сигнала.
Код ошибки Р2123 заносится, если:
— Зажигание включено.
— Сигнал датчика положения педали акселератора А (UPWG1ROH) больше 3 В в течение 0,2 с.
Сигнализатор неисправностей загорается через 5 c после возникновения кода неисправности.
Описание проверок электронной педали акселератора 21700-1108500, 11183-1108500, 21214-1108500.
Последовательность соответствует цифрам на карте.
1. С помощью диагностического прибора проверяется, активен ли код Р2123 в момент диагностики.
2. Выполняется проверка напряжения в сигнальной цепи ДППА А с отключенным датчиком. Напряжение должно быть около 0 В.
3. Выполняется проверка цепи массы ДППА А на наличие обрыва.
4. Повторно выполняется проверка напряжения в сигнальной цепи ДППА А после замены контроллера.
Диагностическая карта проверки исправности цепи датчика положения педали А.
После ремонта запустить двигатель, сбросить коды ошибок и убедиться в отсутствии неисправности.
Код ошибки Р2127 — Цепь датчика положения педали В, низкий уровень сигнала.
Код неисправности Р2127 заносится, если:
— Зажигание включено.
— Сигнал датчика положения педали акселератора В (UPWG2ROH) меньше 0,1 В в течение 0,2 с.
Сигнализатор неисправностей загорается через 5 c после возникновения кода неисправности.
Описание проверок электронной педали акселератора 21700-1108500, 11183-1108500, 21214-1108500.
Последовательность соответствует цифрам на карте.
Диагностическая карта проверки исправности цепи датчика положения педали В.
После ремонта запустить двигатель, сбросить коды ошибок и убедиться в отсутствии неисправности.
Код неисправности Р2128 — Цепь датчика положения педали В, высокий уровень сигнала.
Код ошибки Р2128 заносится, если:
— Зажигание включено.
— Сигнал датчика положения педали акселератора В (UPWG2ROH) больше 1,6 В в течение 0,2 с.
Сигнализатор неисправностей загорается через 5 c после возникновения кода неисправности.
Описание проверок электронной педали акселератора 21700-1108500, 11183-1108500, 21214-1108500.
Последовательность соответствует цифрам на карте.
1. С помощью диагностического прибора проверяется, активен ли код Р2128 в момент диагностики.
2. Выполняется проверка напряжения в сигнальной цепи ДППА В с отключенным датчиком. Напряжение должно быть около 0 В.
3. Выполняется проверка цепи массы ДППА В на наличие обрыва.
4. Повторно выполняется проверка напряжения в сигнальной цепи ДППА В после замены контроллера.
Диагностическая карта проверки исправности цепи датчика положения педали В.
После ремонта запустить двигатель, сбросить коды ошибок и убедиться в отсутствии неисправности.
Код неисправности Р2138 заносится, если:
— Зажигание включено.
— Уменьшенный в два раза сигнал датчика положения педали акселератора (UPWG1ROH/2) и сигнал датчика положения педали акселератора В (UPWG2ROH) отличаются на величину порога в течение 0,25 с.
Сигнализатор неисправностей загорается через 5 c после возникновения кода неисправности.
Описание проверок электронной педали акселератора 21700-1108500, 11183-1108500, 21214-1108500.
Последовательность соответствует цифрам на карте.
После ремонта запустить двигатель, сбросить коды ошибок и убедиться в отсутствии неисправности.
Диагностическая информация.
При обнаружении рассогласования сигналов ДППА А и ДППА В система управления двигателем будет работать в аварийном режиме до конца текущей поездки.
Вплоть до конца 1980-х годов у большинства автомобилей было довольно простое управление дроссельной заслонкой. Вы нажали на педаль акселератора, дроссельная заслонка открылась, воздух поступил в двигатель, где он смешался с бензином и сгорел.
Педаль газа с тросиком
Сгорающий газ приводил в движение колеса автомобиля. Если вы хотели ехать быстрее, всё, что вам нужно было сделать, это нажать педаль сильнее — дроссельная заслонка открывалась шире, давая автомобилю больше мощности.
Но электронное управление дроссельной заслонкой, которое называют электронная педаль газа, использует электрические, а не механические сигналы для управления дроссельной заслонкой.
Электронная педаль газа
Давайте разберёмся, для чего это сделали. Из каких элементов состоит электронный дроссель (ЭД), как он работает, какие у него есть преимущества, какие бывают признаки неисправности.
Из чего состоит электронное управление дросселем?
Когда вы нажимаете педаль газа, вместо открытия дроссельной заслонки задействуется модуль педали акселератора, который преобразует силу, с которой вы нажимаете на педаль, в электрический сигнал.
Затем этот сигнал отправляется в электронный блок управления (ЭБУ), который учитывает его, а также внешние сигналы, чтобы открыть дроссельную заслонку для оптимальной эффективности и производительности.
Это сложная система, но она дает много преимуществ с точки зрения износа двигателя, производительности, эффективности и экологии. Однако, как и любая сложная система, она несовершенна, и у водителей много вопросов по ней.
Типичная электронная система управления дроссельной заслонкой обычно состоит из трёх основных частей:
- модуль педали акселератора;
- привод (электрический моторчик) заслонки;
- блок управления двигателем.
При использовании электронной педали акселератора пропадает необходимость в регуляторе холостого хода (РХХ). Теперь обороты ХХ устанавливаются поворотом заслонки тем же моторчиком.
Блок управления двигателем выбирает правильное программное обеспечение на основе информации от датчиков положения педали акселератора, оборотов двигателя, датчика скорости и переключателей круиз-контроля.
Датчик положения педали акселератора
Как работает электронное управление дроссельной заслонкой
По сравнению с тросиковым дросселем в Е-газ добавили две детали:
- моторчик вращения заслонки;
- второй (контрольный) датчик положения дроссельной заслонки (ДПДЗ №2).
Электронные дроссельные заслонки могут отличаться процентом открытия в обесточенном состоянии и типом ДПДЗ.
- Полностью закрытые в обесточенном состоянии — одна пружина на полное закрытие.
- Приоткрытые на 5-7% — две пружины, точка равновесия в зоне приоткрытия. Это позволяет двигателю работать на малых оборотах в случае
полного выхода из строя электроники дросселя. Такие заслонки являются более современными, чем полностью закрытые, с которыми, в случае поломки, двигатель не будет работать совсем. - С контактными ДПДЗ — внутри ползунковые переменные резисторы.
- С бесконтактными ДПДЗ — внутри нет трущихся подвижных контактов, сигнал на выходе формируется электроникой.
Принцип работы Е-газа:
- Водитель нажимает на педаль акселератора. Степень нажатия через датчики переводится в электрический сигнал и по проводам передаётся в ЭБУ.
- ЭБУ управляет закрытием/открытием заслонки ШИМ-питанием через моторчик. Меняется как скважность ШИМа, так и полярность.
- По сигналам с ДПДЗ анализируется положение заслонки и меняется управляющий сигнал при необходимости.
- Контролируются ошибки в работе дроссельной заслонки.
Преимущества электронного управления дроссельной заслонкой
Электронные системы управления дроссельной заслонкой могут показаться немного бессмысленными. В конце концов, если механическая система работает, зачем её усложнять?
Надежность
Механические дроссельные системы, поскольку они состоят из множества движущихся частей, подвержены значительному износу. В течение срока службы автомобиля различные компоненты могут изнашиваться.
Электронная система управления дроссельной заслонкой имеет сравнительно немного движущихся частей — она посылает сигналы с помощью электрического импульса, а не движущихся частей. Это снижает износ и объём технического обслуживания.
Безопасность
Е-газ добавляет ряд преимуществ безопасности по сравнению с механическими системами. При механическом управлении степень открытия или закрытия дроссельной заслонки зависит только от действий водителя.
Другими словами, E-GAS может учесть несколько факторов, которые влияют на скорость и управление автомобиля, а не только ногу на педали.
Электронное управление дроссельной заслонкой позволяет интегрировать передовые функций безопасности водителя, такие как адаптивный круиз-контроль, системы блокировки тормозов и электронный контроль устойчивости, делая автомобиль более безопасным в сложных погодных условиях (дождь, снег, гололед и др.).
Кроме того, электронный дроссель реагирует быстрее, чем водитель в ситуации, когда шины не обладают достаточным сцеплением с дорогой, обеспечивая вам безопасность и удерживая машину на дороге.
Экологичность и экономичность
Управление дроссельной заслонкой через ЭБУ позволяет снизить вредные выбросы в атмосферу и повысить экономичность автомобиля. Это достигается благодаря тому, что блок управления учитывает не только нажатие на педаль, но и данные от многих датчиков: скорости, кислорода, температуры и др.
Симптомы неисправности электронного дросселя
Как и любая другая деталь автомобиля, система управления дроссельной заслонкой также может подвергаться повреждениям и износу. Есть признаки и симптомы, на которые следует обращать внимание, чтобы защитить автомобиль от дальнейших повреждений.
- У машины могут быть рывки и провалы при ускорении, она может дергаться при разгоне. Возможны пропуски зажигания. Если вы заметили какие-либо из этих симптомов или резкое переключение передач, то возможно есть проблема с электронным дросселем.
- Неисправности электронного управления дроссельной заслонкой могут вызывать проблемы при переключении передач. Это может быть ощущение залипания или медленное переключение между передачами. Возможна проблема с выходом из определенной передачи, как будто она застряла.
- Ещё одним признаком неисправности ЭД являются проблемы с отображением силовых характеристик. Это означает, что автомобиль будет отображать неправильные данные или данные, которые невозможны в текущей ситуации.
- Двигатель может глохнуть без какой-либо видимой причины. Это может быть признаком серьезной проблемы и даже привести к повреждению двигателя, поэтому эту проблему необходимо устранить как можно скорее.
- Дополнительным признаком, который может указывать на необходимость проверки Е-газ, является то, что у вас появляются быстрые и непреднамеренные скачки скорости во время вождения. Это большая проблема безопасности, поскольку это может произойти, когда вы позади другой машины или на повороте.
- На приборной панели может гореть лампочка Check Engine. Это является признаком какой-то неисправности, обнаруженной ЭБУ. Узнать ошибку и причину неисправности можно с помощью диагностического сканера или адаптера ELM327 с программой Torque.
- И последний симптом неисправности электронного управления дроссельной заслонкой — это резкое увеличение расхода топлива. Если вы понимаете, что не можете проехать так же много километров на таком же объёме топлива как раньше, это явный признак того, что нужно сделать диагностику автомобиля.
Аварийный (отказоустойчивый) режим ЭД
Как и большинство сложных систем, электронные системы управления дроссельной заслонкой имеют ряд аварийных режимов (Failsafe Mode). Они предназначены для того, чтобы поддерживать работу системы или обеспечивать безопасное завершение работы, если что-то пойдет не так.
Вообще говоря, при первых признаках проблемы большинство электронных средств управления дроссельной заслонкой закрывают дроссельную заслонку и возвращаются в режим холостого хода.
Так, например, если блок управления двигателем обнаруживает проблему с датчиком, система переходит на холостой ход, предотвращая открытие дроссельной заслонки.
Также в ЭД встроено несколько резервов. Например, датчиков положения используется по две штуки. Если датчик неисправен или два датчика в одном положении передают разные показания, система закрывает дроссельную заслонку, оставляя двигатель на холостом ходу.
Всё это не означает, что в электронных системах управления дроссельной заслонкой нет проблем. Скорее, они были разработаны с рядом аварийных режимов, которые при правильной работе должны предотвратить неожиданное ускорение автомобиля.
В последнее время автопроизводители добавляют еще один аварийный режим: отключение тормозами. Такие ЭД уже доступны на некоторых немецких автомобилях. Они позволяют водителю вмешиваться и блокировать систему дроссельной заслонки. Если Е-газ каким-то образом неисправен и дроссельная заслонка открывается сама по себе, то нажатие на тормоз закроет её.
Читайте также: