Лямбда меньше 1 какая смесь
Типы лямбда-зондов, устройство, принцип действия, причины и признаки неисправности? Как определить неисправность датчика кислорода по внешнему виду. Методы проверки лямбда зонда осциллографом, мультиметром, тестером, как правилно подключить лямбда-зонд, назначение проводов.
Правильно писать: лямбда.
Коротко что такое лямбда-зонд: Лямбда-зонд — это датчик выхлопной системы, который определяет остаток кислорода в выхлопных газах. Зачем нужен? Лямбда-зонд передает сигнал блоку управления двигателем (ЭБУ) для управления соотношением топливо-воздушной смеси.
Функции и принцип действия датчика лямбда.
Для обеспечения идеального коэффициента конверсии каталитического нейтрализатора требуется обеспечить оптимальное сгорание топливо-воздушной смеси. В случае бензинового двигателя это достигается при соотношении воздух-топливо, равном 14,7 кг воздуха на 1 кг топлива, такой состав называется стехиометрическая топливная смесь.
Стехиометрическая смесь — это состав смеси в таких пропорциях топлива и воздуха, при которых происходит полное сгорание смеси без остатка избыточного кислорода. Теоретический коэффициент избытка воздуха топливной стехиометрической смеси равен единице.
Эта оптимальная смесь обозначается греческой буквой λ (лямбда). Лямбда используется для выражения соотношения воздуха между теоретическим потреблением воздуха и фактическим потоком воздуха:
λ = поток подаваемого воздуха: теоретический поток воздуха равен единице.
λ = 14,7 кг: 14,7 кг = 1
Принцип лямбда-датчика основан на измерении сравнения кислорода. Это означает, что оставшееся содержание кислорода в выхлопных газах (приблизительно 0,3–3%) сравнивается с содержанием кислорода в окружающем воздухе (около 20,8%).
Если остаточное содержание кислорода в выхлопных газах составляет 3% (обедненная смесь), возникает напряжение 0,1 V из-за разницы по сравнению с содержанием кислорода в окружающем воздухе.
Если оставшееся содержание кислорода составляет менее 3% (богатая смесь), напряжение датчика возрастает до 0,9 V пропорционально увеличению разницы. Содержание оставшегося кислорода измеряется с помощью нескольких лямбда-зондов.
Исправность лямбда-зондов обычно проверяют во время испытания на выбросы выхлопных газов. Поскольку он подвержен определенному износу, его следует регулярно проверять, чтобы убедиться, что он работает должным образом.
Как часто нужно проверять лямбда-зонд? Ответ: приблизительно каждые 30 000 км, например, при проведении техобслуживания в автосервисе.
За ужесточением законов, направленных на сокращение выбросов выхлопных газов, последовало усовершенствование технологии последующей обработки выхлопных газов.
Типы лямбда датчиков.
Какие бывают лямбда зонды и чем отличаются? Существует два типа датчиков лямбда — платиновый и титановый. Отличаются принципом определения количества не сгоревшего кислорода в выхлопных газах — по изменению сопротивления или по скачку напряжения.
Лямбда датчик на принципе скачка напряжения.
Этот зонд состоит из полого керамического элемента из диоксида циркония в форме пальца. Характерной особенностью этого твердого электролита является то, что он проницаем для ионов кислорода при температуре выше 300 ° С. Обе стороны керамики покрыты тонким пористым слоем платины, который служит электродом. Выбросы отработавших газов проходят снаружи керамического элемента, а внутренняя часть заполнена эталонным воздухом.
Схема строения лямбда зонда из диоксида циркония
Свойства керамического элемента означают, что разная концентрация кислорода с обеих сторон вызывает миграцию ионов кислорода, что, в свою очередь, создает напряжение. Это напряжение используется в качестве сигнала для блока управления двигателем, который регулирует соотношение воздух-топливо на впрыск в зависимости от содержания остаточного кислорода в выхлопных газах.
Этот процесс измерения остатка кислорода в выхлопных газах повторяется несколько раз в секунду на основе чего создается более богатая топливом или бедная топливная смесь.
Лямбда датчик на принципе изменения сопротивления
В датчиках этого типа керамический элемент изготовлен из диоксида титана с использованием многослойной толстопленочной технологии. Одним из свойств диоксида титана является то, что его сопротивление изменяется пропорционально концентрации кислорода в выбросах выхлопных газов. При более высоком содержании кислорода (обедненная смесь λ> 1) он менее проводящий (сопротивление увеличивается), а при более низком содержании кислорода (обогащенная смесь λ 1), так и в обогащенном (λ если он старый, выработал ресурс или загрязнен, например, присадками к топливу. Это можно определить при диагностике зонда. Сигнал лямбда зонда сравнивается с сохраненным шаблоном. Медленный зонд определяется как неисправность, например, через длительность периода сигнала.
Время отклика: частота зонда слишком низкая, оптимальное управление больше невозможно.
Как проверить лямбда зонд осцилографом, мультиметром, тестером датчика кислорода, анализатором выхлопных газов: устранение неисправностей.
Как основной принцип, перед каждой проверкой должен проводиться визуальный осмотр, чтобы убедиться в отсутствии повреждений кабеля или разъема. Система выпуска не должна иметь утечек.
Для подключения диагностического устройства рекомендуется использовать переходной кабель. Также необходимо убедиться, что лямбда-контроль не активен в некоторых рабочих состояниях, например во время холодного запуска до достижения рабочей температуры и при полной нагрузке.
Проверка лямбда зонда анализатором выхлопных газов
Одним из самых быстрых и простых тестов является измерение с помощью четырехгазового анализатора выбросов.
Процедура проверки датчика выполняется так же, как испытание на выбросы выхлопных газов. При достижении двигателем рабочей температуры, то путем снятия шланга примешивается ложный воздух в качестве переменной возмущения. В результате изменения состава выхлопных газов также изменяется значение лямбда, которое рассчитывается и отображается тестером выхлопных газов. Система образования смеси должна определять это по определенному значению и регулировать его в течение определенного времени (60 секунд, как в тесте на выбросы выхлопных газов). Если переменная примешенного воздуха удалена, значение лямбды должно уменьшиться до исходного значения.
Для получения верных значений необходимо знать значения лямбды производителя, а также соблюдать условия подключения примешиваемого воздуха.
Однако эта диагностика датчика кислорода лямбда определяет только — работает ли лямбда-контроль. Электрический тест невозможен. При этой процедуре существует риск, что современные системы управления двигателем контролируют смесь посредством точного определения нагрузки, так чтобы λ = 1, несмотря на то, что лямбда-контроль не работает.
2. Диагностика лямбда-зонда мультиметром.
Для проверки датчика кислорода рекомендуется пользоваться только высокоимпедансным мультиметром с цифровым или аналоговым дисплеем.
Мультиметры с низким внутренним сопротивлением (в основном в аналоговых устройствах) перегружают сигнал лямбда-датчика и могут привести к его поломке. Из-за быстро меняющегося напряжения сигнал лучше всего наблюдать с помощью аналогового устройства.
Мультиметр подключается параллельно сигнальной линии (черный кабель, см. Принципиальную схему) лямбда-датчика. Диапазон измерения мультиметра установить на 1 V или 2 V. После того, как двигатель запущен, на дисплее появляется значение в диапазоне от 0,4 — 0,6 V (опорное напряжение). Если рабочая температура двигателя или лямбда-датчика достигнута, постоянное напряжение начинает меняться от 0,1 В до 0,9 В.
Для достижения наиболее точных результатов измерений датчика кислорода, двигатель должен удерживать обороты примерно 2500 об / мин. Таким образом рабочая температура лямбда зонда будет достигнута даже в системах с лямбда-датчиком без подогрева. Важно, чтобы на холостом ходе температура выхлопных газов была достаточной, иначе не прогретый лямбда датчик остынет и сигнал будет неверный.
Осторожно. Ни в коем случае не используйте омметр на циркониевом датчике -это может привести к его повреждению, вплоть до выхода из строя.
3. Проверка лямбда зонда осциллографом.
Сигнал лямбда-датчика лучше всего изображать с помощью осциллографа. Как при проверке зонда с помощью мультиметра, основным предварительным условием является то, что двигатель или лямбда-датчик должны иметь рабочую температуру.
Осциллограф подключен к сигнальной линии кислородного зонда. Диапазон измерения зависит от используемого осциллографа. Если устройство имеет автоматическое обнаружение сигнала, то это упрощает предварительную настройку. Для ручной регулировки установите диапазон напряжения: 1 — 5 В, а время: 1 — 2 секунды.
Частота вращения двигателя должна также удерживаться на 2500 об / мин.
Переменное напряжение на дисплее осциллографа выглядит в форме синусоиды. По этому сигналу можно оценить следующие параметры:
- Высота амплитуды (максимальное и минимальное напряжение 0,1 — 0,9 V);
- Время отклика и продолжительность периода (частота около 0,5 — 4 Гц).
4. Проверка лямбда зонда тестером датчиков лямбда.
Различные производители предлагают специальные тестеры для проверки лямбда-датчиков. На устройстве работа лямбда-датчика отображается с помощью LED светодиодов.
Тестер лямбда зонда подключен к сигнальной линии зонда так же, как мультиметр или осциллограф. После того, как датчик кислорода достиг рабочей температуры и начинает работать, светодиоды отображают значения на шкале, в зависимости от соотношения воздух-топливо и кривой напряжения (0,1 — 0,9 V) датчика.
Здесь все технические характеристики настроек измерительного устройства для измерения напряжения относятся к датчикам диоксида циркония (датчикам скачков напряжения). Для диоксида титана диапазон измерения напряжения изменяется до 0 — 10 V, а измеряемые скачки напряжения — от 0,1 до 5 В.
5. Проверка состояния защитной трубки
В первую очередь необходимо изучить спецификации производителя, так как именно в инструкции изготовителя указаны условия эксплуатации, которые должны соблюдаться как основной принцип. Наряду с электронными проверками состояние защитной трубки лямбда зонда автомобиля дает важную информацию о работоспособности датчика.
Признаки, причины и устранение неисправностей лямбда зонда при проверке осмотром его состояния:
- Защитный кожух лямбда зонда сильно закопчен сажей
Причина: Двигатель работает на слишком богатой смеси
Устранение: Необходимо заменить зонд и устранить причину чрезмерно богатой смеси, чтобы предотвратить повторное загрязнение зонда. - Блестящие депозиты на защитной трубе
Причина: Использование этилированного топлива
Устранение: Свинец разрушает элемент зонда. Необходимо заменить датчик и проверить каталитический нейтрализатор. Замените этилированное топливо неэтилированным топливом. Выясните какие АЗС на пути регулярных поездок продают качественное топливо. - Налет белого или серого цвета на датчике кислорода
Причина: Двигатель сжигает масло, дополнительные присадки в топливе.
Устранение: Необходимо заменить зонд и устранить причину сгорания масла. - Неправильная установка лямбда зонда
Причина: Недостаточно опыта, не читал инструкцию, кривые руки. Во время монтажа необходимо использовать предписанный специальный инструмент и соблюдать момент затяжки.
Устранение: Заменить лямбда датчик на новый или рабочий.
6. Проверка функции нагрева лямбда зонда. Устранение неисправности.
Для проверки нагревательного элемента питания лямбда зонда можно проверить внутреннее сопротивление и напряжение питания.
Для этого отсоедините разъем от лямбда-датчика. Со стороны лямбда-датчика используйте омметр для измерения сопротивления на обоих проводах нагревательного элемента. Сопротивление должно быть от 2 до 14 Ом. На стороне автомобиля используйте вольтметр для измерения напряжения питания. Напряжение должно быть больше 10,5 V (бортовое напряжение).
При обнаружении обрыва цепи устраните неисправность. Ниже приведена таблица назначения проводов и цвета проводов датчиков лямбда в зависимости от типа.
Введите название продукта, который вы ищете, и мы предоставим необходимую информацию.
Вы наверняка знаете, что в вашем автомобиле установлен кислородный датчик (или даже два!)… Но зачем он нужен и как он работает? На часто задаваемые вопросы отвечает Стефан Верхоеф (Stefan Verhoef), менеджер DENSO по продукту (кислородные датчики).
B: Какую работу выполняет датчик кислорода в автомобиле?
O: Датчики кислорода (также называемые лямбда-зондами) помогают контролировать расход топлива вашего автомобиля, что способствует снижению объема вредных выбросов. Датчик непрерывно измеряет объем несгоревшего кислорода в выхлопных газах и передает эти данные в электронный блок управления (ЭБУ). На основании этих данных ЭБУ регулирует соотношение топлива и воздуха в топливовоздушной смеси, поступающей в двигатель, что помогает каталитическому нейтрализатору (катализатору) работать более эффективно и уменьшать количество вредных частиц в выхлопных газах.
B: Где находится датчик кислорода?
O: Каждый новый автомобиль и большинство автомобилей, выпущенных после 1980 г., оснащены датчиком кислорода. Обычно датчик установлен в выхлопной трубе перед каталитическим нейтрализатором. Точное местоположение датчика кислорода зависит от типа двигателя (V-образное или рядное расположение цилиндров), а также от марки и модели автомобиля. Для того чтобы определить, где расположен датчик кислорода в вашем автомобиле, обратитесь к руководству по эксплуатации.
В: Почему на некоторых автомобилях устанавливаются два кислородных датчика?
O: Многие современные автомобили дополнительно кроме датчика кислорода, расположенного перед катализатором, оснащаются и вторым датчиком, установленным после него. Первый датчик является основным и помогает электронному блоку управления регулировать состав топливовоздушной смеси. Второй датчик, установленный после катализатора, контролирует эффективность работы катализатора, измеряя содержание кислорода в выхлопных газах на выходе. Если весь кислород поглощается химической реакцией, происходящей между кислородом и вредными веществами, то датчик выдает сигнал высокого напряжения. Это означает, что катализатор работает нормально. По мере износа каталитического нейтрализатора некоторое количество вредных газов и кислорода перестает участвовать в реакции и выходит из него без изменений, что отражается на сигнале напряжения. Когда сигналы станут одинаковыми, это будет указывать на выход из строя катализатора.
Титановые датчики во многом похожи на циркониево-оксидные датчики, но титановым датчикам для работы не требуется атмосферный воздух. Таким образом, титановые датчики являются оптимальным решением для автомобилей, которым необходимо пересекать глубокий брод, например полноприводных внедорожников, так как титановые датчики способны работать при погружении в воду. Еще одним отличием титановых датчиков от других является передаваемый ими сигнал, который зависит от электрического сопротивления титанового элемента, а не от напряжения или силы тока. С учетом данных особенностей титановые датчики могут быть заменены только аналогичными и другие типы лямбда-зондов не могут быть использованы.
В: Чем отличаются специальные и универсальные датчики?
O: Эти датчики имеют разные способы установки. Специальные датчики уже имеют контактный разъем в комплекте и готовы к установке. Универсальные датчики могут не комплектоваться разъемом, поэтому нужно использовать разъем старого датчика.
B: Что произойдет, если выйдет из строя датчик кислорода?
O: В случае выхода из строя датчика кислорода ЭБУ не получит сигнала о соотношении топлива и воздуха в смеси, поэтому он будет задавать количество подачи топлива произвольно. Это может привести к менее эффективному использованию топлива и, как следствие, увеличению его расхода. Это также может стать причиной снижения эффективности катализатора и повышения уровня токсичности выбросов.
B: Как часто необходимо менять датчик кислорода?
O: DENSO рекомендует заменять датчик согласно указаниям автопроизводителя. Тем не менее следует проверять эффективность работы датчика кислорода при каждом техобслуживании автомобиля. Для двигателей с длительным сроком эксплуатации или при наличии признаков повышенного расхода масла интервалы между заменами датчика следует сократить.
Ассортимент кислородных датчиков
В DENSO решили проблему качества топлива!
Вы знаете о том, что некачественное или загрязненное топливо может сократить срок службы и ухудшить эффективность работы кислородного датчика? Топливо может быть загрязнено присадками для моторных масел, присадками для бензина, герметиком на деталях двигателя и нефтяными отложениями после десульфуризации. При нагреве свыше 700 °C загрязненное топливо выделяет вредные для датчика пары. Они влияют на работу датчика, образуя отложения или разрушая его электроды, что является распространенной причиной выхода датчика из строя. DENSO предлагает решение этой проблемы: керамический элемент датчиков DENSO покрыт уникальным защитным слоем оксида алюминия, который защищает датчик от некачественного топлива, продлевая срок его службы и сохраняя его рабочие характеристики на необходимом уровне.
Дополнительная информация
Более подробную информацию об ассортименте кислородных датчиков DENSO можно найти в разделе Кислородные датчики, в системе TecDoc или у представителя DENSO.
Лямбда и стехиометрия двигателя
Название датчика происходит от греческой буквы λ (лямбда), которая обозначает коэффициент избытка воздуха в топливно-воздушной смеси. Для полного сгорания смеси соотношение воздуха с топливом должно быть 14,7:1 (λ=1). Такой состав топливно-воздушной смеси называют стехиометрическим — идеальным с точки зрения химической реакции: топливо и кислород в воздухе будут полностью израсходованы в процессе горения. При этом двигатель произведёт минимум токсичных выбросов, а соотношение мощности и расхода топлива будет оптимальным.
Если лямбда будет 1 (избыток воздуха) смесь называют обеднённой. Чересчур богатая смесь — это повышенный расход топлива и более токсичный выхлоп, а слишком бедная смесь грозит потерей мощности и нестабильной работой двигателя.
Из графика видно, что при λ=1 мощность двигателя не пиковая, а расход топлива не минимален — это лишь оптимальный баланс между ними. Наибольшую мощность мотор развивает на слегка обогащённой смеси, но расход топлива при этом возрастает. А максимальная топливная эффективность достигается на слегка обеднённой смеси, но ценой падения мощности. Поэтому задача ЭБУ (электронного блока управления) двигателя — корректировать топливно-воздушную смесь исходя из ситуации: обогащать её при холодном пуске или резком ускорении, и обеднять при равномерном движении, добиваясь оптимальной работы мотора во всех режимах. Для этого блок управления ориентируется на показания датчика кислорода.
Зачем нужен кислородный датчик
Где находится кислородный датчик
Датчик кислорода установлен в выпускном коллекторе или приёмной трубе глушителя двигателя, замеряя, сколько несгоревшего кислорода находится в выхлопных газах. На многих автомобилях есть ещё один лямбда-зонд, расположенный после каталитического нейтрализатора выхлопа — для контроля его работы.
Устройство кислородного датчика
Классический лямбда-зонд порогового типа — узкополосный — работает по принципу гальванического элемента. Внутри него находится твёрдый электролит — керамика из диоксида циркония, поэтому такие датчики часто называют циркониевыми. Поверх керамики напылены токопроводящие пористые электроды из платины. Будучи погружённым в выхлопные газы, датчик реагирует на разницу между уровнем кислорода в них и в атмосферном воздухе, вырабатывая на выходе напряжение, которое считывает ЭБУ.
Причины и признаки неисправности лямбда-зонда
Основная причина поломок кислородных датчиков — некачественный бензин: свинец и ферроценовые присадки оседают на чувствительном элементе датчика, выводя его из строя. На состояние лямбда-зонда влияет и нестабильная работа двигателя: при пропусках зажигания от старых свечей или пробитых катушек несгоревшая смесь попадает в выхлопную систему, где догорает, выжигая и катализатор, и датчики кислорода. Приговорить датчик также может попадание в цилиндры антифриза или масла.
Самый очевидный признак неисправности лямбда-зонда — индикатор Check Engine на приборной панели. Считав код ошибки с помощью сканера или самодиагностики, можно проверить, какой именно датчик вышел из строя, если их несколько. Иногда всё дело в повреждённой проводке датчика — с проверки цепи и стоит начать поиск поломки.
Проблемы с датчиком кислорода нарушают всю систему обратной связи и лямбда-коррекции, вызывая целый букет неисправностей. Прежде всего, это увеличение расхода топлива и токсичности выхлопа, снижение мощности и нестабильный холостой ход. Если вовремя не заменить лямбда-зонд, следом выйдет из строя каталитический нейтрализатор, осыпавшись из-за перегрева от обогащённой смеси.
Универсальные кислородные датчики
Цена на оригинальные датчики кислорода вряд ли обрадует автомобилистов, но все лямбда-зонды работают по единому принципу, что позволяет без труда подобрать замену. Главное, чтобы соответствовал типа датчика (широкополосный/узкополосный), количество проводов и резьбовая часть. В продаже есть универсальные кислородные датчики без разъёма, которые можно использовать на десятках моделей автомобилей — подобрать и купить лямбда-зонд не составляет проблемы.
Чтобы избежать проблем с кислородными датчиками, следите за состоянием двигателя, заправляйтесь качественным топливом и регулярно выполняйте компьютерную диагностику, которая позволит выявить неисправности на ранней стадии.
В интернете мне очень часто попадаются криво переведенные статьи о трактовке показаний различных датчиков, причем их репостят все подряд без разбора и тем самым еще больше путают народ. Поэтому я нашел и перевел правильную статью о топливной коррекции (Fuel Trim), постарался сделать это близко к тексту но не теряя при этом смысл, поэтому местами я дополнял перевод своим текстом. Итак, поехали.
На форумах часто задают вопросы по поводу топливной коррекции и у меня даже есть некоторое количество электронных писем с просьбами осветить этот вопрос. Многие отмечают топливную коррекцию PIDS (идентификаторы параметра) на показаниях в реальном времени (datastream) своих сканирующих устройств и интересуются для чего она.
Итак, что такое топливные коррекции и что они делают ? Надеюсь мы сможем прояснить все недопонимания. Правильное понимание топливных коррекций может привести к ускорению диагностики и предупредить вас о будущих проблемах с вашим автомобилем.
В основе своей топливные коррекции – процент изменения в топливоподаче во(по) времени. Для того, чтобы двигатель работал хорошо соотношение воздух/топливо должно оставаться в границах небольшого окна 14.7/1. Такое соотношение должно сохраняться в этой зоне под воздействием всех изменяющихся условий с которыми двигатель сталкивается каждый день: холодный пуск (хотя по мне на холодном пуске явно не 14.7/1, но это оставим на совести автора), холостой ход в условиях длительных движений в пробках при движении по трассе и т.д.
Итак, компьютер двигателя пытается сохранить правильное соотношение воздух/топливо посредством точной настройки количества топлива поступающего в двигатель. В то время, как добавляется или уменьшается подача топлива, кислородный датчик следит за тем сколько кислорода в выхлопе и сообщает об этом ЭБУ. Кислородные датчики могут быть представлены как глаза ЭБУ, которые следят за смесью кислорода в выхлопе. ЭБУ следит за этими входными данными от горячих кислородных датчиков безостоновочно в замкнутом цикле. Если кислородный датчик информирует ЭБУ, что выхлопная смесь бедная, ЭБУ добавляет топливо путем увеличения времени открытия форсунки, для компенсации. И наоборот, если датчик кислорода информирует ЭБУ о том, что выхлопная смесь богатая, ЭБУ уменьшает время открытия форсунок, уменьшая тем самым подачу топлива для уменьшения обогащения смеси.
Эти изменения – добавление или уменьшение подачи топлива – называются Топливной Коррекцией или Fuel Trim. На самом деле, хоть датчики и называются кислородными, показывают они состояние топливной смеси. Изменения в напряжении кислородного датчика вызывают прямые изменения топливной смеси. Кратковременная топливная коррекция (STFT) относится к мгновенным изменениям топливной смеси – несколько раз в секунду. Долгосрочная топливная коррекция (LTFT) показывает изменения топливной смеси за длительный промежуток времени на основе показаний кратковременной коррекции (среднее значение за длительное время). Отрицательная топливная коррекция (отрицательные значения по сканеру) свидетельствует об обеднении смеси, а положительная топливная коррекция об обогащении соответственно. (Т.е. если лямбда постоянно видит бедную смесь, то она постоянно обогащает и это отразится на LTFT плюсовыми значениями).
Представим себе такую ситуацию – вы едете от пляжа, который на уровне моря в горы. За короткие промежутки времени вы можете несколько раз подниматься и опускаться вверх-вниз по холмам. Однако на длительном промежутке времени вы на самом деле плавно поднимаетесь от самой низкой точки горы до ее вершины, т.е. едете постоянно вверх, несмотря на временные перепады. Так можно представить себе краткосрочную и долгосрочную коррекции. STFT – кратковременные подъемы и опускания, а LTFT – то, что происходит за длительный промежуток времени в итоге.
Нормальная кратковременная коррекция
Обедненная смесь. Идет ее обогащение системой машины.
Краткосрочная топливная коррекция STFT начнет немедленно увеличиваться, чтобы показать, что компьютер добавляет топливо. Когда компьютер добавляет топливо, это становится заметно кислородному датчику и он следит таким образом до тех пор, пока кислородный датчик не покажет, что смесь больше не бедна и правильное соотношение топливо/воздух достигнуто. ЭБУ будет поддерживать повышенное добавление топлива до тех пор, пока подсос воздуха не будет устранен. Диагностический прибор при этом будет показывать положительные двузначные значения STFT, что будет свидетельствовать о том, что ЭБУ добавляет слишком много топлива для нормальной работы двигателя. Через некоторое время LTFT будет также показывать это увеличение как долгосрочное (постоянное на долгом промежутке времени). А если подсос воздуха слишком большой, то компьютер не сможет добавить достаточно много топлива, чтобы сбалансировать смесь и достичь правильного соотношения воздух/топливо. Корректировка достигнет своего максимального значения, обычно это 25%. Затем выскочит код ошибки, говорящий о том, что двигатель работает на слишком обедненной смеси (ошибка P0171 или P0174) и максимальный порог возможной кратковременной коррекции STFT уже превышен. И обратная ситуация будет, если двигатель будет работать на сверхобогащенной смеси из-за утечки топлива (например льют форсунки), появятся ошибки P0172 или P0175.
Обогащенная смесь. Идет ее обеднение мозгами машины.
Если вы будете ориентироваться на коды, возникающие в результате таких ложных состояний смеси и не сопоставите это все со всеми данными по кислородным датчикам (и от себя добавлю – обязательно смотрите на внешний вид налета на электродах свечей), то вы можете поставить неверный диагноз.
Также, на V-образных моторах на каждом выпускном тракте каждой из голов обычно стоит свой кислородный датчик и идет своя топливная коррекция для каждой головы (показания по Bank 1 и Bank 2). Если у вас 4х-цилиндровый двигатель, то у вас всего один банк данных – Банк 1. На V-образных моторах в этом смысле поудобнее по причине того, что если лямбда с одной стороны неисправна и врет вы можете сузить круг потенциальных причин проблемы ориентируясь на показания второго банка данных – Bank 2.
Читайте также: