Как найти лямбду в физике
Основное назначение лямбда-зонда – информировать блок управления двигателем о том, насколько полно сгорает топливовоздушная смесь. Лямбда-зонд определяет количество кислорода в выхлопных газах, на основе этого и определяется состав топливовоздушной смеси.
Теория говорит о том, что на 1 кг бензина должно приходиться 14,7 кг воздуха. Тогда и топливо, и кислород сгорят полностью, без образования излишка вредных веществ. Да и топливо не будет вылетать в трубу.
Если лямбда меньше 1, то топливовоздушная смесь богатая – доля бензина в ней больше. Если лямбда больше 1, то ТВС бедная, в ней доля бензина меньше.
На нашем YouTube-канале вы можете посмотреть разборку роботизированной КПП EGS6, снятой с Citroёn C4 Picasso.
Как работает узкополосный лямбда-зонд?
Под защитным металлическим колпачком лямбда-зонда находится чувствительный элемент, изготовленный из диоксида циркония. Эта керамика является твердым электролитом, то есть проводит электрический ток, но для газов она непроницаема. Данный чувствительный элемент снаружи и внутри имеет газопроницаемое платиновое контактное покрытие, соединенное с сигнальными проводами.
Рабочая температура керамического элемента – около 350°С. Ранние лямбда-зонды не имели принудительного подогрева, а нагревались выхлопными газами. Поздние варианты имеют встроенный подогреватель, который выводит их на рабочую температуру гораздо раньше.
Итак, внутренняя часть керамика сообщается с воздухом, а ее внешняя поверхность сообщается с отработавшими газами. Разница в концентрации молекул кислорода в выхлопных газах и в атмосферном воздухе (т.е. внутри и снаружи сенсора) вызывает перемещение ионов кислорода из области с высоким содержанием кислорода в область с низким содержанием. Ионы перемещаются через керамический элемент, который, как уже отмечено, является электролитом. Именно разница в количестве кислорода снаружи и внутри керамического сенсора вызывает сигнальное электрическое напряжение.
Напряжение в 0,45 Вольт соответствует 1 (λ = 1). Богатая топливовоздушная смесь генерирует напряжение до 0,9 Вольт, бедная – 0,1 Вольт. Так устроен и работает узкополосный лямбда-датчик. Он способен фиксировать отклонение от стехиометрии совсем в небольшом диапазоне (от 14,0 д 15,0:1), по сути, просто фиксирует отклонение от лямбды в ту или иную сторону.
К узкополосному датчику может быть подведено от 1 до 4 проводов. 3-4 провода говорят о наличии подогрева. Два белых провода питают нагреватель лямбда-зонда. На черном проводе – сигнал к ЭБУ, на сером – масса. Если 3 провода, то отсутствует провод на массу, датчик соединяется с ней через свой корпус.
Работоспособность нагревательного элемента лямбда-зонда проверяется просто. Для начала, нужно убедиться, что от АКБ поступает питание – от 9 до 12 Вольт в зависимости от автомобиля. Далее следует измерить сопротивление нагревателя, которое должно составлять 2,3 – 4,3 Ома при 25°С.
Если датчик снят, то можно запитать его подогрев от АКБ, через несколько минут лямбда-зонд должен нагреться до 350°С.
Лямбда-зонд на основе оксида титана
Некоторое время на автомобилях использовались датчики кислорода на основе оксида титана. Как правило, в таком случае в выпускной системе только один такой датчик, к нему подведено три или 4 провода. Он более точный, чем циркониевый, дорогой. Такой датчик не сообщается с атмосферой, не генерирует напряжение, имеет увеличенный диапазон измерения. Он запитывается и работает почти как расходомер. То есть, запитывается через ЭБУ и выдает сигнал в виде напряжения. Сигнал с такого датчика непрерывно примерно 1 раз в секунду изменяется в диапазоне от 0,4 до 3,85-4,5 Вольт. Низкое сигнальное напряжение соответствует богатой смеси, высокое напряжение указывает на бедную смесь.
Широкополосный лямбда-зонд
Получая данные от кислородных датчиков, ЭБУ постоянно регулирует подачу топлива относительно количества поступающего в цилиндры воздуха. Но так как кислородный датчик в выпускной системе находится на некотором расстоянии от камер сгорания, то своевременность лямбда-регулирования далека от идеала. На практике состав топливовоздушной смеси постоянно отклоняется от лямбды (от единицы) на несколько процентов в ту или иную сторону примерно 1-2 раза в секунду.
Диагностика широкополосного лямбда-зонда
Интересная особенность широкополосного лямбда-зонда в том, что фиксируемое им сигнальное напряжение является выдуманным и существует только для наглядности. Этот сигнал можно увидеть диагностическим прибором, а его значение нужно сверять с эталонными данными от производителя конкретного автомобиля. Т.е. напряжение в 1,5 и в 3,3 Вольта может быть исправным, всё зависит от конкретного датчика и автомобиля. Сигнал должен быть постоянным и не изменяющимся. Сигнал должен изменяться при обогащении или обеднении смеси. Для этого, соответственно, можно распылить во впуск газ пропан или снять со впускного коллектора какой-нибудь вакуумный шланг или уплотнитель, чтобы появился подсос воздуха. Причем обогащенная ТВС генерирует уменьшение сигнального напряжения, бедная смесь приводит к увеличению сигнального напряжения. Т.е. параметры смеси по показаниям широкополосного датчика изменяются зеркально с кратковременной топливной коррекцией.
Механическая волна — это колебание, которое распространяется с течением времени в упругой среде.
- Амплитуда — это максимальное смещение периодически изменяющейся величины от равновесного значения. Обозначение: A, измеряется в метрах (м).
- Период колебаний — это время, за которое совершается одно полное колебание. Обозначается T, измеряется в секундах (с).
- Частота — это количество полных колебаний за единицу времени. Обозначается ν, измеряется в герцах(Гц).
- Длина волны — это наименьшее расстояние между частицами, совершающими колебание с одинаковой фазой. Обозначается λ(лямбда), измеряется в метрах.
- Скорость распространения волны (скорость волны) — это расстояние, на которое распространяется волна в единицу времени. Обозначается V, измеряется в метрах на секунду (м/с).
Единицы измерения
Как было сказано выше, скорость распространения волны измеряется в метрах на секунду (м/с). Выводится единица измерения величины таким же способом, что и единица обычной скорости.
V = S / t = м / с — стандартная формула скорости.
В случае скорости волны будет использоваться:
- Вместо S — λ(длина волны).
- Вместо t — T(период).
Как найти скорость распространения волны: формула
Скорость распространения волны равна отношению длины волны к периоду колебаний частиц среды, в которой распространяется волна.
Так как T = 1 / ν , то отсюда V = λ * ν . Данная формула связывает скорость волны, длину волны и частоту колебаний.
От чего зависит скорость распространения волн
Исходя из формул, можно сделать вывод, что скорость волны зависит от:
- Длины волны.
- Периода колебаний.
- Частоты колебаний.
- Среды, в которой распространяется волна.
Примеры решения задач
Два примера решения.
Волна цунами может иметь скорость до 100 км/ч. Необходимо узнать, чему будет равен период колебаний, если длина волны 50 км.
Так как V=λ/T, то T=λ/V
Переведем единицы в систему СИ: скорость волны V = 100 км/ч = 27,8 м/с; длина волны λ = 50 км = 50000 м.
Подставим в формулу: T = λ/V = 50000/27,8 = 1799 с = 0,5 ч
Определить длину звуковой волны ноты, если ее частота колебаний 430 Гц, а скорость звука в воздухе 340 м/с.
Это буква греческого алфавита (выглядит как Λ и λ). В физике маленькой буквой λ обозначают чаще всего длину волны и удельную теплоту плавления вещества. В астрономии этой буквой обозначают какую-то звёзду в созвездии - они там обозначаются буквами греческого алфавита в порядке уменьшения видимой звёздной величины (самая яркая называется Альфа, следующая по яркости - Бета и так далее). В астрофизике, в Общей теории относительности, присутствует Λ-член, он же космологическая постоянная при метрическом тензоре (не будем отвлекаться на то, что именно он из себя представляет). В математике буквой λ обозначают собственные значения операторов (в частности и матриц), а ещё там есть такая вещь, как лямбда-матрицы, составленные из многочленов определённого вида. В электронике есть такой прибор - лямбда-диод (составленный из двух полевых транзисторов с управляющим переходом), вольт-амперная характеристика которого напоминает букву λ - у неё есть падающий участок с отрицательным дифференциальным сопротивлением.
Дифракционная решетка - оптическое устройство, представляющее собой совокупность большого числа параллельных щелей, равноудаленных друг от друга.
Суммарная ширина щели и штриха (a+b=d) – период решетки.
! d=((a+b)*N)/N=C/N!, где С –ширина решетки, N -число штрихов на ней.
на нем: Л- линза; Р – решетка; Э - экран
Максимумы, которые образуются на экране, после интерференции вторичных волн, идущих от узких щелей, удовлетворяют условию:
!d*sin фи = k*лямбда! - формула дифракционной решетки.
фи - угол дифракции (угол отклонения от прямолинейного направления);
k - порядок спектра;
лямбда - длина волны света, освещающего решетку,
Дифракционные спектры для монохроматического света представляет собой чередование максимумов и минимумов по обе стороны от центрального механизма. Максимумы имеют цвет соответствующей длины света, освещающего решетку.
Если решетку освещать белым светом, то центральный максимум будет белым, а остальные будут представлять собой чередование цветных полос плавно переходящих друг в друга, т. к. sin фи= k*лямбда/d - зависит от длины волны света. D = к/t - угловая дисперсия решетки. R =k*N - разрешающая способность.
Диффузия в жидкости. Уравнение Фика. Уравнение диффузии для мембран.
Диффузия - самопроизвольное проникновение молекул одного вещества между молекулами других.
Явление диффузии - важный элемент диффракционирования мембран. При диффузии происходит перенос массы вещества. В биофизике это называется транспорт частиц. Основным уравнением диффузии является уравнение Фика:
где I – плотность частиц при диффузии в жидкость.
D – коэффициент диффузии.
Коэффициент 1/3 возник ввиду трехмерного пространства и хаоса в движении молекул (в среднем в каждом из 3-х направлений перемещается 1/3 часть всех молекул)
сигма - средняя длина свободного пробега молекул
тау -среднее время оседлой жизни молекул
С- массовая концентрация молекул
Х- перемещение молекул вдоль оси X
- градиент массовой концентрации
Уравнение диффузии можно записать в виде:
n – концентрация молекул.
Градиент концентрации
R- универсальная газовая постоянная; Т- абсолютная температура градиент химического потенциала,
Тогда
С - концентрация частиц. А Эйнштейн показал, что D пропорционально Т. Дня биологических мембран уравнение Фика имеет вид:
- концентрация молекул внутри клеток
- коэффициент проницаемости
l – толщина мембраны.
Дифракция света на щелях.
Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями.
Описать картину дифракции можно с учетом интерференции вторичных волн.
Рассмотрим дифракцию от узкой щели (АВ)
MN – непрозрачная преграда;
АВ=а – ширина щели;
АВ – часть волновой поверхности, каждая точка которой является источником вторичных волн, которые распространяются за щелью по разным направлениям. Линза соберет лучи А, А1 и В в точке О1 экрана.
АD - перпендикуляр к направлению пучка вторичных волн. Разбили ВD на отрезки =лямда/2.
АА1, А1В - зоны Френеля. Вторичные волны, идущие от двух соседних зон Френеля, не гасят друг друга, так как отличаются по фазе на пи. Число зон, укладывающихся в щели, зависит от длины волны лямда и угла альфа.
Если щель АВ разбить при построении на нечетное число зон Френеля, а ВD на нечетное число отрезков, равных лямда/2, то в точке О1 наблюдается максимум интенсивности света. ВD=а*sinα=+-(2k+1)*лямда/2.
Если щель разбить на четное число зон Френеля, то наблюдается минимум освещенности: а*sinα=+-2k*лямда/2=+-k*лямда.
Поэтому на экране получится система светлых (mах) и темных (min) полос симметричных относительно центра (альфа=треугольник - изменение) - наиболее яркой полосы.
Интенсивность остальных максимумов убывает с увеличением к.
3аконы излучения абсолютно чёрного тела (Стефана - Больцмана, Вина). Формула Планка. Использование термографии в диагностике.
Излучение чёрного тела имеет сплошной спектр. Графически это выглядит для разных температур так:
Существует максимум спектральной светимости, который при повышении
температуры смещается в сторону коротких волн.
По мере нагревания чёрного тела его энергетическая светимость (Re)
увеличивается: Re = опред интеграл от 0 до бескон от Eлямда*dлямда
Стефан и Больцман установили, что Re=сигма*T^4
Сигма = 5,6696*10^-8 Вт/K*м^2 - постоянная Стефана-Больцмана,
T=t+273 - абсолютная (термодинамическая) температура по шкале
Кельвина. Все замечали это на практике, чем выше температура спирали, нагретой печи, тем больше они излучают тепла.
Планк получил формулу для спектральной плотности абсолютно черного тела (Eлямда) и серого тела (r лямда) (лямда-индекс): Eлямда=2п*h*c^2/лямда^5 * 1/exp[h*c/k*T*лямда-1]
альфа - коэффициент поглощения
h - постоянная Планка;
С - скорость света в вакууме;
лямда - длина волны;
k - постоянная Больцмана;
Т - абсолютная температура.
2 Затухающие колебания и декремент затухания. Апериодические колебания.
Свободные колебания (происходящие без внешнего воздействия периодически действующей силы) являются затухающими. График затухающих колебаний имеет вид:
Амплитуда колебаний с каждым разом убывает. Затуханию способствуют силы трения и сопротивления, возникающие в средах. Пусть r-коэффициент трения, характеризующий свойство среды оказывать сопротивление движению. Тогда БЕТТА= r/2m – коэффицент затухания.
Wo= корень(K/m) – циклическая частота собственных колебаний, тогда W^2=Wo^2-БЕТТА^2, где W – циклическая частота затухания колебаний.
Быстрота затухания колебаний определяется коэффициентом затухания. Уравнение затухающих колебаний имеет вид А=Ао*l в степени минус бета*t
Ao – первоначальная амплитуда, А-амплитуда затухающих через время t.
Лямда=lnA(t)/A(t+T)=lnAo*(e в степени минус бета*t)/Ao*e^-бета*(t+T)=ln(e^ бета*t) –логарифмический декрет затухания.
!Лямда=бета*Т!- связь логарифмического декремента затухания с коэффициентом затухания. При сильно затухании колебания становятся апериодическими (если бета^2>Wo^2)
№31 Импеданс полной цепи переменного тока. Сдвиг фаз. Резонанс напряжения.
Рассмотрим последовательно соединенные R, L, C.
При последовательном соединении:
1) Uвх=U0*cosW*t=Ur+Ul+Uc – входное напряжение.
2) I=I0*cos(W*t-фи) – сила тока в цепи.
Начертим векторную диаграмму:
Ur0 – совпадает по фазе с силой тока;
Ul0 – опережает на пи/2;
Uc0 – отстает от тока на пи/2.
По теореме Пифагора: (U0)^2=(U0r)^2+(U0l-U0c)^2
Сократив обе части уравнения на (I0)^2 получим выражение для полного сопротивления (Z):
Z=квадратный корень из (R^2+(W*L-1/W*c)^2) – импеданс.
Если сопротивление катушки Xl= W*L равно сопротивлению конденсатора Xc=1/W*c, то полное сопротивление Z=R; по закону Ома Iрез=U0/Z=U0/R (Iрез – резонансный ток) – сила тока резко возрастает – РЕЗОНАНС. При этом Ul=Uc>>U0 – резонанс напряжений. Это возможно, т.к. Ul и Uc сдвинуты по фазе между собой на пи:
При этом на резисторе R выделяется максимальное количество теплоты:
№32 Импенданс тканей организма. Эквивалентная Электрическая схема. Оценка жизнеспособности тканей и органов но частотной зависимости к углу сдвига фаз.
Ткани организма проводят как постоянный так и переменный ток. Биологическая мембрана а значит и весь организм обладает емкостным сопротивлением, т.к. обладают емкостью, т.е. способны
накапливать заряд. При пропускании через живые ткани переменного тока наблюдается отставание напряжения от тока. Омические емкостные свойства биологических тканей можно моделировать используя эквивалентные электрические схемы, при любых частотах зависимость сдвига фаз и импенданса от частоты выполняется для схемы
1/Zв2=1/Rв2+1/корень(R1 в2+1/Wв2*Св2)!, где Z-полное сопротивление данной цепи, с - ёмкость.
При малых частотах: Z=R2 При больших частотах: Zmin=(R1*R2)/(R1+R2).
Графическое изображение зависимости импенданса живой ткани от частоты переменного тока.
Сдвиг фаз между током и напряжением tg фи = R/Xc=RWC (1).
Частотная зависимость сдвига фаз живой ткани. При отмирании ткани натрий-калиевый канал биологических мембран разрушается, цитоплазма
клетки (проводник) соединяется с межклеточной
жидкостью(проводник) и емкостные свойства ткани уменьшаются, а это значит, что и импенданс (Z) и сдвиг фаз (фи) меньше зависят от частоты. Мёртвая ткань обладает лишь омическим сопротивлением (R), и не зависит от частоты. Диагностический метод, основанный на регистрации изменения импенданса тканей и сдвига фаз называется РЕОГРАФИЕЙ.
Читайте также: