Из какого материала изготовлена база транзистора марка которого начинается с цифры 2
-
1. Joint Electron Device Engineering Council (JEDEC)
- digit - цифра на единицу меньше, чем количество ножек транзистора, т.е, обычно 2. 4 и 5 соответствуют оптопарам
- letter - всегда N
- serial number - серийный номер от 100 до 9999, который ничего определенного не говорит о транзисторе, кроме его приблизительного времени выпуска
- suffix - (необязательный параметр) группа коэффициента усиления: А- низкий к.у., B- средний к.у., C- высокий к.у.
Примеры: 2N3819, 2N2221A, 2N904.
digit, letter, serial number, [suffix]
Практические каждая принципиальная электрическая схема подразумевает наличие транзисторов, которые являются своего рода усилительным ключом. Основа любых транзисторов – кристалл, выполненный из кремния или германия. По разновидности данный прибор делится на однополярный транзистор (полевой) и двухполярный транзистор (биполярный). Что касается проводимости, устройство также делится на два типа: прямой и обратный.
Довольно часто новички радиолюбители сталкиваются с проблемой – как разобраться с кодировками.
Как правило, производители используют один из двух распространенных типов шифровки:
- маркировка транзисторов цветом;
- маркировка транзисторов кодом.
Как таковых стандартов нет ни для первого, ни для второго типа маркировки. Каждый завод-производитель, которое занимается производством и выпуском данного электронного компонента, использует собственные принципы обозначений. Встречаются такие элементы, принадлежащие к одной группе, которые были выпущены на совершенно разных заводах. Соответственно, маркировка будет отличаться.
Однако, бывает наоборот: транзисторы разные, а маркировка совпадает. В такой ситуации помогут дополнительные отличительные характеристики.
Маркировка транзисторов в корпусе КТ-26
Этот тип корпуса очень популярен. Корпус представляет собой скошенный с одной стороны цилиндр. Для транзисторов в таком корпусе применяется цветовая маркировка транзисторов в корпусе КТ-26, т.е маркировка транзисторов при помощи цветных точек , кодовая маркировка транзисторов в корпусе КТ-26 а также смешенная при которой используется как цифры так и цвета.
Смешенная маркировка транзисторов в корпусе КТ-26
При такой маркировке на верхнюю сторону транзистора наносят цветную точку. По это точку можно узнать группу транзистора. А на фронтальную сторону транзистора ставится либо кодовый символ либо цветная точка, которая соответствует типу прибора. Также на эту сторону иногда ставиться год и месяц выпуска.
Группа транзисторов маркируется следующим образом:
- А -темно-красная точка;
- Б – желтая;
- В – темно-зеленая;
- Г – голуба;
- Д – синяя;
- Е – белая;
- Ж – темно-коричневая;
- И – серебристая;
- К – оранжевая;
- Л – светло-табачная;
- М – серая.
Тип транзистора обозначается символом (геометрической фигурой): треугольником, квадратиком и. т.д. Типы транзисторов представлены на рисунке ниже.
Система обозначений транзисторов
Встречаются транзисторы (биполярные), которые имеют старую, введенную до 1964 г. систему обозначений. По старой системе в обозначение транзистора входит буква П и цифровой номер.
По номеру транзистора можно определить, для каких каскадов радиоэлектронной конструкции он разработан. Если перед буквой П стоит буква М, то это значит, что корпус транзистора холодносварочной конструкции. Расшифровка типов транзисторов по номеру следующая:
Низкочастотные (до 5 МГц):
- 1…100 — германиевые малой мощности, до 0,25 Вт;
- 101…201 — кремниевые до 0,25 Вт;
- 201…300 — германиевые большой мощности, более 0,25 Вт;
- 301…400 — кремниевые более 0,25 Вт.
Высокочастотные (свыше 5 МГц):
- 401…500 — германиевые до 0,25 Вт;
- 501…600 — кремниевые до 0,25 Вт;
- 601…700 — германиевые более 0,25 Вт;
- 701…800 — кремниевые более 0,25 Вт.
- П416 Б — транзистор германиевый, высокочастотный, малой мощности, разновидности Б;
- МП39Б — германиевый транзистор, имеющий холодносварочный корпус, низкочастотный, малой мощности, разновидности Б.
В новой системе обозначений используется буквенно-цифровой шифр, который состоит из 5 элементов:
1-й элемент системы обозначает исходный материал, на основе которого изготовлен транзистор и его содержание не отличается от системы обозначения диодов, то есть Г или 1 — германий, К или 2 — кремний, А или 3 — арсенид галлия, И или 4 — индий.
2-1 элемент — буква Т (биполярный) или П (полевой).
3-1 элемент — цифра, указывающая на функциональные возможности транзистора по допустимой рассеиваемой мощности и частотным свойствам.
- 7 — большой мощности низкочастотный;
- 8 — большой мощности среднечастотный;
- 9 — большой мощности высокочастотный и сверхвысокочастотный (frp > 300 Гц).
4-й элемент — цифры от 01 до 99, указывающие порядковый номер разработки.
5-й элемент — одна из букв от А до Я, обозначающая деление технологического типа приборов на группы.
Например: КТ540Б — кремниевый транзистор средней мощности среднечастотный, номер разработки 40, группа Б.
При изготовлении транзисторов используют различные технологические приемы, в результате чего получаются приборы со специфическими особенностями, эксплуатационными свойствами и параметрами. Цоколевка транзисторов, широко используемых радиолюбителями, дана на рис. 1.
Рис. 1. Цоколевка отечественных транзисторов.
Маркировка года и месяца изготовления электронных компонентов
Согласно ГОСТ 25486-82, для того, чтобы обозначить месяц и год изготовления транзистора и других электронных компонентов, используются буквы и цифры: первое значение – год, второе значение – месяц. Что касается приборов, изготовленных за рубежом, для обозначения даты выпуска применяется кодировка из четырех цифр, где первые две – это год, следующие – номер модели.
Каждому году соответствует своя буква:
Год | Код |
1986 | U |
1987 | V |
1988 | W |
1989 | X |
1990 | A |
1991 | B |
1992 | C |
1993 | D |
1994 | E |
1995 | F |
1996 | H |
1997 | I |
1998 | K |
1999 | L |
2000 | M |
2001 | N |
2002 | P |
2003 | R |
2004 | S |
2005 | T |
2006 | U |
2007 | V |
2008 | W |
2009 | X |
2010 | A |
2011 | B |
2012 | C |
2013 | D |
2014 | E |
2015 | F |
Месяц | Код |
Январь | 1 |
Февраль | 2 |
Март | 3 |
Апрель | 4 |
Май | 5 |
Июнь | 6 |
Июль | 7 |
Август | 8 |
Сентябрь | 9 |
Октябрь | O |
Ноябрь | N |
Декабрь | D |
Чтобы обозначить месяц выпуска, применяются не только цифры, но и некоторые буквы: месяцы с января по сентябрь полностью соответствуют цифрам, следующие – первым буквам названия месяца.
Символьно — цветовая маркировка транзисторов
Отличительная особенность данной маркировки – отсутствие цифр и букв. Типономинал транзистора обозначается на срезе боковой поверхности специальными символом (точки, горизонтальные, вертикальные или пунктирные линии) или цветной геометрической фигурой (круг, полукруг, квадрат, треугольник, ромб и др.).
Маркировка группы относится одной (несколькими) точками на торце корпуса (КТ-26, КТП-4). Цветовая гамма точек, обозначающих группу при данной маркировке, не совпадает со стандартной цветовой гаммой по ГОСТ 24709-81. Она определяется производителем. Символ круга на боковом срезе транзистора необходимо отличать от точки, которая не имеет четкой формы, т.к. наносится кистью.
Маркировка по моделям транзисторов.
Применение транзисторов
Наряду с такой системой продолжает действовать и прежняя система обозначения, например П27, П401, П213, МП39 и т.д. Объясняется это тем, что такие или подобные транзисторы были разработаны до введения современной маркировки полупроводниковых приборов. Маломощный низкочастотный транзистор ГТ109 (структуры р — n — р) имеет в диаметре всего 3, 4 мм.
Будет интересно➡ SMD транзисторы
Транзисторы этой серии предназначены для миниатюрных радиовещательных приемников. Их используют также в слуховых аппаратах, в электронных медицинских приборах т.д. Диаметр транзисторов ГТ309 (р — n — р) 7,4 мм. Такие транзисторы применяют в различных малогабаритных электронных устройствах для усиления и генерирования колебаний высокой частоты.
Различие маркировок – в осуществлении дополнительной цветовой покраски торца корпуса полупроводника или же конструктивным исполнением корпуса. Абсолютное и урезанное обозначение транзисторов имеющих среднюю и малую мощность осуществляется с помощью цветных точек (двух или же четырех), или с помощью кодовых знаков в виде геометрических фигур (кодов). При полной маркировке на корпус полупроводника наносится тип, группа дата выпуска.
Транзисторы КТЗ15 (n — p — n) выпускают в пластмассовых корпусах. Эти маломощные приборы предназначены для усиления и генерирования колебаний высокой частоты. Транзисторы МП39 — МП42 (р — n — р) — самые массовые среди маломощных низкочастотных транзисторов. Точно так выглядят и аналогичные им, но структуры n — p — n, транзисторы МП35 — МП38. Диаметр корпуса любого из этих транзисторов 11,5 мм. Наиболее широко их используют в усилителях звуковой частоты.
Материал по теме: Как подключить конденсатор
Транзистор П213 (германиевый структуры р — n — р) — один из мощных низкочастотных транзисторов, широко используемых в оконечных каскадах усилителей звуковой частоты. Диаметр этого, а также аналогичных ему транзисторов П214 — П216 и некоторых других, 24 мм. Такие транзисторы крепят на шасси или панелях при помощи фланцев. Во время работы они нагреваются, поэтому их обычно ставят на специальные теплоотводящие радиаторы, увеличивающие поверхности охлаждения.
КТ904 — сверхвысокочастотный кремниевый n — p — n транзистор большой мощности. Корпус металлокерамический с жесткими выводами и винтом М5, с помощью которого транзистор крепят на теплопроводящем радиаторе. Функцию радиатора может выполнять массивная металлическая пластина или металлическое шасси радиотехнического устройства. Высота транзистора вместе с выводами и крепежным винтом чуть больше 20 мм. Транзисторы этой серии предназначаются для генераторов и усилителей мощности радиоаппаратуры, работающей на частотах выше 100 МГц, например диапазона УКВ.
Маркировка транзистора цветовыми обозначениями.
Схемы включения и основные параметры биполярных транзисторов
Итак, биполярный транзистор, независимо от его структуры, является трехэлектродным прибором. Его электроды — эмиттер, коллектор и база. Для использования транзистора в качестве усилителя напряжения, тока или мощности входной сигнал, который надо усилить, можно подавать на два каких — либо электрода и с двух электродов снимать усиленный сигнал. При этом один из электродов обязательно будет общим. Он — то и определяет название способа включения транзистора: по схеме общего эмиттера (ОЭ), по схеме общего коллектора (ОК), по схеме общей базы (ОБ).
Включение p-n-р транзистора по схеме ОЭ
Будет интересно➡ Что такое динистор?
Напряжение источника питания на коллекторе V подается через резистор Rк, являющийся нагрузкой, на эмиттер.
Эмиттер, следовательно, при таком включении является общим для входной и выходной цепей. Транзистор, по схеме с ОЭ, в зависимости от его усилительных свойств может дать 10 — 200 — кратное усиление сигнала по напряжению и 20 — 100 — кратное усиление сигнала по току.
Такой способ включения по схеме с ОЭ пользуется у радиолюбителей наибольшей популярностью.
Существенным недостатком усилительного каскада, включенном по такой схеме, является его сравнительно малое входное сопротивление — всего 500-1000 Ом.
Что усложняет согласование усилительных каскадов, транзисторы которых включают по такой же схеме.
Объясняется это тем, что в данном случае эмиттерный р — n переход транзистора включен в прямом, т.е. пропускном, направлении. А сопротивление пропускного перехода, зависящее от прикладываемого к нему напряжения, всегда мало. Что же касается выходного сопротивления такого каскада, то оно достаточно большое (2-20 кОм) и зависит от сопротивления нагрузки Rк и усилительных свойств.
Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.
Включение прибора схеме ОК
Каскад с полупроводником, включенным по такой схеме, по напряжению дает усиление меньше единицы. Усиление же по току получается примерно такое же, как если бы транзистор был включен по схеме ОЭ. Но зато входное сопротивление такого каскада может составлять 10 — 500 кОм, что хорошо согласуется с большим выходным сопротивлением каскада на транзисторе, включенном по схеме ОЭ.
По существу, каскад не дает усиления по напряжению, а лишь как бы повторяет подведенный к нему сигнал. Поэтому транзисторы, включаемые по такой схеме, называют также эмиттерными повторителями. Почему эмиттерными?
Потому что выходное напряжение на эмиттере практически полностью повторяет входное напряжение. Почему каскад не усиливает напряжение? Давайте мысленно соединим резистором цепь базы с нижним (по схеме) выводом эмиттерного резистора Rэ, как показано на (рис. 5, б) штриховыми линиями.
Будет интересно➡ Что такое симистор (триак)
Этот резистор — эквивалент внутреннего сопротивления источника входного сигнала Rвх., например микрофона или звукоснимателя. Таким образом, эмиттерная цепь оказывается связанной через резистор Rвх. с базой. Когда на вход усилителя подается напряжение сигнала, на резисторе Rэ, являющемся нагрузкой транзистора.
Выделяется напряжение усиленного сигнала, которое через резистор Rвх. оказывается приложенным к базе в противофазе. При этом между эмиттерной и базовой цепями возникает очень сильная отрицательная обратная связь, сводящая на нет усиление каскада. Это по напряжению. А по току усиления получается такое же, как и при включении транзистора по схеме с ОЭ.
Цветовая маркировка.
Включение транзистора по схеме с ОБ
Такой каскад дает усиление по току меньше единицы, а по напряжению — такое же, как транзистор, включенный по схеме с ОЭ (10 — 200). Из — за очень малого входного сопротивления, БК превышающего нескольких десятковом (30-100) Ом, включение транзистора по схеме ОБ используют главным образом в генераторах электрических колебаний, в сверхгенеративных каскадах, применяемых, например, в аппаратуре радиоуправления моделями.
Чаще всего как я уже говорил применяются схемы с включением транзистора с ОЭ, реже с ОК. Но это только способы включения. А режим работы транзистора как усилителя определяется напряжениями на его электродах, токами в его цепях и, конечно, параметрами самого транзистора. Качество и усилительные свойства биполярных транзисторов оценивают по нескольким электрическим параметрам, которые измеряют с помощью специальных приборов.
Вас же, с практической точки зрения, в первую очередь должны интересовать три основных параметра: обратный ток коллектора Iкбо, статический коэффициент передачи тока h213 (читают так: аш два один э) и граничная частота коэффициента передачи тока Fгр.
PRO-ELECTRON (система, разработанная в Европе)
Маркировка приборов у европейских производителей несколько отличается. Код, которым промаркирован иностранный транзистор – это комбинация символом:
- Символ под номер один указывает на материал, из которого изготовлен прибор: А – из германия, В – из кремния, С – из арсенида галлия, R – из сульфида кадмия;
- Второй символ сообщает о типе транзистора: С – маломощный прибор с низкой частотностью; D – мощный элемент с низкой частотностью; F – прибор маленькой мощность с высоким уровнем частотности; G – в одном корпусе присутствует одновременно два и более элемента; L – прибор с высокой мощностью и частотностью; S – маломощный прибор с функцией переключения; U – транзистор-переключатель высокой мощности;
- Третий символ означает номер серии продукта: изделия общего пользования маркируются цифрами от 100 до 999; в том случае, когда перед цифровым значением прописана буква, это говорит о том, что данная деталь изготовлена для использования в промышленности или специализированного пользования.
Более того, общая кодировка иногда дополнятся символом модификации. Определить ее может только сам производитель.
Японская система JIS
Стандарты маркировки, выработанные в Японии представлены буквами и цифрами в количестве 5 штук:
- Цифра под номером 1 – тип полупроводникового транзистора: 0 – обозначение фотодиода или фототранзистора; 1 – обозначение диода; 2 – обозначение транзистора;
- Буквенный символ S проставляется на каждом выпущенном элементе;
- Третий по счету маркировочный элемент говорит о разновидности детали: А – PNP с высокой частотностью; В – PNP с низкой частотностью; С — NPN с высоким уровнем частотности; D — NPN с низким уровнем частотности; Н – однопереходной; J — транзистор полевого типа с N-каналом; К — транзистор полевого типа с P-каналом;
- Цифра под номер 4 – номер серии в диапазоне от 10 до 9999;
- Пятый символ маркировки обозначает модификацию. Иногда данный символ отсутствует.
Бывают ситуации, когда в кодировке присутствует 6 символ – это дополнительная литера N, M или S, которая отвечает за соответствие прибора определенным стандартам. Маркировка, разработанная в Японии, не предусматривает использование обозначений цветом.
Полупроводниковые транзисторы делятся на биполярные и полевые. Первые гораздо более распространены в электронике. Поэтому начнем разбираться с работой биполярного транзистора именно с него.
Работа транзистора - устройство и обозначение.
Условно биполярный транзистор можно нарисовать в виде пластины полупроводника с меняющимися областями разной проводимости, состоящие из двух p-n переходов. Причем крайние области пластины обладают проводимостью одного типа, а средняя область противоположного типа, каждая из областей имеет свой персональный вывод. В зависимости от чередования этих областей транзисторы бывают p-n-p и n-p-n проводимости, соответственно.
А если взять и прикрыть одну любую часть транзистора, то у нас получится полупроводник с одним p-n переходом или диод. Отсюда напрашивается вывод, что биполярный транзистор условно можно представить в виде двух полупроводников с одной общей зоной, соединенных встречно друг к другу.
Часть транзистора, назначением которой является инжекция носителей зарядов в базу называется эмиттером, и соответствующий p-n переход эмиттерным, а та часть элемента, назначение которой заключается в выводе или экстракции носителей заряда из базы, получила название коллектор, и p-n переход коллекторный. Общую зону назвали базой. Различие в обозначениях разных структур состоит лишь в направлении стрелки эмиттера: в p-n-p она направлена в сторону базы, а в n-p-n наоборот, от базы.
Работа транзистора - коротко об технологии изготовления.
В начальный период развития полупроводниковой электроники их изготавливали только из германия по технологии вплавления примесей, поэтому их назвали сплавными. Например, в основе кристалл германия и в него вплавляю маленькие кусочки индия. Атомы индия проникаю в тело германиевого кристалла, создают в нем две области – коллектор и эмиттер. Между ними остается очень тонкая в несколько микрон прослойка полупроводника противоположного типа - база. А чтобы спрятать кристалл от света его прячут в корпус. На рисунке показано, что к металлическому диску приварен кристаллодержатель, являющийся выводом базы, а снизу диска имеется ее наружный проволочный вывод.
Внутренние выводы коллектора и эмиттера приварены к проводникам внешних электродов. С развитием электроники приступили к обработке кристаллов кремния, и изобрели кремниевые приборы, практически полностью отправившие на пенсию германиевые транзисторы. Они способны работать с более высокими температурах, в них ниже значение обратного тока и более высокое напряжение пробоя. Основным методом изготовления является планарная технологи. У таких транзисторов p-n переходы располагаются в одной плоскости. Принцип метода основывается на диффузии или вплавлении в пластину кремния примеси, которая может быть в газообразной, жидкой или твердой составляющей. При нагрева до строго фиксированной температуры осуществляется диффузия примесных элементов в кремний.
В данном случае один из шариков создает тонкую базовую область, а другой эмиттерную. В результате в кремнии образуются два p-n перехода. По этой технологии производят в заводских условиях наиболее распространенные типы кремниевых транзисторов. Кроме того для изготовления транзисторных структур широко применяются комбинированные методы: сплавление и диффузия или различные варианты диффузии, например, двусторонняя или двойная односторонняя.
Работа транзистора в режиме диода при прямом подключении.
Проведем практический эксперимент, для этого нам потребуется любой транзистор и лампочка накаливания из старого фонарика и чуть-чуть монтажного провода для того, чтоб мы могли собрать эту схему.
Работа транзистора практический опыт для начинающих.
Лампочка светится потому, что на коллекторный переход поступает прямое напряжение смещения, которое отпирает коллекторный переход и через него течет коллекторный ток Iк. Номинал его зависит от сопротивления нити лампы и внутреннего сопротивления батарейки или блока питания. А теперь представим эту схему в структурном виде:
Так как в области N основными носителями заряда являются электроны, они проходя потенциальный барьер p-n переход, попадают в дырочную область p-типа и становятся неосновными носителями заряда, где начинают поглощаться основными носителями дырками. Таким же и дырки из коллектора, стремятся попасть в область базы и поглощаются основными носителями заряда электронами. Так как база к минусу источника питания, то на нее будет поступать множество электронов, компенсируя потери из области базы. А коллектора, соединенный с плюсом через нить лампы, способен принять такое же число, поэтому будет восстанавливаться концентрация дырок. Проводимость p-n перехода существенно возрастет и через коллекторный переход начнет идти ток коллектора Iк. И чем он будет выше, тем сильнее будет гореть лампочка накаливания. Аналогичные процесс протекают и в цепь эмиттерного перехода. На рисунке показан вариант подключения схемы для второго опыта.
Работа транзистора при обратном включении p-n перехода Проведем очередной практический опыт и подключим базу транзистора к плюсу БП. Лампочка не загорается, так как p-n переход транзистора мы подсоединили в обратном направлении и сопротивление перехода резко возросло и через него следует лишь очень маленький обратный ток коллектора Iкбо не способный зажечь нить лампочки.
Работа транзистора в режиме переключения Осуществим, еще один интересный эксперимент подключим лампочку в соответствии с рисунком. Лампочка не светится, давайте разберемся почему.
Если приложено напряжение к эмиттеру и коллектору, то при любой полярности источника питания один из переходов будет в прямом, а другой в обратном включении и поэтому ток течь не будет и лампочка не горит.
Из структурной схемы очень хорошо видно, что эмиттерный переход смещен в прямом направлении и открыт и ожидает прием свободных электронов. Коллекторный переход, наоборот, подсоединен в обратном направлении и мешает попадать электронам в базу. Между коллектором и базой образуется потенциальный барьер, который будет оказывать току большое сопротивление и лампа гореть не будет. Добавим к нашей схеме всего одну перемычку, которой соединим эмиттер и базу, но лампочка все равно не горит.
Тут, в принципе, все понятно при замыкании базы и эмиттера перемычкой коллекторный переход превращается в диод, на который поступает обратное напряжение смещение. Установим вместо перемычки сопротивление Rб номиналом 200 – 300 Ом, и еще один источник питания на 1,5 вольта. Минус его соединим через Rб с базой, а плюс с эмиттером. И свершилось чудо, лампочка засветилась.
Лампа засветилась потому, что мы подсоединили дополнительный источник питания между базой и эмиттером, и тем самым подали на эмиттерный переход прямое напряжение, что привело к его открытию и через него потек прямой ток, который отпирает коллекторный переход транзистора. Транзистор открывается и через него течет коллекторный ток Iк, во много раз превышающий ток эмиттер-база. И поэтому этому току лампочка засветилась. Если же мы изменим полярность дополнительного источника питания и на базу подадим плюс, то эмиттерный переход закроется, а за ним и коллекторный. Через транзистор потечет обратный Iкбо и лампочка перестанет гореть. Основная функция резистора Rб ограничивать ток в базовой цепи. Если на базу поступит все 1,5 вольта, то через переход пойдет слишком большой ток, в результате которого произойдет тепловой пробой перехода и транзистор может сгореть. Для германиевых транзисторов отпирающее напряжение должно быть около 0,2 вольта, а для кремниевых 0,7 вольта. Обратимся к структурной схеме: При подаче дополнительного напряжения на базу открывается эмиттерный переход и свободные дырки из эмиттера взаимопоглощаются с электронами базы, создавая прямой базовый ток Iб.
Но не все дырки, попадая в базу, рекомбинируются с электронами. Так как, область базы достаточно узкая, поэтому лишь незначительная часть дырок поглощается электронами базы. Основной объем дырок эмиттера проскакивает базу и попадает под более высокий уровень отрицательного напряжения в коллекторе, и вместе с дырками коллектора текут к его отрицательному выводу, где и взаимопоглощается электронами от основного источника питания GB. Сопротивление коллекторной цепи эмиттер-база-коллектор резко падает и в ней начинает течь прямой ток коллектора Iк во много раз превышающий ток базы Iб цепи эмиттер-база. Чем выше уровень отпирающего напряжения на базе, тем выше количество дырок попадает из эмиттера в базу, тем выше значение тока в коллекторе. И, наоборот, чем ниже отпирающее напряжение на базе, тем ниже ток в коллекторной цепи. В этих экспериментах начинающего радиолюбителя по принципам работы транзистора, он находится в одном из двух состояний: открыт или закрыт. Переключение его из одного состояния в другое осуществляется под действием отпирающего напряжения на базе Uб. Этот режим работы транзистора в электроники получил название ключевым. Он используют в приборах и устройствах автоматики.
Кодовая и цветовая маркировка транзисторов
Отечественные транзисторы с корпусами малых размеров маркируются цветовой или кодовой маркировкой и лишь в редких случаях марка транзистора наносится полностью, как есть. При ремонте бытовой аппаратуры можно столкнуться с цветовой или кодовой маркировкой и для замены транзистора необходимо определить марку транзистора, сделать это можно и с помощью программы кодовой и цветовой маркировки транзисторов, сейчас мы рассмотрим как это сделать с помощью справочника.
Кодово-цветовая маркировка транзисторов в корпусе КТ-27 (ТО-126)
Далее смотрим в таблицу ниже и находим строку которая соответствует кодово-цветовой маркеровке вашего транзистора.
Таблица определения марки транзистора по кодо-цветовой маркировке.
Таблица определения года выпуска транзистора по кодовой маркировке.
Таблица определения месяца выпуска транзистора по кодовой маркировке.
Цветовая маркировка транзисторов в корпусе КТ-26
Цветовой маркировкой, как показано на рисунке ниже, обазначаются транзисторы КТ326, КТ337, КТ345, КТ349, КТ350, КТ351, КТ352, КТ363, КТ645, КТ3107. Кроме марки данных транзисторов на корпусе указываются год и месяц выпуска транзистора.
Ниже приведена цветовая маркировка транзисторов КТ203, КТ209, КТ313, КТ336, КТ339, КТ342, КТ502, КТ503, КТ3102. Маркируются транзисторы данных марок всего двумя точками. В данном обозначении месяц и год выпуска отсутствуют.
Нестандартная цветовая маркировка транзисторов.
Иногда транзисторы выпускались с нестандартной цветовой маркировкой, некоторые примеры приведены ниже:
Кодовая маркировка транзисторов в корпусе КТ-26.
Кодовая маркировка применяется к транзисторам в корпусе КТ-26 следующих марок — КТ203, КТ208, КТ209, КТ313, КТ326, КТ339, КТ342, КТ502, КТ503, КТ3102, КТ3107, КТ3157, КТ3166, КТ6127, КТ680, КТ681, КТ698, КП103. Как видите марки транзисторов с кодовой маркировкой включают все марки с цветовой, но не наоборот. Связано это с тем, что кодовая появилась позже и к тому времени некоторые транзисторы уже не выпускались. Маркировка на транзисторы может наносится как с годом и месяцем выпуска так и без них.
Некоторые примеры кодовой маркировки.
Нестандартная кодовая кодировка транзисторов.
Маркировка SMD транзистора BC847A.
Возможны ситуации, когда в один и тот же корпус фирмы-производители под одной и той же маркировкой помещают разные приборы, например, фирма PHILIPS помещает в корпус типа SOT323 NPN-транзистор типа BC818W и маркирует его кодом 6H, а фирма MOTOROLA в такой же корпус с маркировкой 6H помещает PNP-транзистор типа MUN5131T1. Такая же ситуация встречается и внутри одной фирмы. Например, в корпусе типа SOT23 у фирмы SIEMENS под маркировкой 1А выпускаются транзисторы BC846A и SMBT3904, обладающие разными параметрами.
Различить такие приборы установленные на плате можно только по окружающим их компонентам и соответственно – схеме включения.
В современном понимании транзистор — это полупроводниковый прибор с двумя или более р-п переходами и тремя или более выводами, предназначенный для усиления, генерирования и преобразования электрических колебаний.
Наиболее широкое применение в радиолюбительских конструкциях находят биполярные и полевые транзисторы. У полевых транзисторов управление выходным током производится с помощью электрического поля, отсюда и название, полевые.
Полевые транзисторы имеют три электрода: исток, затвор и сток. Электроды полевого транзистора в определенной степени соответствуют электродам биполярного транзистора — эмиттеру, базе и коллектору.
Достоинством полевого транзистора является то, что ток входного электрода (затвора) очень мал. Это определяет высокое входное сопротивление каскадов на этих транзисторах и тем самым устраняет влияние последующих каскадов схемы на предыдущие.
Еще одно достоинство полевых транзисторов — низкий уровень собственных шумов, что дает возможность использовать полевые транзисторы в первых каскадах высококачественных усилителей звуковой частоты.
Основная классификация транзисторов, параметры
Основная классификация транзисторов ведется по исходному материалу, на основе которого они сделаны, максимальной допустимой мощности, рассеиваемой на коллекторе и частотным свойствам.
Эти параметры определяют их основные области применения. По мощности транзисторы делят на:
- транзисторы малой мощности,
- транзисторы средней мощности,
- транзисторы большой мощности.
По частоте транзисторы делят на:
- низкочастотные,
- среднечастотные,
- высокочастотные,
- сверхвысокочастотные.
По исходному полупроводниковому материалу транзисторы разделяют на:
Основными параметрами биполярных транзисторов являются:
- статический коэффициент усиления по току а в схеме с общей базой;
- статический коэффициент усиления по току |3 в схеме с общим эмиттером. Параметры аир связаны зависимостями вида в = а/(1 — а) или а = в/(1 + в);
- обратный ток коллектора Іко;
- граничная fгр и предельная fh21 частоты коэффициента передачи тока.
Основными параметрами полевых транзисторов являются:
- напряжение отсечки U0 — приложенное к затвору напряжение, при котором перекрывается сечение канала;
- максимальный ток стока Іс. макс;
- напряжения: между затвором и стоком Uзс, между стоком и истоком Uси и между затвором и истоком Uзи;
- входная Свх, проходная Спр и выходная Свых емкости.
Система обозначений транзисторов
Встречаются транзисторы (биполярные), которые имеют старую, введенную до 1964 г. систему обозначений. По старой системе в обозначение транзистора входит буква П и цифровой номер.
По номеру транзистора можно определить, для каких каскадов радиоэлектронной конструкции он разработан. Если перед буквой П стоит буква М, то это значит, что корпус транзистора холодносварочной конструкции. Расшифровка типов транзисторов по номеру следующая:
Низкочастотные (до 5 МГц):
- 1. 100 — германиевые малой мощности, до 0,25 Вт;
- 101. 201 — кремниевые до 0,25 Вт;
- 201. 300 — германиевые большой мощности, более 0,25 Вт;
- 301. 400 — кремниевые более 0,25 Вт.
Высокочастотные (свыше 5 МГц):
- 401. 500 — германиевые до 0,25 Вт;
- 501. 600 — кремниевые до 0,25 Вт;
- 601. 700 — германиевые более 0,25 Вт;
- 701. 800 — кремниевые более 0,25 Вт.
- П416 Б — транзистор германиевый, высокочастотный, малой мощности, разновидности Б;
- МП39Б — германиевый транзистор, имеющий холодносварочный корпус, низкочастотный, малой мощности, разновидности Б.
В новой системе обозначений используется буквенно-цифровой шифр, который состоит из 5 элементов:
1-й элемент системы обозначает исходный материал, на основе которого изготовлен транзистор и его содержание не отличается от системы обозначения диодов, то есть Г или 1 — германий, К или 2 — кремний, А или 3 — арсенид галлия, И или 4 — индий.
2-1 элемент — буква Т (биполярный) или П (полевой).
3-1 элемент — цифра, указывающая на функциональные возможности транзистора по допустимой рассеиваемой мощности и частотным свойствам.
Транзисторы малой мощности, Рmах 1,5 Вт:
- 7 — большой мощности низкочастотный;
- 8 — большой мощности среднечастотный;
- 9 — большой мощности высокочастотный и сверхвысокочастотный (frp > 300 Гц).
4-й элемент — цифры от 01 до 99, указывающие порядковый номер разработки.
5-й элемент — одна из букв от А до Я, обозначающая деление технологического типа приборов на группы.
Например: КТ540Б — кремниевый транзистор средней мощности среднечастотный, номер разработки 40, группа Б.
При изготовлении транзисторов используют различные технологические приемы, в результате чего получаются приборы со специфическими особенностями, эксплуатационными свойствами и параметрами. Цоколевка транзисторов, широко используемых радиолюбителями, дана на рис. 1.
Рис. 1. Цоколевка отечественных транзисторов.
Цветовая и цифровая маркировка
Транзисторы, как и другие радиокомпоненты, маркируют с помощью цветового кода. Цветовой код состоит из изображения геометрических фигур (треугольников, квадратов, прямоугольников и др.), цветных точек и латинских букв.
Код наносится на плоских частях, крышке и других местах транзистора. По нему можно узнать тип транзистора, месяц и год изготовления. Места маркировки и расшифровка цветовых кодов некоторых типов транзисторов приведены на рис. 2. 3 и в табл. 1. 4. Практикуется также маркировка некоторых типов транзисторов цифровым кодом (табл. 4).
Таблица 1. Цветовая и кодовая маркировки маломощных среднечастотных и высокочастотных транзисторов.
Тип транзистора | Группы транзисторов | Месяц выпуска | Год выпуска | ||||
Обозначение | Маркировка | Обозначение | Маркировка | Обозначение | Маркировка | Обозначение | Маркировка |
ян в. | бежевая | ||||||
А | розовая | фев. | синяя | 1977 | бежевая | ||
Б | желтая | март | зеленая | 1978 | еалатовая | ||
В | синяя | апр. | красная | 1979 | оранжевая | ||
Г | бежевая | май | еалатовая | 1980 | электрик | ||
Д | оранжевая | июнь | серая | 1981 | бирюзовая | ||
КТ3107 | голубая | Е | электрик | июль | коричневая | 1982 | белая |
Ж | еалатовая | авг. | оранжевая | 1983 | красная | ||
И | зеленая | сент. | электрик | 1984 | коричневая | ||
К | красная | окт. | белая | 1985 | зеленая | ||
Л | серая | ноябр. | желтая | 1986 | голубая | ||
декаб. | голубая |
Таблица 2. Цветовая маркировка транзистора КТ3107 .
Рис. 2. Места цветовой и кодовой маркировки маломощных среднечастотных и высокочастотных транзисторов в корпусе КТ-26 (ТО-92).
Рис. 3. Места цветовой маркировки транзистора КТ3107 в корпусе КТ-26 (ТО-92).
Читайте также: