Из чего делают шины
Многие автовладельцы имеют общее представление о строении автомобильных шин, но о том, как делают шины, мало кто сможет рассказать. Наиболее распространено представление, что резина заливается в некую форму, из которой затем выпрессовывается готовое изделие.
На самом деле это не так, а изготовление автомобильных шин – это сложный высокотехнологичный процесс, для которого необходимо наличие сложного специализированного оборудования, тщательного автоматизированного контроля и участие специалистов высокой квалификации.
Немного истории
Первая резиновая шина была создана в далеком 1846 году Робертом Вильямом Томсоном. На тот момент его изобретением никто не заинтересовался, и повторно к идее пневматической шины вернулись лишь через 40 лет, когда в 1887 году шотландец Джон Данлоп придумал сделать из поливального шланга обручи, надеть их на колеса велосипеда своего сына и накачать их воздухом.
Спустя три года Чарльз Кингстон Уэлтч предложил разделить камеру и покрышку, вставить в края покрышки кольца из проволоки и посадить их на обод, который затем получил углубление к центру. В то же время были предложены рациональные способы монтажа и демонтажа шин, что позволило применять резиновые покрышки на автомобилях.
Процесс производства шин
Из чего делают
Основной материал, который применяется при производстве шин, резина, изготовленная на основе натурального или искусственного каучука. В зависимости от того, в каких пропорциях и какой каучук добавляется, в конечном итоге получаются летние или зимние автомобильные покрышки.
- Помимо каучука в резиновую смесь добавляют множество других компонентов, таких как пластификаторы, наполнители, сажа, вулканизирующие добавки.
- Шина состоит из нескольких элементов, объединенных в одно целое: каркаса или корда, слоев брекера, протектора, борта и боковой части.
Как делают каркас
Готовый каркас впоследствии раскраивается на полосы разной ширины, для производства шин разной размерности. И сматывается в катушки для хранения и транспортировки. Поскольку невулканизированная резина очень липкая, во избежание порчи каркаса между слоями вставляются прокладки.
Как делают протектор
Следующий этап производства – создание протектора. Лента обрезиненного корда заправляется в станок, который методом экструзии превращает ее в протектор. Чтобы работники могли визуально быстро определить размерность будущей покрышки, на протектор краской делают цветные линии.
Боковая часть
Борт покрышки состоит из бортового кольца и слоя вязкой воздухонепроницаемой резины. Производство бортов шин начинается с того, что металлическая проволока обрезинивается, после чего закручивается под требуемый радиус колесного диска и нарезается кругами. После этого на станке осуществляется сборка. Подробнее этот процесс можно посмотреть на видео.
" alt="">
Сборка
Предпоследний этап – сборка готовой покрышки. Осуществляется она на станке, на который поступают все готовые элементы. Обслуживают станок два работника: сборщик и перезарядчик.
Первый навешивает бортовые кольца, а второй вставляет катушки с компонентами. После этого станок все делает автоматически: соединяет части воедино и раздувает заготовку воздухом под протектор с брекером. Почти готовую шину взвешивают и осматривают на предмет наличия дефектов. Этот процесс также можно посмотреть на видео.
" alt="">
Вулканизация
Последний этап производства – вулканизация. Шина обрабатывается горячим паром под давлением 15 бар и при температуре порядка 200 градусов по Цельсию. В результате каучук, сажа и всевозможные присадки спекаются, а на поверхности покрышки при помощи пресс-форм наносится рисунок протектора и надписи. Готовые шины проверяются на соответствие всем требуемым характеристикам.
Изготовление шин — это сложный технологический процесс, подразделяющийся на три независимых производства:
- изготовление покрышек
- камер
- ободных лент
Основные этапы в производстве шин:
- приготовление резиновых смесей
- выпуск деталей (для покрышек, камер и ободных лент)
- сборка покрышек
- вулканизация (покрышки предварительно формуются)
Применяемые для изготовления шин материалы (кордные ткани, резины и т.п.) очень разнообразны, обладают различными свойствами и используются в зависимости от назначения шин и условий их эксплуатации. Шинные материалы в значительной степени определяют долговечность шин и их стоимость, эксплуатационные качества мотоцикла и т.д.
Корд и другие текстильные материалы
Основным материалом является корд, из которого изготовляют каркас покрышек.
Корд — это безуточная ткань, нити которой свиты из 2—3 и более тонких нитей-стренг. В свою очередь каждая стренга свита из 1—5 нитей пряжи. Каждая нить пряжи скручена из волокон.
Такая структура нитей придает каркасу, сделанному из корда, высокую работоспособность при восприятии им значительных динамических нагрузок и знакопеременных деформаций. Для производства шин в настоящее время применяют два типа кордов — синтетический (вискозный) и полиамидный (капроновый).
Вискозный корд пришел на смену ранее применявшемуся хлопчатобумажному. По сравнению с хлопчатобумажным вискозный корд обладает большей прочностью при меньшей толщине нитей и в то же время имеет меньшую стоимость. Однако он очень гигроскопичен, причем увеличение влажности значительно снижает его прочность.
Вискозный корд применяется в шинах для дорожных мотоциклов.
Спортивные шины, работающие в более жестких условиях, чем дорожные — при очень высоких скоростях движения, значительных динамических нагрузках, больших деформациях и т.п., изготовляют из капронового корда.
Капроновый корд обладает большей, чем вискозный, разрывной и усталостной прочностью, малым весом, большими удлинениями. Поэтому шины из капронового корда легче, прочнее, лучше сопротивляются воздействию сосредоточенных и динамических нагрузок (т. е. меньше подвержены пробоям и разрывам).
Применение капронового корда в шинах позволяет снизить слойность каркаса (с четырех до двух) при сохранении запаса прочности и улучшении эксплуатационных характеристик шин.
Кроме корда при изготовлений шин для улучшения монолитности бортовых колец применяют (для их обертки) хлопчатобумажную ткань квадратного плетения — бязь.
Шинные резины
Резину получают при смешении и последующей вулканизации (нагрев до 150—160° С) различных компонентов, основными из которых являются:
Разнообразием характера работы, выполняемой различными частями и деталями шины, вызвано применение при производстве шин резин с различным качественным и количественным содержанием компонентов и, следовательно, с разными физико-механическими свойствами.
Резины, применяемые в производстве шин, подразделяются по назначению на следующие основные группы:
- протекторные
- каркасные
- бортовые
- камерные
Условиями работы шин определяются основные требования к протекторным резинам: высокая сопротивляемость абразивному износу, образованию и разрастанию трещин, порезам, сопротивление старению и термостойкость, т. е. сохранение физико-механических свойств при длительном (в процессе всего срока эксплуатации) воздействии солнечных лучей, озона и кислорода воздуха, а также при повышении температуры в результате длительного движения, особенно при высоких скоростях.
Учитывая, что подавляющее большинство шин выходит из строя из-за износа рисунка протектора, износостойкость является главным требованием, предъявляемым к протекторной резине.
В первую очередь это относится к шинам для дорожных мотоциклов и спортивных, предназначенных для ШКГ.
Исходя из этого, протектор дорожных шин изготавливают на основе комбинации синтетических каучуков (СК) — стереорегулярного полибутадиенового (СКД) и бутлдиенметилстирольного (БСК) с большим наполнением активной сажей ПМ-100.
Резина на основе указанных компонентов обеспечивает высокую износостойкость протектора, однако обладает большой жесткостью.
Элементы рисунка протектора спортивных шин, предназначенные для кросса и многодневных соревнований, имеют довольно большую высоту и при эксплуатации подвергаются значительным деформациям. Поэтому применение в протекторе таких шин резин с большой жесткостью приводит к образованию трещин и скалыванию элементов рисунка.
В связи с этим протектор шин для кросса и многодневных соревнований изготавливают на основе комбинации натурального каучука (НК) с добавлением синтетического каучука типа СКД, поскольку резина на такой основе обладает высокой эластичностью, прочностью, стойкостью к многократным деформациям, износостойкостью и т.п.
Каркасные резины, изолирующие нити корда друг от друга, должны обеспечивать хорошую прочность связи между элементами покрышки, обладать высокой усталостной выносливостью при многократных деформациях, малой жесткостью и высоким сопротивлением тепловому старению. Каркасные резины для мотоциклетных шин изготовляют с применением НК, БСК и полиизопренового (СКИ-3) каучуков.
Камерные резины для мотоциклетных шин должны обладать:
- воздухонепроницаемостью
- хорошей сопротивляемостью разрыву
- теплостойкостью
- незначительными остаточными деформациями при удлинении
Их изготовляют из НК.
Резину для ободных лент делают на основе СК с большим наполнением регенерата.
Бортовая проволока
Бортовые кольца покрышек изготавливают из стальной проволоки диаметром 1 мм и сопротивлением разрыву — 180—200 кгс/мм2. Бортовая проволока для лучшей связи с резиной латунируется.
Круглый предмет падает на землю и магическим образом отскакивает от нее прямо в руки индейцу: команда Колумба зачарована увиденным. Разбитый подагрой американец гладит латекс утюгом, варит, жарит и запекает его на кухне. Его голодная семья с ужасом наблюдает за опытами: ах, если б только латекс был съедобным! Чарльз Гудьир наконец изобретает технологию превращения латекса в более прочный и стабильный материал под названием резина, но счастья ему она не приносит. Он умирает больным, нищим и безвестным. Англичанин Генри Уикхэм тайком вывозит тысячи семян гевеи из Бразилии. Гевею высаживают в британских колониях на Малайском полуострове, и через какое-то время крупнейшая южноамериканская страна превращается из монополиста латекса в его импортера! Это лишь несколько эпизодов из жизни латекса, материала с невероятно захватывающей историей.
Микроциклус, злой и ужасный
Если бы не микроциклус, Бразилии сегодня не приходилось бы закупать за рубежом более 100 000 т латекса. Нынешние объемы производства этого материала в стране покрывают лишь 40% национального спроса. Проблема в том, что местный микроскопический грибок с остервенением набрасывается на листья гевеи, поражает их, а деревья, тратя все свои силы на восстановление листьев, больше не способны производить латекс. Настоящим провалом обернулся проект Fordlandia, инициированный в 1920-х годах Генри Фордом. Чтобы не закупать латекс у англичан, изобретатель конвейера открыл огромную каучуковую плантацию недалеко от Амазонки в Бразилии, но из-за поражения растений грибком и ряда организационных просчетов американская компания понесла огромные убытки и в конце концов решила избавиться от плантации. Беда не обошла стороной и одну из самых крупных шинных компаний в мире — Michelin. Плантация, на которой мы находимся, была куплена французской компанией в 1984 году у терпевшей огромные убытки американской фирмы Fire-stone (ныне подразделение Bridge-stone). Сделка оказалась крайне неудачной для французов. Выяснилось, что многие деревья на плантации поражены микроциклусом. Химические способы борьбы дороги и малоэффективны: над плантацией должны были постоянно кружить самолеты с химикатами, и все равно таким образом грибок не уничтожить. К тому же цены на натуральную резину на международном рынке резко упали.
От индейской игры пок-та-пок до гигантской шинной индустрии современности, резина вот уже три тысячелетия присутствует в жизни человечества.
1600 лет до нашей эры. Обитатели Мезоамерики, историко-культурного региона, простирающегося от центра Мексики до Никарагуа, начинают играть в пок-та-пок. Мяч для этой древнейшей командной игры, похожей на баскетбол с элементами волейбола, делали из белого сока растения Castilla elastica. Чтобы латекс затвердел и стал прыгучим, индейцы смешивали его с соком лозы Ipomoea alba. В течение 10 минут полученный раствор затвердевал и приобретал свойства, присущие резине. Это был древней аналог вулканизации, придуманной три тысячелетия спустя Чарльзом Гудьиром. Индейцы также использовали латекс для изготовления непромокаемых тканей, обуви и емкостей для хранения воды и продуктов.
1452 год. Колумб открывает Америку и знакомится с прыгающими мячиками из латекса. О них Колумб упоминает как о забавной диковинке, не придавая ей какого-то значения. В результате последующие три столетия европейцы даже не задумываются о том, что резина – стоящий материал.
1731 год. Французский географ Шарль Кондамин во время путешествия в Южную Америку открывает для себя латекс и, впечатленный свойствами этого материала, привозит его в Европу. Латексом наконец-то заинтересовываются ученые и коммерсанты. В 1770 году англичанин Джозеф Пристли представляет миру каучуковый ластик, затем латексом начинают пропитывать ткань. Первым крупным производителем непромокаемых плащей становится английский химик Чарльз Макинтош – вскоре его фамилия становится нарицательной.
1839 год. Люди в галошах и макинтошах больше не боятся дождливой погоды, но теперь их страшат перепады температуры. В холодные дни их одежда становится ломкой, а в жару размягчается, превращаясь в липкую массу. Кроме того, от нее исходит неприятный запах. Химики проводят бесчисленные эксперименты, пытаясь сделать латекс более стабильным. В результате процесс вулканизации каучука совершенно случайно открыл Чарльз Гудьир. Выяснилось, что при нагревании с серой латекс теряет липкость и ломкость.
1876 год. Англичанин Генри Уикхэм тайком вывозит из Бразилии, поставлявшей каучук всей Европе, партию семян гевеи. Растения высаживают в британских колониях на Малайском полуострове. Дерево отлично прижилось и спустя годы именно эти места стали основным местом добычи каучука, тогда как природные запасы каучука в Бразилии постепенно истощились.
1901 год. Русский ученый Кондаков синтезирует каучук из бутадиена. В России эта технология применения не нашла, но на основе ее немцы разработали свою технологию производства шин для армейских машин.
Конец 1920-х годов. В России и Германии разрабатывают метод создания недорогой и неплохой резины. Спустя 15 лет в США синтезируют неопрен, который по ряду качеств превосходит натуральную резину.
Конец XX века. За счет применения в составе шин кремнезема удалось снизить коэффициент сопротивления качения на 30%, уменьшив расход топлива автомобиля примерно на 6–9%.
Война объявлена
Руководству Michelin надо было незамедлительно принимать решение. Можно было, например, наладить на плантации производство других культур, но шинная компания не видела смысла заниматься новым для себя бизнесом. Другой альтернативой была продажа земли, но тогда бы пришлось уволить всех работников плантации. Движимые идеями социальной ответственности топ-менеджеры Michelin решили сохранить рабочие места. Компания пошла на беспрецедентный ход: была объявлена полномасштабная война с микроциклусом. Совместно с французским научным центром CIRAD компания занялась длительными исследованиями, чтобы найти эффективные методы борьбы с грибком.
Чего боятся в Азии
Основным использующемся материалом для шины считается резина. Она бывает различной и может производиться как из искусственного, так и из настоящего каучука. Более часто встречаются шины сделанные из искусственного каучука, так как он элементарен в разработке и гораздо экономичнее и по свойству не уступает натуральному каучуку.
Другой по численным показателям элемент состава шины – углерод промышленный или, обычным языком, сажа. На его часть приводится приблизительно 30% всей смеси.
Для чего применяется углерод? По сути, это упрочивающий элемент смеси, работающий на молекулярном уровне. Без применения сажи шины были бы недолговечными, хрупкими и выделялись бы завышенным износом.
Сейчас вместо промышленного углерода чаще применяется сера. Но отбор того или иного ингредиента – скорее, тема финансовой целесообразности. С научно-технической точки зрения отличие невелико.
Химический состав резины автомобильных шин
Замена техническому углероду – кремниевая кислота. Она применяется в качестве подмены сажи по причине, что последняя непрерывно дорожает. Однако, это решение вызывает некоторые споры в кругу специалистов, и связаны они с тем, что кремниевая кислота при низкой крепости располагает более высокой способностью к сцеплению с влажной поверхностью дороги. То есть, утрачивая в износостойкости, мы обретаем наилучшее сцепление.
Вот к примеру химическая формула резины и каучука соответственно
В качестве присадок для изготовления компаундов используются разные масла и смолы. Они исполняют смягчающую функцию, что в особенности важно при изготовлении зимней резины.
Факт наличия в резине кремниевой кислоты, крахмала кукурузы или иных добавок, на коих производится реклама — ничего не значит. Главное придумать хороший рецепт, а потом и не нарушить этот самый рецепт, который бы с использованием этих ингредиентов дал отличные свойства авто шине. А это получается далеко не у всех производителей. Поэтому как делают шины разные производители — это их тайна за семью печатями.
Можно подвести результат, что авто шины делают либо из резины, либо из иных материалов, но с прибавлением каучука. У изготовителей шин имеется свой лучший хим. состав, который устанавливает разные свойства получаемой резины.
Один разработчик делает упор на срок службы, иной — на скоростные свойства, а 3-ий — на поведение шины на влажной дороге. Эти свойства устанавливают цену и качество шины. Ну а далее уже в резину добавляют металлизированный корд, капроновые нити и различны дополнительные скрепляющие элементы, чтобы шина была упругой, долговечной и износостойкой.
Читайте также: