Газ в лампочке
ЛА́МПА НАКА́ЛИВАНИЯ (от греч. λαμ π άς – светоч, светильник), искусственный источник света с излучателем из тугоплавкой проволоки (обычно в виде нити или спирали), накаливаемой электрич. током. Изобретена А. Н. Лодыгиным в 1872 (патент – 1874); в качестве нити накала использовался угольный стержень, помещённый в стеклянный баллон (колбу), из которого за счёт сгорания части угля при пропускании тока удалялся кислород. В дальнейшем конструкция Л. н. постоянно совершенствовалась. В 1879–80 Т. А. Эдисон создал пригодную для пром. изготовления конструкцию Л. н. с угольной нитью повышенной долговечности (ок. 40 ч), разработал для электроламп патрон и цоколь с винтовой нарезкой, а также применил откачку воздуха из баллона. В 1898–1908 в качестве тела накала испытывались металлы (Os, Та, W), а с 1909 стали применяться Л. н. с вольфрамовой нитью. Для снижения скорости испарения нити накала И. Ленгмюр предложил наполнять Л. н. инертным газом (1909). В 1912–13 появились первые Л. н., наполненные азотом и инертными газами (Ar, Kr); вольфрамовую нить стали изготовлять в виде спирали. Заполнение Л. н. инертными газами с добавками галогенов позволило уменьшить загрязнение колбы лампы частицами распылённого металла и существенно увеличить время жизни таких ламп. Использование тела накала в форме биспирали (спирали, навитой из спирали) сократило потери теплоты через газ.
Колбы первых ламп были вакуумированы. Большинство современных ламп наполняются химически инертными газами (кроме ламп малой мощности, которые по-прежнему делают вакуумными) . Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа с большой молекулярной массой. Смеси азота N2 с аргоном Ar являются наиболее распространёнными в силу малой себестоимости, также применяют чистый осушенный аргон, реже - криптон Kr или ксенон Xe.
Галогенная лампа — лампа накаливания, в баллон которой добавлен буферный газ: пары галогенов (брома или йода)
Люминисцентная лампа — газоразрядный источник света. Она представляет собой стеклянную трубку с нанесённым на внутреннюю поверхность слоем люминофора, заполненную парами ртути.
Вакуумные лампы - в основном электронные (и маломощные осветительные) .
Осветительные лампы накаливания: инертные газы - аргон, криптон, ксенон а также азот; "галогенные" - йод, бром в инертных газах.
Газоразрядные: низкого давления: люминесцентные - ртуть и аргон; "неоновые" - неон, аргон, криптон, гелий;
высокого давления: металлогалогенные лампы - ртуть, аргон и йодиды металлов; ксенон; ксенон и натрий.
Принцип действия и особенности конструкции
При нагреве до определенной температуры металл начинает светиться. Это свойство и используется в лампах накаливания. При этом пришлось решить несколько проблем, которые препятствовали созданию эффективного осветительного элемента. Во-первых, нужно было подобрать материал, который при накаливании не расплавится. В результате спираль изготавливается из вольфрама – самого дешевого из тугоплавких металлов. Во-вторых, процесс нагрева ускоряет окислительные процесс, который оказывает негативное влияние на состояние металла. Значит, необходимо было предотвратить контакт раскаленной спирали с кислородом, т. е. с воздухом.
В результате получилась конструкция лампы, которая преодолевает все проблемы и в то же время поражает своей простотой:
- грушевидная колба из стекла с прикрепленным к узкой части металлическим цоколем. На нем имеется резьба, при помощи которой устройство вкручивается в патрон. В некоторых моделях резьба отсутствует, но имеются другие решения, соответствующие условиям эксплуатации;
- внутри колбы имеется стеклянная ножка, с впаянными двумя электродами. Своими верхними концами они крепятся к краям спирали, а нижними – к цоколю. Причем один припаян к корпусу, а второй – к контакту на его дне;
- вольфрамовая спиралевидная струна крепится к электродам и держателям (ножкам), изготовленным из тугоплавкого металла (молибдена). Они не дают спирали провиснуть при нагреве и оборваться. В зависимости от назначения ламп накаливания спиралей может быть несколько, а значит количество контактов и поддерживающих ножек увеличивается соответственно.
Из колбы откачивают воздух и заполняют ее инертным газом либо оставляют вакуумную среду. Этим решается проблема окисления. Проходя через вольфрамовую спираль, электрический ток разогревает ее. Причем происходит это незаметно для человеческого глаза и световой поток в результате накала проводника распространяется практически мгновенно.
Применяемые в лампах накаливания материалы
При изготовлении ламп накаливания используются разные материалы. Регулируется производство соответствующими статьями ГОСТа, в которых прописаны все необходимые требования – от размеров, до требований безопасности.
Металлы
В лампе накаливания присутствуют металлические детали – спираль и держатели. Нить накаливания чаще всего производят из вольфрама – тугоплавкого металла с температурой плавления до 3400°С. Значительно реже для спирали используют осмий и рений. При включении в сеть температура нити накала достигает 2000-2800°С. Ножки должны выдерживать высокую температуру и иметь низкий показатель теплового расширения, поэтому их делают из молибдена, который соответствует выдвигаемым требованиям.
Вводы
В этом осветительном элементе металлическими так же будут и контакты, по которым ток из сети будет передаваться на рабочую зону. Одним контактом выступает алюминиевый цоколь, к которому изнутри крепится проволока, выходящая к электроду (чаще всего, никелевому). Второй контакт располагается на донышке цоколя и отделяется от основного корпуса изолятором.
Стекла
В лампе накаливания колба производится из обычного прозрачного стекла. Встречаются виды из матового стекла, которое рассеивает свет, делая его мягче. Бывают особые модели в цветных колбах или с зеркальным напылением.
Газы
Для предотвращения образования окиси и сгорания вольфрама колбу лампы наполняют инертным (химически неактивным) газом – аргон, ксенон, криптон или азот. Бывают вакуумные виды. Кроме относительного повышения срока службы, подобные модели имеют минимальную теплоотдачу.
Характеристики
Лампы накаливания характеризуются такими величинами:
Виды и характеристики ламп накаливания достаточно разнообразны. Это обуславливает их популярность и распространенность в различных производственных и бытовых сферах.
Разновидности ламп накаливания
Классифицируются лампы накаливания исходя из их конструкционных особенностей и сферы применения.
Общего и местного назначения – самая многочисленная группа. Лампы общего вида используются при организации основного освещения бытовых, промышленных и общественных помещений. Основным отличием устройств местного назначения является пониженное напряжения источника питания. Поэтому чаще всего их используют в переносных светильниках, для освещения рабочего места и т. д.;
Декоративные отличаются разнообразием размеров, форм и расположением спирали. Такие лампы накаливания обрели популярность в последнее время благодаря неординарному внешнему виду. Чаще всего их используют в дизайн-проектах в качестве декоративного элемента.
Сигнальные постепенно становятся историей. Все чаще их заменяют светодиодные элементы. Разрабатывался этот вид ламп накаливания для разнообразных светосигнальных устройств.
Зеркальные имеют колбу своеобразной формы. Ее разрабатывали с таким расчетом, чтобы световой поток имел определенную направленность. Препятствует рассеиванию и способствует фокусировке специальное алюминиевое покрытие. Оно наносится изнутри, оставляя не закрашенным определенный участок колбы (как правило верхний), через который и будет выходить луч света. Используется в местах где необходимо организовать направленное освещение.
Транспортные лампы используются в самых разнообразных ТС. Их конструкция и технические характеристики соответствуют условиям эксплуатации. Такие осветительные элементы отличаются повышенной прочностью и вибрационной устойчивостью. Устройство цоколя позволяет быстро сменить вышедшую из строя лампу на новую. Рассчитаны на работу от электросети транспортного средства. Основные виды таких элементов используются в осветительных приборах авто- и мототранспорта, на тракторной технике, самолетах и вертолетах, на морских и речных судах.
Отдельно в этой категории стоят двухнитевые лампы накаливания. В них имеются две спирали, что позволяет в некоторых ситуациях использовать вместо двух один элемент освещения. Например, фары автомобиля (переключение с ближнего на дальний или с габаритов на стоп-сигналы), ж/д светофоры и т. д.
Отдельную группу составляют галогенные лампы накаливания. Использование галогенов позволило значительно уменьшить габариты конструкции при повышении светоотдачи. По этой технологии изготавливаются элементы для общего освещения, инфракрасных облучателей, кино- и телеоборудования, прожекторов и пр.
Сфера использования
Маркировка
В маркировке ламп накаливания используются буквенные и цифровые обозначения. Состоит она из четырех частей:
- первая – буквенная. В ней отражены конструкционные и физические особенности. Б – биспиральная с аргоном, Г – газовая односпиральная аргоновая, В – вакуумная, БК – биспиральная криптоновая, МЛ – молочный цвет стекла, О – колба опалового цвета;
- вторая – буквенная. Показывает сферу использования. Ж – для ж/д, СМ – для самолетов, КМ – коммутационная, А – для автотранспорта, ПЖ – для прожекторов;
- третья – цифирная. Рабочее напряжение и номинальная мощность;
- четвертая – цифирная. Номер доработки.
Зная особенности маркировки продукции можно без труда подобрать необходимый для конкретных условий эксплуатации вид.
Достоинства и недостатки ламп накаливания
Лампы накаливания имеют как достоинства, так и недостатки. К основным минусам относится низкий коэффициент полезного действия. Для источников света под КПД подразумевается отношение интенсивности видимого светового потока к мощности, потребляемой для его производства. Его уровень не превышает 15% при температуре накала 3126°С. Но срок службы устройства при этом составляет всего несколько часов. При снижении нагрева эксплуатационный период повышается, но снижается КПД. При 2427°С коэффициент полезного действия составляет всего 5%, но светит такая лампочка на протяжении около 1000 часов. (Расчеты взяты для обычной грушевидной лампы накаливания мощностью 60 Вт). Это значит, что львиная доля энергии уходит в тепло (инфракрасное излучение), и только незначительная часть переходит в видимый для человеческого глаза спектр.
Еще имеются и такие недостатки у ламп накаливания:
- светоотдача напрямую зависит от напряжения;
- относительная пожароопасность – пространство вокруг колбы может нагреваться до +300°С;
- неэкономичность;
- хрупкость;
- существует вероятность взрыва колбы;
- незначительная величина срока службы лампы накаливания, особенно по сравнению с новейшими видами.
Но все эти недостатки перекрываются многочисленными достоинствами:
- доступная цена;
- компактность;
- широкий диапазон мощности;
- непрерывный светопоток с близкой к естественной светопередачей;
- не мерцает на переменном токе;
- не требуют дополнительных пускорегулирующих устройств и специальной утилизации;
- не теряют яркости.
Благодаря этим достоинствам лампы накаливания остаются лидерами продаж в сегменте осветительных элементов.
Вместо заключения
Лампа накаливания. 230 Вт, 720 лм, цоколь света, в котором происходит преобразование электрической энергии в световую в результате сильно нагретой металлической спирали при протекании через неё электрического тока.
Содержание
Принцип действия
В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине вольфрамовая нить защищена стеклянной колбой, заполненной нейтральным газом (обычно аргоном). Первые лампы делались с вакуумированными колбами. Однако в вакууме при высоких температурах вольфрам быстро испаряется, делая нить тоньше и затемняя стеклянную колбу при осаждении на ней. Позднее колбы стали заполнять химически нейтральными газами. Вакуумные колбы сейчас используют только для ламп малой мощности.
Конструкция
Конструкция современной лампы. На схеме: 1 — колба; 2 — полость колбы (вакуумированная или наполненная газом); 3 — тело накала; 4, 5 — электроды (токовые вводы); 6 — крючки-держатели ТН; 7 — ножка лампы; 8 — внешнее звено токоввода, предохранитель; 9 — корпус цоколя; 10 — изолятор цоколя (стекло); 11 — контакт донышка цоколя.
Конструкции ЛН весьма разнообразны и зависят от назначения конкретного вида ламп. Однако общими для всех ЛН являются следующие элементы: ТН, колба, токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели ТН различной конструкции; лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.
Колба
Стеклянная колба защищает нить от сгорания в окружающем воздухе. Размеры колбы определяются скоростью осаждения материала нити. Для ламп большей мощности требуются колбы большего размера, для того чтобы осаждаемый материал нити распределялся на большую площадь и не оказывал сильного влияния на прозрачность.
Буферный газ
Колбы первых ламп были вакуумированы. Современные лампы заполняются буферным газом (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Это уменьшает скорость испарения материала нити. Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа, по возможности, с наиболее тяжёлыми молекулами. Смеси азота с аргоном являются принятым компромиссом в смысле уменьшения себестоимости. Более дорогие лампы содержат криптон или ксенон (молярные массы: азот: 28,0134 г/моль; аргон: 39,948 г/моль; криптон: 83,798 г/моль; ксенон: 131,293 г/моль)
Нить накала
Двойная спираль лампы накаливания (Osram 200 Вт) с контактными проводниками и держателями нити
угля (точка сплава. Провод часто имеет вид двойной спирали, с целью уменьшения конвекции за счёт уменьшения Сила тока определяется по закону Ома (" width="" height="" />
) и мощность по формуле " width="" height="" />
, или /R>" width="" height="" />
. При мощности 60 Вт и рабочем напряжении 230 металлы имеют малое Цоколь
Форма цоколя с Предохранитель
Перегорание лампы происходит во время её работы, то есть в то время, когда одновременно нить накала нагрета и через нить протекает электрический ток. Если в это время происходит разрыв нити, то между разведёнными концами нити обычно загорается КПД и долговечность
Долговечность и яркость в зависимости от рабочего напряжения
Почти вся подаваемая в лампу энергия превращается в излучение. Потери за счёт теплопроводности и длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K КПД составляет 5 %.
С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов. Как показано на рисунке справа, при увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95 %.
Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности. Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20% мощности, что тоже может быть выгодно для увеличения ресурса.
тип | КПД | яркость(Люмен/Ватт) |
---|---|---|
40 W Лампа накаливания | 1.9% | 12.6 [1] |
60 W Лампа накаливания | 2.1% | 14.5 [1] |
100 W Лампа накаливания | 2.6% | 17.5 [1] |
Галогенные лампы | 2.3% | 16 |
Металлогалогенная лампа (с кварцевым стеклом) | 3.5% | 24 |
Высокотемпературная лампа накаливания | 5.1% | 35 [2] |
Абсолютно чёрное тело при 4000 K | 7.0% | 47.5 [3] |
Абсолютно чёрное тело при 7000 K | 14% | 95 [3] |
Идеально белый источник света | 35.5% | 242.5 [2] |
Идеальный монохроматический 555 nm (зелёный) источник | 100% | 683 [4] |
Галогенные лампы
Добавление в буферный газ галогенов (брома или часов. При этом рабочая температура спирали составляет примерно 3000 К. Эффективность галогенных ламп достигает 28 лм/Вт.
Иод (совместно с остаточным кислородом) вступает в химическое соединение с испарившимися атомами вольфрама. Этот процесс является обратимым — при высоких температурах соединение распадается на составляющие вещества. Атомы вольфрама высвобождаются таким образом либо на самой спирали, либо вблизи неё.
Трансформатор и электронный инвертор для питания 12-вольтных галогеновых ламп
Хотя IRC-галогенные лампы не достигают эффективности ламп дневного света , их преимущество состоит в том, что они могут быть использованы как прямая замена обычных галогенных ламп.
Специальные лампы
- Проекционные лампы — для диа- и кинопроекторов. Имеют повышенную яркость (и соответственно, повышенную температуру нити и уменьшенный срок службы); обычно нить размещают так, чтобы светящаяся область образовала прямоугольник.
- Двухнитевые лампы для автомобильных фар. Одна нить для дальнего света, другая для ближнего. Кроме того, такие лампы содержат экран, который в режиме ближнего света отсекает лучи, которые могли бы ослеплять встречных водителей.
История изобретения
Томас Альва Эдисон
Александр Николаевич Лодыгин
Cмapт-лaмпы — этo уcoвepшeнcтвoвaнныe лaмпoчки c дoпoлнитeльными вoзмoжнocтями, кoтopыe умeют coздaвaть для cвoeгo влaдeльцa пpиятную cвeтoвую aтмocфepу в дoмe и дeлaют eгo пoвceднeвную жизнь бoлee удoбнoй и кoмфopтнoй, нaпpимep:
Читайте также: