Диполь тесла своими руками
Изобретения знаменитого сербского учёного Николы Тесла намного опередили развитие науки в области альтернативных источников энергии. Его считают человеком, подарившим электричество людям. Созданные им устройства, в том числе электродвигатель, безтопливный генератор, резонасный трансформатор и другие открытия создали стартовую площадку для перехода на новый этап промышленного развития. Настоящей мечтой гения стала идея подарить людям бесплатное электричество. Генератор Тесла, по замыслу изобретателя, мог передавать энергию электрического тока беспроводным способом на большие расстояния.
Что это такое
Фактически, безтопливный электрический генератор — это вечный двигатель, для работы которого не нужны дополнительные ресурсы. Получение свободной энергии — мечта человечества, которая станет толчком для переустройства общественных отношений общества, приведёт к эволюционному скачку развития.
Реализовать идею получения альтернативной энергии мог бы стать генератор Тесла, который черпает энергию из эфира.
Важно. Много ходят споров, существует ли эфир. По мнению Н. Тесла — это легчайший газ, из почти неуловимо малых частиц. Они движутся с невообразимой скоростью. Н. Тесла считал, что каждый вид волны работает на своей частоте и в определённой среде. Эфир — среда для почти мгновенной передачи электромагнитных волн. Его поле способно переносить на громадные расстояния электромагнитные, гравитационные волны.
Принцип действия безтопливного генератора
Эфир — источник неограниченной энергии. Электромагнитные волны пронизывает окружающую нас атмосферу. У земли низкий энергетический потенциал, у света, солнечных лучей — высокий. Если установить улавливатель между положительно заряженными частицами света и отрицательно заряженным потенциалом земли, то можно получать электрический ток. В эту цепочку нужно вставить накопитель конденсатор, к примеру, литиевую батарейку. Она будет улавливать и накапливать энергию. В момент подключения к конденсатору источника питания, произойдёт разрядка накопителя.
Основные звенья безтопливного генератора Н. Тесла состоят:
- Расположенного над землёй приёмника.
- Накопителя-конденсатора.
- Заземление.
Обратите внимание! Безтопливный электрогенератор базируется на получении электрического тока из эфира. Используют два разно заряженных потенциала. Земля — ресурс отрицательных электронов, световая волна, в том числе от солнца — положительных. Один из электродов заземляется, другой — выводится на экранированный экран. В качестве накопителя в цепи устанавливают конденсатор, который аккумулирует энергию.
Схема, как сделать безтопливный генератор Тесла своими руками
Генератор тесла своими руками на 220 вольт
- диэлектрическая основа для экрана (плотный картон, пластиковая панель, фанера);
- фольгированный материал;
- провод;
- электролитический конденсатор (напряжение от180 до400 В);
- для регуляции напряжения возможна установка резистора (сопротивления).
Подобный набор материалов почти всегда есть в доме.
Заземление
Достаточно соединить провод с металлическим стержнем, заглубить его в землю. На даче можно бросить провод на любую металлическую трубу в земле. В квартире подсоединяют провод к водопроводным, газовым металлическим трубам, фазе заземления в розетке.
Экран генератора Тесла
Принимает от источников световое излучение с положительно заряженными частицами (от источника света, солнца).
Сделать его несложно, достаточно обтянуть диэлектрическую панель фольгой. Слои накладывают внахлёст. Чем больше экран для улавливания положительно заряженных частиц, тем выше напряжение в цепи. Соединяют между собой и несколько экранированных поверхностей. Они образуют цепь экранов безтопливного генератора Тесла. Соответственно расширению площади улавливающих панелей, нужно увеличивать ёмкость конденсатора, мощность рассеивания резистора.
Нужно соединить и подключить элементы схемы безтопливного генератора Тесла. Один провод (контакт) соединяют с фольгированным экраном, второй ведут от заземления. Контакты замыкают на полюсах конденсатора. В момент замыкания цепи, начинается зарядка батареи.
Материалы для безтопливного генератора Тесла
Безтопливный генератор Тесла готов. Проверить его можно, если контакты лампочки подсоединить к батарейке, она загорится.
Устройство и принцип действия
Резонаторный трансформатор Тесла
Резонансный трансформатор Тесла — отсциллятор (колебательная система), в которой трансформирует, изменяет напряжение переменного электрического тока в высокочастотный.
Основу трансформатора Тесла составляют два контура, из первичной и вторичной катушки. Именно в этой колебательной системе происходит трансформация первоначального импульса электротока.
Составляющие элементы катушки Тесла:
- катушки (первичная, вторичная);
- накопитель-конденсатор;
- разрядник-вентилятор (предохраняет от перенапряжения);
- защитный контур или кольцо с заземлением;
- тороид.
Сборка всех этих элементов в единое устройство позволит низкочастотный импульс электрического тока преобразовать в высокочастотное напряжение.
Назначение элементов высокочастотного трансформатора Тесла
Тороид. Вращающийся по прямой линии круг образует форму тора. Это геометрическая форма тороида. Для трансформатора Тесла используют гофрированную металлической трубу.
- снижает частоту колебаний второго контура;
- увеличивает выходное напряжение;
- создаёт электростатическое поле вторичной обмотки;
- защищает от пробоя вторичную обмотку.
Первичная обмотка или резонансный контур
Проводник с небольшим сопротивлением. Для его изготовления используют медную трубку с диаметром 6 мм. С помощью дополнительных устройств меняют частоту резонанса контура.
Вторичная катушка
Основной элемент резонансного трансформатора — вторичная катушка с обмоткой. Длина обмотки в экспериментальных установках к диаметру составляет 5/1. Оптимальное количество витков медной обмотки 1000 — 1200 оборотов. Наматывают их на диэлектрические ПВХ трубы.
Материалы для изготовления высокочастотного трансформатора Тесла:
- в качестве источника питания используют трансформатор для неоновой подсветки (до 35 мА/напряжения на выходе меньше 4 кВ);
- конденсатор;
- провод из меди толщиной (от 0,3 до 0,6 мм) ;
- пластиковая труба (75 мм);
- заземление (металлический прут);
- металлическая вентиляционная труба:
- шар из металла, полый внутри (тороид);
- медная трубка для кондиционера (6 мм).
- шарик из металла, крепёж.
Монтаж системы генератора по схеме.
Система состоит из следующих блоков:
- Разрядник. 2 металлических болта, прикручивают к основе из пластика, между ними фиксируют металлический шарик. В момент подключения к трансформатору в разряднике возникает искра.
- Конденсатор. Состоит из 1 блока или составных элементов. Конденсатор накапливает заряд, чтобы пробить разрядник.
- Резонансный трансформатор, подает первичный электрический импульс.
- Вторичная катушка индуктивного контура. Медный провод наматывают на пластиковую трубу, витки должны плотно прилегать друг к другу (количество витков от 900 до 1200). Обмотку, если это не эмалированный медный провод, покрывают несколькими слоями лака, эпоксидной смолы. К вторичной катушке подсоединяют провод и выводят заземление.
- Первичный контур. Изготавливают из медной трубы, которую сгибают в несколько витков. Чтобы она не треснула, в момент изгибания, внутрь предварительно нужно насыпать песок. Между витками оставляют расстояния до 5 мм. Соединяют все элементы по схеме.
Обратите внимание! Тороид необходим, чтобы предотвратить попадание стимера на первичную обмотку. Искра выводит электронику из строя. Тороид заземляют путём соединения с основным проводом.
Принцип действия трансформатора Тесла
От трансформатора подаётся импульс, который заряжает конденсаторы. При достижении нужного напряжения, происходит пробой газа на разряднике, искра. Первичный контур в момент замыкания генерирует высокочастотное колебание. Электромагнитные волны переходят на вторичную катушку. Возникает резонансное колебание, которое продуцирует токи высокой частоты и напряжения.
Газовые разряды
Работа высокочастотного трансформатора Теслы сопровождается интересными эффектами. Образуются различные газовые разряды и свечения:
- Стимеры. Ионизированное свечение газов в воздухе.
- Спарки. Вспыхивающие и гаснущие искровые каналы.
- Коронное свечение. Возникает вокруг искривленных частей трансформатора (голубого цвета).
- Дуга. Появляется, если в высоковольтное поле ввести заземлённый предмет, возникает светящаяся дуга.
Подобные эффекты широко используют для создания различных эстрадных, цирковых шоу.
Ионизированное свечение трансформатора Тесла
Воздействие на человека
В отличие от низкочастотного тока, высоко частотный не проникает вглубь тканей человека, стекая по поверхности тела. ВЧ ток исключает электротравму.
Используется в медицине для лечения:
- ультра частотная терапия, аппараты УВЧ;
- диатермия, прогревание ВЧ токами;
- индуктотермия, лечение высокочастотным магнитным полем;
- оздоровление органов с помощью микроволнового аппарата;
- дарсонваль, воздействие на части тела высоковольтными разрядами.
В повседневной жизни пользуются микроволновой печью с СВЧ излучением.
Н. Теслу по праву считают гением своего времени. Существуют мнение, что его теория эфира, гениальные разработки блокировались. Тесла мечтал обеспечить человечество бесплатной энергией, создать антигравитационный двигатель, путём преобразования энергии эфира. Бестопливный генератор, резонансный трансформатор Н. Тесла собирают своими руками даже школьники. А это значит, что кто-то продолжит его дело.
Один из моих подписчиков попросил меня дать советы по сборке весьма интересного устройства. А именно осциллятора для работы с рентгеновскими лампами, описанного Николой Тесла в своих лекциях.
Выглядит это устройство следующим образом.
А схема его чрезвычайно проста и типична.
У Николы Милутиновича огромное количество патентов, посвящено устройствам, соответствующим такой схеме и отличающимся только конструктивно.
В простейшем случае работа таких схем описывается следующим образом:
Питание осуществляется от источника постоянного или низкочастотного тока. Пока прерыватель замкнут, ток, протекающий через накопительную индуктивность, возрастает. Энергия накапливается в магнитном поле.
Когда прерыватель разрывает цепь, энергия, накопленная в дросселе, устремляется в конденсатор и заряжает его до высокого напряжения. Напряжение, до которого заряжается конденсатор, прямо пропорционально энергии, накопленной в МП, прямо пропорционально скорости размыкания цепи, и обратно пропорционально емкости конденсатора.
После того, как конденсатор зарядился до максимального напряжения, прерыватель снова замыкает цепь. И в колебательном контуре, образованном конденсатором и короткой первичной обмоткой, устанавливаются высокочастотные колебания большой амплитуды.
Прибор можно сделать и без накопительной индуктивности. Однако Никола Милутинович в своих лекциях четко указывает, что применение накопительной индуктивности позволяет заряжать конденсатор до бОльшего напряжения. Говоря современным языком, используется принцип обратноходового преобразователя.
Пока что настройки очень просты и сводятся к тому, чтобы накапливать побольше энергии в магнитном поле дросселя, и размыкать прерыватель как можно резче.
А вот дальнейшие замечания Николы Милутиновича представляют гораздо больший интерес. Уменьшение емкости конденсатора в первичной цепи приводит к возрастанию частоты колебаний. А возрастание частоты позволяет уменьшить длину вторичной обмотки.
Следовательно, длина вторичной обмотки определяется длиной волны колебаний.
И дальше прямым текстом говорится, что вторичная обмотка состоит из двух частей, длина провода которых составляет четверть длины волны. Следовательно длина провода всей вторичной обмотки составляет половину длины волны. Вторичная обмотка — это полуволновой диполь. Максимум разности потенциалов приходится на концы полуволнового отрезка, в то время как максимум тока находится строго по центру обмотки.
Никола Милутинович советует наматывать вторичную обмотку в один слой. Если намотать вторичную обмотку множеством слоев, это приведет к увеличению индуктивности обмотки, что в свою очередь ухудшит свойства полуволнового диполя. И ни в коем случае нельзя использовать магнитные сердечники.
Если вы думаете, что на этом настройка аппарата закончилась, то я вас удивлю. Никола Милутинович указывает, что большое значение имеет также длина и расположение первичной обмотки. Учитывая большую площадь поверхности провода первичной обмотки, этот провод обладает значительным коэффициентом укорочения. Значит, его длины вполне достаточно для создания стоячих волн.
И наилучший вариант мы получим тогда, когда максимум тока стоячей волны будет приходиться на центр первичной обмотки. А для этого необходимо, как минимум, чтобы обмотка было равноудалена от обеих пластин конденсатора. Если провода, которыми первичная обмотка соединяется с конденсатором, будут разной длины, то максимум стоячей волны может прийтись не на обмотку, а где-то рядом. Желательно избегать таких ситуаций, и вообще делать соединительные провода как можно короче.
Теперь давайте подытожим советы по созданию подобного генератора:
- Накопительный дроссель должен обладать достаточной индуктивностью, чтобы накапливать необходимое количество энергии в магнитном поле.
- Прерыватель должен разрывать цепь как можно резче.
- Конденсатор в первичной цепи должен быть высоковольтным, так как ЭДС самоиндукции дросселя может в несколько сотен раз превышать напряжение питания. А емкость конденсатора следует подбирать с оглядкой на желаемую частоту работы системы. И помнить, что чем меньше емкость конденсатора, тем до большего напряжения он зарядится.
- Соединительные провода от конденсатора до первичной обмотки следует делать как можно короче.
- И самая ключевая настройка заключается в том, что длина провода вторичной обмотки прибора должна составлять половину длины волны колебаний. Индуктивность вторичной обмотки следует делать как можно меньше.
На этом всё. Если остались какие-то вопросы, пишите в комментариях. А также предлагайте темы для следующих роликов. Всем удачи!
Некоторое время назад я для развлечения собрал свой полумостовой DRSSTC. Время шло и хотелось чего-то эпичного тогда я решил, что пришло время собрать SGTC (Spark Gap Tesla Coil) - схема с искровым промежутком. Это схема наиболее проста и дешева, отладка очень проста. Были раньше и другие попытки создать катушку на разряднике, но до конца ничего так и не закончил.
Корпус катушки тесла
Платформу взял от предыдущего проекта, который так и не увидел свет, а вообще подойдет любой ящик из не токопроводящих материалов.
Идеальный вариант - текстолит для высоковольтного электромонтажа, но сойдет и фанера. Конструкция получится габаритная, лучше использовать корпус по-прочнее.
Площадки для крепления первичной обмотки антенны теста можно изготовить из брусков с размерами 22х75. Сам провод закрепить стяжками или такими же площадками на шурупы.
Монтаж первичной обмотки
Наиболее эффективно будет работать обмотка большого сечения с небольшим числом витков. Можно прикупить медную шину 1.5х25мм диной метров семь-восемь.
Я зафиксировал обмотку эпоксидной смолой, что бы высоковольтные разряды не заземлялись на нее. К шине крепим провод сечением 25 кв.мм.
Крепление провода нужно делать надежным, токи будут бегать большие. Сажаем на пайку или крепко притягиваем винтом. Шину первичной обмотки укладываем восемью витками.
Вторичная Тесла-обмотка
Сматываем провод ПЭВ с старого трансформатора. Я нашел диаметром 0.5мм. Для корпуса антенны использовал канализационную трубу диаметром 16 мм. Намотку делаем аккуратно, виток к витку до высотой 400мм. Для улучшения изоляции намотку пропитываем эпоксидной смолой в 2-4 слоя. Чем больше-тем лучше. Пробивать ее будет гарантированно.
Вторичку мотать - весьма утомительная задача. Для механизации процесса призовем напарника и шуруповерт. Закрепляем трубу в патрон, другой конец фиксируем и неспешно кладем витки на малой скорости.
Сверху вставляем канализационную заглушку. В ней сверлим отверстия, крепим через шайбы шпильку M6, снизу подключаем верхний конец обмотки к шпильке, потом переворачиваем катушку и заливаем внутрь трубы эдак эпоксидку.
Внизу антенны припаиваемся к проводу заземления и уводим его внутрь "ящика".
Электросхема Тесла генератора SGTC
Вот прекрасная минималистичная схема данного устройства:
Сердце схема - задающий генератор F2. Выполнен по последнему слову техники из асинхронного электродвигателя 2750 об/мин. На валу закреплен диск из текстолита диаметром 130 мм, толщиной 8. На диаметре 110 мм просверлены 12 отверстий с латунными шпильками внутри.
При настройке разрядника на валу нужно добиться минимального расстояния между контактами. Меньше миллиметра.
Двигатель подключен в сеть через пусковой конденсатор. Просто, что бы крутился.
Я использовал 6 шт к75-25, 10кВ, 10нФ. В контуре C1 — L1, коммутируемом разрядником, в импульсе гуляют серьезные токи, по тому тонким проводам тут не место. Основная цель - как можно более короткие соединения, пайка контактов основательная, провода от 25 квадратов и больше.
Питание схемы
Используем два высоковольтных трансформатора от микроволновой печи. Их монтируем рядом, что бы связать магнитопроводы, на которые выведен холодный конец вторичной обмотки трансформаторов. Получившуюся среднюю точку — через делитель на пленочных конденсаторах в 10-50нФ кидаем на фазу и ноль сети, это спасет МОТы от последствий ударов разрядов в корпус. Дроссель L4 на 6-8 Гн на сетевом входе не обязателен если вы не питаете катушку выпрямленным удвоенным напряжением, так как прибавляет к разряду мало, изготавливается долго.
Фильтры
Что бы защитить вторичную обмотку от лишних импульсов тока нужно изготовить два дросселя по 500 витков на ферритовом сердечнике диаметром 50мм. После дросселя желательно добавить по высоковольтному конденсатору 1000пФ КВИ-3.
Настройка
Терроид изготовил из куска гофрированного воздуховода. Он аллюминиевый и отлично проводит ток.
Поднлючаем все компоненты согласно схеме и переходим к настройке. Запускаем электродвигатель. Разрядники не должены цеплять друг друа при вращении. Подаем питание на схему.
Если все подключено правильно и трансформаторы не подключены в противофазе, то Генератор Тесла начнет выдавать мощные электрические разряды полутораметровой длинны.
Установка потребляет до 4 киловатт в пике и чрезвычайно сильно шумит. Будьте осторожны.
XIX век был этакой эпохой дикого Запада в экспериментальной физике электромагнетизма. Роберт Ван де Грааф, лорд Кельвин, Никола Тесла и многие другие учёные, исследователи и инженеры открывали всё новые и новые явления, а затем масштабировали производящие их установки до колоссальных размеров. Некоторые из их творений функционируют до сих пор — например, шестиметровый гигантский генератор Ван де Граафа в Бостонском музее науки, а некоторые, как широко известная башня Уорденклифф, так никогда и не появились на свет.
С течением времени и развитием науки и техники внимание учёных переключилось на другие направления, но отдельные энтузиасты продолжали собирать, изучать и совершенствовать классические разработки в области высоких напряжений, электростатики, физики плазмы — кто-то вследствие неугасающей веры в теорию эфира и бесплатную энергию, кто-то из любопытства, или для решения узкоспециальных прикладных задач, кто-то просто потому что ему это доставляло.
Размер имеет значение
Короче говоря, в один момент группа инженеров-любителей, давно и прочно погрязших в коллективном тесластроении, решила, что играть в песочнице, делая небольшие комнатные (и даже среднеразмерные уличные) катушки, им уже скучно, и решила сделать что-то особенное. На тот момент у нас уже было (как нам казалось) достаточно опыта в разработке катушек Тесла различных топологий и имеющаяся математическая модель допускала масштабирование типовой конструкции в несколько раз. По факту, единственными явно заметными ограничениями были габариты доступного помещения, мощность розетки, и финансы (хотя, чего уж там, в итоге всё упирается в финансы). Прикинув бюджет, человекочасы и прочие скучные мелочи, было решено ограничиться габаритами установки примерно в три метра высоты, с расчётной мощностью около 30-40 кВт. Для разбирающихся в вопросе:
Технология, разумеется, была выбрана именно DRSSTC, поскольку при правильном подходе и отсутствии ошибок её стоимость (а также массогабариты) оказывается значительно ниже, чем у других вариантов (искровой разрядник или радиолампа) при тех же конечных параметрах. Ну и ещё, конечно же, на ней можно играть музыку.
Модульный принцип
При первичной проектировке достаточно крупной катушки Тесла проект можно разбить на несколько модулей (первичная обмотка, вторичная обмотка, тороид, корпус, силовой инвертор, драйвер, пульт управления, вспомогательная электрика и т. п.), каждый из которых придумывается и изготавливается в отдельности, после чего они собираются вместе, последовательно настраиваются и отлаживаются в процессе, и в итоге взрываются начинают испускать молнии. Обычно большинство трансформаторов Тесла собираются энтузиастами в одиночку от начала до конца, но у нас, во-первых, уже имелась более-менее слаженная команда с распределением функций (проект-менеджер, проектировщик, разработчик (он же тестировщик), и несколько человек на подхвате — монтажник, слесарь и так далее), а, во-вторых, сама по себе задача стояла довольно амбициозная, и хотелось сделать её без лишних расходов, но при этом более или менее качественно, насколько это возможно для прототипной и уникальной конструкции. Поэтому каждый мог заниматься своим делом, параллельно общаясь для синхронизации модулей между собой, а я, будучи этим самым проект-менеджером, могу рассказать про каждый из модулей по отдельности, а также показать, что получилось в итоге.
Подготовка и материалообработка
После обсуждения, осмысления и различного словоблудия по теме, общий концепт был утверждён коллективным решением и я изобразил примитивный эскиз в 3ds max. Эскиз был нужен для осознания масштабов задачи, понимания основных взаимных пропорций модулей, в качестве отправной точки для проектировки и для поднятия боевого духа команды. На основе эскиза проектировщик собрал проект в Creo Elements (тогда ещё Pro/Engineer), уже с соблюдением конкретных размеров, способов соединения деталей между собой и прочими нюансами. По результатам этого проекта были созданы чертежи: деталей корпуса, основания первичной обмотки, тороида, коробки для автоматики и электрики, а также блока конденсаторов первичного контура (MMC ).
В качестве конструкционных материалов мы использовали стеклотекстолит толщиной 18 мм, обработанный методом гидроабразивной резки (ввиду его высокой конструкционной и термической устойчивости, другие методы обработки оказались нерентабельны), толстую фанеру для корпуса и алюминиево-пластиковый композит для блока автоматики (для экранировки от создаваемого катушкой мощного фронта электромагнитных помех, пагубно влияющего на её же собственные управляющие схемы), а также поликарбонат в ряде мест. Фанеру и пластик обрабатывали на ЧПУ фрезере, имевшемся во владении соседа по заводику, где наш коллектив занимался всем этим непотребством. Creo Elements позволяет создавать сразу готовые управляющие программы для ЧПУ, что очень сильно помогло в процессе — мы просто, по факту, арендовали станок и делали на нём что надо когда надо.
Первичка и вторичка
Вторичную обмотку намотали на классическом каркасе — большой оранжевой канализационной трубе из ПВХ (серьёзно, это лучший из имеющихся вариантов для катушек Тесла любых габаритов по соотношению цены, доступности и соответствия задаче). Намотанный виток к витку эмалированный провод (диаметр 1.06 мм) в один слой, покрытый затем эпоксидной смолой, превратил трубу в огромного размера индуктор, с нетерпением ожидающий своей минуты славы — вторичку гигантской катушки Тесла. Итоговые габариты трубы получились 310х1800 мм.
Первичную обмотку — тоже классика — мы намотали медной трубкой для кондиционеров, диаметром 22 мм (7/8 дюйма). Витки аккуратно ложились в пазы, вырезанные в стеклотекстолите струёй воды с абразивом под давлением в тысячи атмосфер, и вот уже два модуля, первичка и вторичка — скелет любой катушки Тесла — соединились друг с другом. Проект понемногу обретал форму и цвет.
Тороид
С тороидом, необходимым элементом любой мощной катушки Тесла, однако, всё оказалось сложнее. Изначально предполагалось также последовать проверенной дорогой и использовать алюминиевую гофру для вентиляции. На практике же обнаружилось, что это чрезвычайно одноразовое решение — гофра мгновенно мнётся от любых неосторожных движений, и при планируемых габаритах её придётся заменять при каждой транспортировке устройства.
В общем, результат оказался очень необычным внешне, относительно простым в производстве, надёжным в эксплуатации и на удивление эффективным в сравнении с другими известными вариантами исполнения этой важной части катушки Тесла. Диаметр алюминиевой трубы — 50 мм, а общий размер всей получившейся штуки, напоминающей НЛО — около двух метров в диаметре. Круги-проставки для трубок вырезали из фанеры всё на том же ЧПУ-фрезере, а центральную раму я сварил из стального уголка.
На этом, в принципе, конструкционная часть была закончена.
Силовая часть
В придумывании актуального способа соединения этих деталей между собой есть масса хитрых эмпирических ноу-хау, призванных сократить риски и максимизировать надёжность подобных конструкций, но поля этой записи слишком узки, чтобы я мог рассказать про них, если вы понимаете о чём я. Не было никаких гарантий, что получившаяся штука не взорвётся при первой же попытке её включить, но на тот момент это казалось приемлемым риском.
Автоматика и электрика
Управляющая электрика не содержала в себе ничего особенно интересного. Нужно было обеспечить плавную зарядку электролитов (чтобы они не выбивали автоматы в щитке в момент включения установки) — с этим справились автоматический пускатель (по сути, большое силовое реле) и несколько силовых резисторов.
Диодный мост на 150 ампер выпрямлял сеть (кстати, вся конструкция создавалась, конечно же, под трёхфазное питание, с чем была связана масса разных интересных открытий — раньше мы не делали ничего под три фазы, тем более такой мощности), вентиляторы обдували диодный мост и заодно радиатор силовой части, а лампочки на передней панели изображали светофор, любезно сообщая, когда можно трогать части катушки руками, когда лучше не стоит, и когда желательно оказаться от неё на максимально возможном расстоянии, чтобы не словить разряд в макушку.
Драйвер
MIDI-пульт
Пульт управления (также известный как интерраптер) представлял собой простой MIDI синтезатор с несколькими примитивными настройками, принимавший на вход миди файлы (или данные с регуляторов-крутилок) и выдававший наружу через оптический кабель управляющий сигнал для драйвера. С ним, в принципе всё было просто и понятно, потому что мы решили не тратить время на разработку того, что можно купить, и просто так и поступили — купили готовый. Он, конечно же, оказался глючным полуфабрикатом, но зато сэкономил сотни человекочасов по исследованию миди-протокола, изготовление платы, отладку микроконтроллера и отлавливание неизбежных багов. Главное, что со своей задачей он на тот момент справлялся отлично. Пульт был приобретён у американского коллеги-тесластроителя, и на тот момент это был единственный продающийся пульт с поддержкой SD карты, то есть способный воспроизводить музыку без внешнего MIDI устройства или ноутбука. Это было критичным, поскольку имелись закономерные опасения, что помехи от работы такой большой катушки намертво подвесят всю электронику в некотором радиусе от неё, а подвисание какой-нибудь миди-клавиатуры, разработчики которой в страшном сне не могли предусмотреть подобный уровень паразитных сигналов, если этам клавиатура управляет той самой катушкой Тесла, которая наводит на неё помехи, чревато неконтролируемой положительной обратной связью и, как следствие… правильно, взрывами. Взрывов мы не хотели.
Конденсаторная батарея
В качестве резонансного конденсатора мы выбрали силовые плёночные конденсаторы одного из отечественных производителей, специально разрабатывавшиеся (если верить каталогу производителя) для импульсных режимов работы. Пять штук общей ёмкостью около 1.2 мкф, и максимальным напряжением 20 киловольт, соединённые медной шиной с латунными винтами. Латунного крепежа, кстати, на весь проект ушло значительное количество — из-за огромных токов в килоамперы, в сочетании с мощным магнитным полем от первичной обмотки, и стальной оцинкованный и нержавеющий крепёж моментально разогреваются докрасна, что может в итоге приводить к незапланированным спецэффектам (да-да, взрывам). Поэтому и в ошиновке конденсаторов, и вообще во всех силовых соединениях в первичном контуре пришлось использовать только медь и латунь. Первые же тесты показали наивность попыток поставить туда что-то ферромагнитное и/или недостаточно хорошо пропускающее электрический ток.
Первичная проверка
Следующим этапом была настройка драйвера. Для этого достаточно собрать в одно целое первичный контур (конденсаторную батарею, первичку и мост), подключить к транзисторам моста драйвер и плавно начать подавать напряжение, отслеживая на осциллографе формы сигналов в различных участках схемы. Если всё сделано правильно, то в первичном контуре возникает автогенерация на расчётной частоте (в нашем случае около 50 кГц). Вторичка при этом не нужна, и никаких разрядов не возникает, но собираемых данных достаточно, чтобы настроить предиктор, OCD и заметить ошибки в монтаже или выбранных параметрах деталей. Эта часть оказалась простой и лёгкой (кстати, в таком режиме первичная обмотка вполне может работать как индукционная плита для приготовления пищи — есть прецеденты жарки яичницы на сковороде, стоящей поверх первички), и мы отправились вместе с почти родившимся детищем в один большой и полузаброшенный цех заводика, чтобы проверить наконец наше творение in vivo.
Для чего же всё это было?
Ну а дальше было немного работы над ошибками, суматошные сборы, прибытие на Елагин остров, где традиционно проходит в Питере упомянутый GEEK PICNIC, ночные тесты перед днём фестиваля нашей катушки, уже с новым трубчатым тороидом и на полную катушку (простите за намеренную тавтологию). На следующий день были час X (в течение которого около пятнадцати минут мы прыгали всей толпой вокруг не желающего запускаться шедевра, пока не обнаружили косяк монтажа — трансформатор тока был подключен не в той фазировке), Вивальди, Имперский марш и Марио на молниях, снимающие это всё квадрокоптеры с камерами, полтысячи зрителей, взиравших на происходящее кто с восхищением, кто с удивлением, кто равнодушно-непонимающе, кто через экраны своих смартфонов и планшетов, несколько запусков на бис при дневном свете, где разряд был едва заметен (зато слышно было прекрасно) и — уже после окончания фестиваля, но до закрытия парка — несколько минут работы самой большой музыкальной катушки Тесла в России в летних сумерках, которые до сих пор иногда встают у меня перед глазами.
Держать в руках пульт от такой штуки и смотреть на почти настоящие шестиметровые молнии, угрожающими тентаклями взрезающие воздух, возникающие и изменяющиеся по движению твоих пальцев — это до сих пор одно из самых моих сильных воспоминаний за девять лет работы над катушками Тесла и спецэффектами высоких напряжений. Но, увы, ничто не вечно, и возмущённый происходящим (мол, люди уходить не хотят пока вы тут развлекаетесь) охранник парка потребовал сворачивать лавочку и выкатываться, что и пришлось осуществить.
К сожалению, с тех пор у нас так и не получилось ни разу запустить эту катушку Тесла снова. Мы переработали проект силовой части, проапгрейдили драйвер, значительно продвинулись в понимании принципов работы всего этого дела, но отсутствие площадки, пригодной для проведения подобных экспериментов, увы, всё ещё является труднопреодолимым и дорогостоящим препятствием. Катушка лежит в виде составных частей у меня дома и ждёт своего часа. Когда-нибудь я снова её включу. А может и не её, а новую, ещё раза в два-три больше. Кто знает.
Это мой первый пост на Гиктаймс. В случае положительной критики планирую в дальнейшем рассказать про ряд других интересных проектов смежной тематики. Если вы заметили в тексте или оформлении нарушения каких-либо гласных или негласных правил или рекомендаций сообщества Гиктаймс, прошу указать мне на них для исправления и учёта в будущем.
Читайте также: