1ad ftv схема эбу
Устройство и принцип действия автомобильных технологий, узлов и агрегатов
В отличие от обычных дизелей с ТНВД распределительного типа, в дизеле 1CD-FTV топливо подается при помощи ТНВД в общую топливную рампу и впрыскивается в цилиндры через форсунки с электронным управлением, аналогичные форсункам бензинового двигателя (см. «Common Rail: дизельный впрыск«). Ключевое отличие — давление впрыска (1350 атмосфер вместо обычных 200).
Характеристики 1CD-FTV
Двигатель | 2C-T | 3C-TE | 1CD-FTV |
Рабочий объем, см 3 | 1975 | 2184 | 1995 |
Мощность, л.с. | 88/4000 | 94/4000 | 110-116/4000 |
Крутящий момент, Нм | 177/2200 | 206/2200 | 250/1800-3000 |
Степень сжатия | 23,0 | 22,6 | 18,6 |
Диаметр цилиндра, мм | 86 | 86 | 82,2 |
Ход поршня, мм | 85 | 94 | 94 |
Нетрудно заметить, что новый движок очень заметно прибавил в характеристиках, вплотную приблизившись к бензиновым двигателям того же объема по мощности и значительно превосходя их по моменту. Однако надо сразу отметить, что по динамическим показателям машина с таким мотором по-прежнему им заметно уступает.
Есть несколько вариантов этого же двигателя:
- вариант этого же двигателя с меньшим объемом — 2.494cc, называется 2KD-FTV;
- базовый вариант, рассматриваемый ниже и используемый на автомобиле RAV4 CLA20;
- вариант 1CD-FTV на Avensis отличается обычной турбиной, клапаном EGR с вакуумным приводом, стандартным генератором, обычным натяжителем ремня и несколько меньшей мощностью;
- вариант 1CD-FTV на Previa 30 главным образом отличается наличием балансирного механизма с шестеренным приводом.
Конструкция 1CD-FTV
Топливная система
1 — электронный блок управления двигателем, 2 — усилитель форсунок, 3 — датчик давления топлива, 4 — топливная рампа, 5 — ограничитель давления, 6 — обратный клапан, 7 — форсунка, 8 — ТНВД, 9 — топливный бак, 10 — датчики.
Также применяется специальное устройство для охлаждения топлива (Fuel Cooler), которое расположено под днищем автомобиля.
ТНВД в схеме Common Rail абсолютно не похож на традиционный Bosch VE.
1 — датчик температуры топлива, 2 — SCV (э/м перепускной клапан), 3 — регулятор давления, 4 — плунжер B, 5 — диск привода, 6 — плунжер A, 7 — толкатель, 8 — подкачивающий насос.
В корпусе размещены подкачивающий насос, управляющие клапаны и сам двукхкамерный насос высокого давления, направляющий диск которого представляет собой эллипс.
2 — SCV (э/м перепускной клапан), 3 — регулятор давления, 4 — плунжер B, 5 — диск привода, 6 — плунжер A, 7 — толкатель, 8 — подкачивающий насос, 9 — напорный клапан, 10 — обратный клапан.
При ходе всасывания плунжеры, следуя профилю направляющего диска, расходятся, SCV открывается и топливо поступает в напорную камеру.
1 — напорная камера, 2 — плунжер, 3 — направляющий диск, 4 — топливо, 5 — SCV, 6 — толкатель, 7 — плунжер.
После того, как диск повернулся на 90 градусов, SCV перекрывает входной канал и начинается ход нагнетания. Объем поступающего к плунжеру топлива регулируется при помощи SCV, благодаря чему блоку управления удается поддерживать требуемое давление в топливной рампе.
Топливная рампа
В топливной рампе установлен датчик давления топлива и механический ограничитель давления.
Датчик давления конструктивно выполнен одноразовым и не должен вворачиваться повторно, а регулировка ограничителя давления выполняется однократно еще на заводе.
Форсунки
1 — электромагнитный клапан, 2 — обмотка, 3 — управляющая камера, 4 — игла, 5 — поршень, 6 — топливо.
Конструкция форсунки 1CD-FTV не столь изощренная, как на свежем дизеле от Isuzu (4JX1), но тем не менее сильно отличается и от обычной дизельной, и от обычной бензиновой. При таком большом давлении в рампе простой электромагнитный клапан слишком слаб, поэтому управление форсункой электрогидравлическое.
В закрытом состоянии клапан удерживается пружиной, при этом топливо в управляющей камере удерживает в нижнем положении поршень, который, в свою очередь, через пружину фиксирует в закрытом положении иглу (давление топлива, воздействующее на иглу снизу, недостаточно для ее открытия).
При подаче тока на обмотку, клапан втягивается и открывает канал, по которому топливо про ходит к нижней части поршня. В результате уменьшается давление в управляющей камере и нарастает давление под поршнем, в результате чего тот поднимается. Одновременно с этим открывается запорная игла форсунки и происходит впрыск топлива.
Форсунка представляет собой сложный механизм, построенный на тонком балансе сил пружин и давления топлива и его дросселировании в тонких каналах. Качество российской солярки известно, поэтому на долгое поддержание этого баланса можно не рассчитывать.
Особенности впрыска
Двухфазный впрыск топлива призван максимально уменьшить выбросы вредных веществ. На рисунке ниже показана осциллограмма работы двигателя 1CD-FTV на холостом ходу:
По времени эти фазы впрыска топлива также различаются:
Очень важное условие для снижения шумности двигателя играет точное временное и массовое дозирование топлива для первой фазы впрыска топлива (предварительный впрыск). В случае нарушения этих условий возрастает и шумность двигателя, и его дымность. Все это имеет своей конечной целью снижение выброса вредных отработавших газов.
При нажатии на педаль газа вид впрыска начинает меняться:
На изображении выше видно, как при нажатии на педаль газа двухфазный впрыск (позиция 1) переходит в однофазный (позиция 2). Меняется также и время между импульсами (см. ниже):
Время открытия форсунки при однофазном впрыске при 1250 RPM составляет 1.09 ms (погрешность измерений около 10 мкс):
При запуске двигателя также используется двухфазный впрыск топлива:
Здесь все зависит от многих факторов, но основным является температура охлаждающей жидкости и температура топлива.
Система управления
1 — датчик положения педали акселератора, 2 — от замка зажигания, 3 — сигнал стартера, 4 — сигнал кондиционера, 5 — от датчика скорости, 6 — от генератора, 7 — от разъема DLC3, 8 — электронный блок управления двигателем, 9 — топливный бак, 10 — датчик температуры топлива, 11 — топливный фильтр, 12 — ТНВД, 13 — клапан SCV, 14 — датчик давления топлива, 15 — топливная рампа, 16 — промежуточный охладитель (интеркулер), 17 — реле блока управления форсунками, 18 — блок управления форсунками (усилитель форсунок), 19 — расходомер воздуха, 20 — датчик атмосферной температуры, 21 — клапан EGR, 22 — форсунка, 23 — охладитель EGR, 24 — пневмопривод управления турбокомпрессором, 25 — датчик положения распределительного вала, 26 — клапан управления разрежением (пневмопривода турбокомпрессора), 27 — вакуумный насос, 28 — датчик температуры охлаждающей жидкости, 29 — датчик положения коленчатого вала, 30 — дроссельная заслонка,31 — датчик температуры воздуха на впуске, 32 — датчик давления наддува, 33 — электропневмоклапан датчика давления наддува, 34 — свеча накаливания, 35 — реле свечей накаливания.
1 — датчик давления топлива, 2 — электропневмоклапан (датчика давления наддува), 3 — свеча накаливания, 4 — усилитель форсунок, 5 — датчик положения распределительного вала, 6 — электронный блок управления двигателем, 7 — форсунка, 8 — расходомер воздуха, 9 — датчик давления наддува, 10 — разъем DLC3, 11 — датчик положения педали акселератора, 12 — клапан EGR, 13 — датчик температуры воздуха на впуске, 14 — дроссельная заслонка, 15 — датчик температуры охлаждающей жидкости, 16 — клапан управления разрежением, 17 — датчик положения коленчатого вала.
Система управления стала практически полностью электронной. Педаль акселератора больше не связана механически с ТНВД (ее положение контролируется датчиком), на шкивах коленвала и распредвала появились, соответственно, датчики положения коленчатого и распределительного валов (первый также является и датчиком ВМТ).
Впрыск топлива в цилиндры осуществляется в две стадии — сначала небольшой заряд, затем основной, благодаря чему обеспечивается более равномерное нарастание давление в цилиндре, снижаются вибрации и шумы.
Управление системой рециркуляции отработавших газов и дроссельной заслонкой осуществляется не пневмоприводами, а электродвигателями.
1 — дроссельная заслонка, 2 — привод дроссельной заслонки, 3 — клапан EGR, 4 — охладитель EGR, 5 — выпускной коллектор, 6 — впускной коллектор, 7 — электронный блок управления двигателем.
Применение турбокомпрессора с изменяемой геометрией позволило управлять давлением наддува в зависимости от условий работы двигателя (частота вращения, объем впрыскиваемого топлива, атмосферное давление, температура охлаждающей жидкости).
Датчик давления наддува способен измерять и барометрическое давление — для этого служит электропневмоклапан, переключающий забор воздуха на атмосферу в те моменты, когда не происходит впрыск топлива (на холостом ходу или при замедлении).
Появились и новые диагностические коды, ранее не встречавшиеся на тойотовских дизелях:
- 34 (2) — Система турбонаддува
- 34 (3) — Привод лопаток турбокомпрессора (заклинивание в закрытом состоянии)
- 34 (4) — Привод лопаток турбокомпрессора (заклинивание в открытом состоянии)
- 51 — Цепь выключателя стоп-сигналов
- 71 — Цепь управления EGR
- 89 — Блок управления электрооборудованием кузова
Генератор
Второе нововведение — наличие двух обмоток, фазы которых смещены друг относительно друга на 30 градусов, благодаря чему повышается стабильность выходного напряжения и уменьшаются электромагнитные наводки.
1 — регулятор напряжения, 2 — замок зажигания, 3 — блок управления двигателем, 4 — индикатор зарядки АКБ.
Кроме того, в шкив генератора установлена обгонная муфта, позволяющая снизить воздействие на ремень в переходных режимах. Натяжение ремня осуществляется хитроумным автоматическим натяжителем.
Головка блока цилиндров
Головка блока, традиционно изготавливаемая из алюминиевого сплава, имеет несколько радикальных отличий от ГБЦ обычных дизелей.
Во-первых, уже из наименования двигателя понятно, что здесь не два, а четыре клапана на цилиндр и два распредвала. Благодаря этому увеличилась площадь выпускных и выпускных каналов, улучшилось наполнение цилиндров.
Если и раньше тойотовские турбодизели не отличались долговечностью головок, то как теперь покажут себя новые, с еще более тонкими перемычками клапанов — покажет время.
Блок цилиндров
Блок цилиндров по-прежнему отливается из чугуна и не имеет гильз, небольшие изменения коснулись только толщины стенок и ребер жесткости.
Поршень
Коленчатый вал
Коленвал выполнен, как обычно, полноопорным, с закаленными током высокой частоты шейками.
Привод ГРМ
Механизм с двумя распредвалами и четырьмя клапанами на цилиндр приводится при помощи ремня, вращающего вал выпускных клапанов, а затем уже через шестерни приводится и распредвал впускных клапанов.
Регулировка зазора по-прежнему осуществляется при помощи шайб, расположенных над толкателем (для регулировки нет необходимости снимать валы).
Ремень привода ГРМ теперь получил автоматический гидронатяжитель (что не слишком хорошо для долговечности), а заменять его рекомендуется каждые 150 тысяч километров (а вот это неплохо).
Примечание. При замене ремня метки на шкивах должны располагаться следующим образом:
Система смазки
Масляная система не претерпела особых изменений по сравнению с обычными двигателями. В ней имеется жидкостный маслоохладитель, форсунки охлаждения поршней и датчик уровня масла. Заправочная емкость — 5,9 литров при замене вместе с фильтром или 6,7 литров на сухом двигателе.
Система охлаждения
Впуск и выпуск
Для уменьшения выбросов оксидов азота (NOx) применяется система EGR, которая за счет перепуска некоторого количества отработавших газов на впуск снижает максимальную температуру в цилиндре.
Количество перепускаемых газов регулируется клапаном EGR с шаговым электродвигателем вместо вакуумного привода и жидкостным охлаждением (что позволяет снизить температуру ОГ и увеличить их перепуск).
Турбокомпрессор
Турбокомпрессор двигателя 1CD-FTV существенно отличается от традиционного.
При небольшой нагрузке пневмопривод перемещает управляющее кольцо, при этом поворачиваются шарнирно соединенные с ним лопатки, которые частично закрываются. В результате поддерживается наиболее подходящая скорость истечения газов через турбину.
При высокой нагрузке лопатки перемещаются в открытое положение, благодаря чему поддерживается требуемое давление наддува.
Недостатки 1CD-FTV
В целом 1CD-FTV не содержит серьезных технических ляпов. Традиционное отсутствие ремонтных размеров делают двигатель практически одноразовым, но это уже скорее фирменный знак Тойоты.
Однако данный двигатель предназначен для использования в гейропе. Качество отечественного дизельного топлива очень нестабильно, в нем могут присутствовать вода и механические включения. Вода в виде мелкодисперсной смеси быстро выводит из строя форсунки. Мелкие инородные тела, попав в ТНВД, становятся превосходным абразивом, вызывая постепенную потерю давления в топливной системе и затем поломку насоса.
Также нарекания вызывает нестабильная работа датчика, отвечающего за давление масла в системе. При штатных показателях, определяемых тестовым манометром, датчик часто сигнализирует о аварийной ситуации.
В интернете и в различных сомнительной достоверности "книжках" опубликовано очень много различных схем проводки на ЭБУ членов семейства системы DIGIFANT. К сожалению, большинство из опубликованных схем НЕДОСТОВЕРНЫ, содержат большое количество ошибок, или не имеют конкретного описания - какому именно двигателю, какого года выпуска и модификации ЭБУ они соответствуют, и не имеют понятных комментариев. В то же время, схемы подключения оборудования многократно изменялись Фольксвагеном в производстве от годов, а различные члены семейства, например, T4 и Гольф имеют заметно разные схемы на похожие двигатели.
Здесь я предлагаю абсолютно достоверную информацию, проверенную десятилетием собственной работы и тщательно прокомментированную на русском языке. Если Вы заметите какие либо неточности или захотите узнать подробности не отраженные на схемах, или увидеть схему не опубликованную здесь (например на двигатель AET из семейства SIMOS, или NZ из DIGIJET предшественника DIGIFANT ) пишите по контактам указанным ниже.
В системе DIGIFANT использовались ЭБУ с 25, 38, 45 и даже 68 пиновой колодкой соединяющей блоки управления с косой проводки. Назначения контактов колодки внутри семейства с одним количеством контактов примерно одинаковы. Если некоторые датчики отсутствуют в данной модификации системы, то как правило их выводы остаются свободными и не занимаются другими элементами. Например, в ЭБУ на микроавтобусы T4 использовались внутренние датчики давления (МАП сенсоры), в отличии от внешних расходомеров в Гольфах или Пассатах. Соответственно, контакты, идущие на расходомер , а блоках управления на T4 оставались не задействованы. Тем не менее имеются отличия по годам выпусков в назначении контактов. Например в T4 до 1993 присутствовал электронный винт регулировки СО, после 1993 года, его контакт стал выполнять роль концевого выключателя дроссельной заслонки.
Схемы и распиновки блоков ЭБУ некоторых легковых автомобилей
VW Passat B3
VW Passat Variant 2.0 1990 GT 2E
VAG типовой 45 pin
Renault 21
VW Polo - Mikas ebu 54
Toyota Mark II - ЭБУ 1G-FE GX81-GS130\131(26P 16P 12P)
Разъем B:
1)PRG: Выход на управление клапана адсорбера
2)PIM: вход: сигнал датчика абсолютного давления во впускном коллекторе (MAP(ДАД)).
3)THA: вход: Сигнал датчика температуры окружающего впускного воздуха.(ДТВ)
4)THW: вход: Сигнал датчика температуры охлаждающей жидкости.(ДТОЖ)
5)SOL: гидровентилятор(вискомуфта)
6)OX: вход: Сигнал лямбда-зонда (кислородного датчика)
7)TE2: аналогично TE1, но служит для управления подключением к внешнему трминалу/компу.
8)VF: выход: На диагностический разъем. Либо усиленный сигнал с лямбды, либо, при замкнутом TE2 на E1, выход данных по протоколу DLC-1.
9)E2: Общий датчиков и объединенного узла зажигания (с EO1 напрямую не соединен)
10)PSW:Диагностический вывод
11)VC. Датчик положения дроссельной заслонки
12)IDL. Датчик положения дроссельной заслонки
13)OP K-линия диагностики
14)KNK: вход: Сигнальный с датчика детонации.
15)TE1: вход: С диагностического разъема. (Закорачивание на E1 переводит блок в режим самодиагностики)
16)THWO:вход блока климата к датчикам температуры (режим AUTO на печке)
Audi B4
1,2 — ТНВД (регулятор количества)
3 — клапан остановки
4 — чек на приборке
5,12 — управляющая форсунка
6 — клапан егр
7 — клапан турбины (N75)
8 — реле свечей накала
9 —
10 — ТНВД (клапан впрыска при запуске )
11 — на лампу свечей накала
13 — тут появляется напряжение после включения зажигания и расходится на: датчик коленвала, датчик температуры двигателя, датчик давления воздуха, датчик температуры топлива в тнвд, датчик температуры впускного воздуха, расходомер и датчик уровня ож.
14 — выход на регулятор топлива тнвд и педаль газа
15,16,17 — + с реле подачи напряжения
18,19 — земля
20 — датчик температуры впускного воздуха
21,39 — ТНВД регулятор подачи топлива
22,23,24 —
25 — педаль газа
26 — концевик педали тормоза (схема круиза)
27 — L-line на колодке диагностики
28 — концевик педали сцепления
29 — вход сигнала спидометра (приходит из приборки)
30 —
31 — концевик педали тормоза (сюда приходит + при нажатии педали)
32 —
33 — педаль газа
34 — расходомер
35 — ТНВД (датчик температуры топлива)
36 — датчик уровня ож
37 — педаль газа
38 — расходомер
39 — ТНВД (регулятор подачи топлива)
40, 41 —
42 — K-line на колодке диагностики
43,44,45,46 —
47 — датчик коленвала
48,49 —
50 — выход тахометра
51 — датчик давления впускного воздуха
52 — расходомер
53 — датчик температуры ож
54 — датчик давления впускного воздуха
55 —
ЭБУ DIGIFANT II - Volkswagen Golf Country
Принципиальная схема моего ЭБУ DIGIFANT II — 037 906 022 AN и с буквами AM / CJ / CM
Читайте также: