температура газов в камере сгорания двс
Изучение устройства ДВС.
Разновидности двигателей внутреннего сгорания в двигателях, применяемых для привода современных строительных машин, тепловая энергия сгоревшего топлива преобразуется в механическую работу. Так как топливо сгорает внутри цилиндров двигателей, то они называются двигателями внутреннего сгорания.
Современные двигатели внутреннего сгорания с возвратно-поступательно движущимися поршнями классифицируются по следующим признакам:
1. способу смесеобразования - на двигатели с внешним смесеобразованием /карбюраторные и газовые/ и внутренним /дизельные/;
2. способу воспламенения рабочей смеси на двигатели с принудительным воспламенением от электрической искры /карбюраторные и газовые/ и с воспламенением от сжатия /дизели/;
3. способу осуществления рабочего цикла - на четырех - и двухтактные;
4. числу цилиндров - на одно - и многоцилиндровые;
5. расположению цилиндров - на одноцилиндровые /линейные/ и двухрядные или V - образные, у которых угол между цилиндрами меньше 180°. Если угол равен 180°, двигатель называется оппозитным;
6. охлаждению - на двигатели с водяным и воздушным охлаждением.
На строительных машинах применяются четырехтактные многоцилиндровые карбюраторные и дизельные двигатели.
Во время работы четырехтактного двигателя внутреннего сгорания в его цилиндре протекают четыре процесса: 1/ впуск в цилиндр горючей смеси /в карбюраторный двигатель/ или воздуха /в дизельный двигатель/t 2/ сжатие рабочей смеси или воздуха; 3/ рабочий ход - воспламенение рабочей смеси и расширение продуктов сгорания; 4/ выпуск из цилиндра продуктов сгорания.
Совокупность этих последовательных, периодически повторяющихся процессов называется рабочим циклом двигателя.
Принципиальное отличие рабочего цикла дизеля от карбюраторного двигателя состоит в способе смесеобразования и воспламенения смеси. В цилиндр дизеля в такте впуска поступает воздух, который подвергается сжатию в такте сжатия до 3,5. 4,5 МПа, что повышает температуру воздуха до 600.„.700 °С. В конце такта сжатия впрыскивается жидкое топливо, которое, перемешиваясь с нагретым воздухом, воспламеняется и сгорает.
В карбюраторном же двигателе рабочая смесь в конце такта сжатия сжимается до 0,7. 1,2 МПа, а температура повышается до 300. 400 °С, при этом между электродами свечи проскакивает электрическая искра и рабочая смесь воспламеняется.
Дизельный двигатель по сравнению с карбюраторным имеет следующие преимущества: более высокий КПД - 27-35% /для карбюраторных двигателей 20-24%/; высокую степень сжатия, обеспечивающую более экономичный расход топлива на единицу работы /на 20-25% меньше, чем у карбюраторного двигателя/; обладает лучшей приемистостью и развивает большой крутящий момент при малой частоте вращения; работает на тяжелых сортах топлива, которые менее опасны в пожарном отношении.
Основные недостатки дизельного двигателя по сравнению с карбюраторным: большая масса, приходящаяся на единицу мощности; тихоходность /максимальная частота вращения коленчатого вала не превышает 3000 об/мин, у карбюраторных - до 6000 об/мин/; более трудный пуск при низких температурах окружающей среда, что вызывает необходимость установки дополнительных систем подогрева и пуска двигателя.
Кривошипно-ползунный механизм
Кривошипно-ползунный механизм служит для восприятия силы давления газов, преобразования прямолинейного возвратно-поступательного движения поршней во вращательное движение коленчатого вала.
Рис. Схема кривошипно-ползунного и распределительного механизмов: 1 - коленчатый вал; 2 - шатун; 3 - поршень; 4 - поршневой палец; 5 - поршневые кольца; 6, 9 - клапаны /впускной и выпускной/; 7 - пружина; 8 - коромысло; 10 - гильза; 11 - водяная рубашка; 12 - штанга; 13 - распределительный вал; 14 - маховик; 15 - шестерни привода распределительного вала
Механизм газораспределения
Механизм газораспределения должен удовлетворять следующим основным требованиям: своевременно открывать и закрывать впускные и выпускные клапаны; обеспечивать возможно лучшее наполнение цилиндров горючей смесью и очистку от отработавших газов; надежно изолировать внутреннее пространство цилиндров от окружающей среды во время тактов сжатия и рабочего хода.
Для лучшего наполнения цилиндров двигателя воздухом /для дизелей/ или горючей смесью /для карбюраторных двигателей/ и более полной очистки их от отработавших газов клапаны открываются и закрываются не в тот момент, когда поршень находится в мертвых точках, а с некоторым опережением при открытии и запаздыванием - при закрытии.
Периоды открытия и закрытия клапанов выраженные в углах поворота коленчатого вала, называются фазами газораспределения.
Их соблюдение обеспечивается формой и взаиморасположением кулачков на распределительном валу.
Система охлаждения.
При работе двигателя температура газов в камере сгорания достигает 2000. 2400 °С, а средняя температура цикла 800. 1000 С. Вследствие этого поршни, головки цилиндров, цилиндры и клапаны сильно нагреваются. Чрезмерный перегрев двигателя приводит к разжижению и сгоранию масла, нарушению нормальных зазоров между сопряженными деталями, уменьшению наполнения цилиндров горючей смесью, а следовательно, к снижению мощности двигателя, нарушению рабочего процесса и разрушению отдельных деталей.
Для нормальной работы двигателя необходимо непрерывно отводить излишнюю теплоту от перегреваемых деталей. Это осуществляется системой охлаждения. Излишнее охлаждение неблагоприятно отражается на работе двигателя. Испарение топлива ухудшается, поэтому оно горит медленнее, мощность двигателя падает, снижается экономичность, а износ цилиндров и поршневых колец увеличивается.
Для нормальной работы двигателя необходимо поддерживать его температуру при любых условиях и режимах работы в определенных пределах.
Чтобы обеспечить нормальный тепловой режим двигателя, применяют жидкостное или воздушное охлаждение. При воздушном охлаждении теплота отдается непосредственно воздуху через ребристые стенки блока цилиндров и головки блока. Жидкостная система охлаждения основана на интенсивной Циркуляции жидкости, которая обеспечивается центробежным насосом. Насос нагнетает жидкость /воду или антифриз-жидкость, замерзающую при низкой температуре/ в водяную рубашку двигателя, из которой нагретая жидкость вытесняется в радиатор. Охлажденная жидкость по патрубкам поступает в насос.
Рис. Схема системы охлаждения: 1 - радиатор; 2 - выпускной патрубок; 3 - термостат; 4 - гильза цилиндра; 5 - головка цилиндров; б - блок цилиндров; 7 - водяная рубашка; 8 - крыльчатка водяного насоса; 9 – вентилятор.
Система смазки
При работе двигателя в его сопряженных деталях возникает трение, вызывающее износ и нагрев деталей и требующее затрат некоторой части мощности двигателя. При введении между трущимися поверхностями слоя смазки характер трения и износа резко изменяется, так как молекулы масла под влиянием силы молекулярного притяжения распространяются по трущимся поверхностям и смазывают их.
Долговечность и безотказная работа двигателя зависят от качества и чистоты применяемого масла.
Система смазки двигателя - это совокупность механизмов и приборов, обеспечивающих очистку масла и его бесперебойную подачу в необходимом количестве при определенной температуре и давлении к трущимся поверхностям.
Рис. Схема системы смазки: 1 - масляный картер; 2 - маслоприемник; 3 - шестеренчатый насос; 4 - маслопровод; 5 - фильтр; 6 - главный масляный канал.
Примечание. Все остальные детали смазываются маслом, вытекающим из зазоров, или посредством разбрызгивания.
Масло, поступающее в зазоры между трущимися поверхностями, не только уменьшает потери на трение, но и охлаждает и удаляет продукты износа и мелкие частицы нагара и защищает трущиеся поверхности от коррозии.
В зависимости от способа подвода масла к трущимся поверхностям деталей применяются такие системы смазки: разбрызгиванием, под давлением и комбинированные, в которых часть деталей смазывается под давлением, а остальные - за счет разбрызгивания масла.
Система питания.
Источником энергии в двигателях внутреннего сгорания является горючая смесь, образуемая парами топлива, тщательно перемешанными с воздухом в определенных пропорциях. Смешиваясь с остаточными газами в цилиндре двигателя, горючая смесь образует рабочую.
Состав горючей смеси должен соответствовать определенному режиму работы двигателя и подразделяется на богатую, обогащенную, нормальную, обедненную и бедную.
В качестве топлива для карбюраторных двигателей применяют бензин, обладающий хорошей испаряемостью, а для дизельных двигателей с внутренним смесеобразованием - дизельное топливо, являющееся продуктом перегонки тяжелых фракций нефти с определенной вязкостью.
Система питания служит для хранения, подачи и очистки топлива, воздуха, приготовления горючей смеси нужного состава на разных режимах работы двигателя, отвода наружу продуктов сгорания .
Система пуска двигателей.
Одним из основных требований, предъявляемых к двигателям внутреннего сгорания, является быстрота и надежность пуска. Пуск осуществляется принудительным вращением коленчатого вала двигателя от постороннего источника энергии.
Система пуска должна развивать определенную частоту вращения коленчатого вала двигателя, обеспечивающую смесеобразование, наполнение цилиндров свежей смесью, сжатие и воспламенение смеси.
Пусковая частота вращения карбюраторных двигателей колеблется в пределах 30. 60 об/мин.
Пуск дизельного двигателя по сравнению с карбюраторным более труден. Это связано с большой степенью сжатия и плохим смесеобразованием из-за малого давления впрыска топлива. Поэтому пусковая частота вращения коленчатого вала двигателя с воспламенением от сжатия должна быть в пределах 200. 300 об/мин.
Рис. Схема системы питания; 1 - гильза цилиндра; 2 - поршень; 3 - топливный фильтр; 4 - топливопровод; Б - диафрагмовый насос; 6 - топливный бак; 7 - воздушный фильтр; 8 – карбюратор; 9, 10 - клапаны /впускной и выпускной/; 11 - патрубок /выхлопной/; 12 – глушитель.
При пуске холодного двигателя, особенно в зимнее время, прокручивание вала двигателя и его пуск резко затрудняются из-за низкой температуры воздуха в камере сгорания в конце сжатия и эагустевания смазки. Для обеспечения пуска дизелей необходимо подогреть воздух во впускном трубопроводе и в камере сгорания, охлаждающую жидкость в системе охлаждения; применить декомпрессионный механизм.
Существуют следующие основные способы пуска двигателей:
1. от руки /вручную/ - применяется чаще у карбюраторных пусковых двигателей;
2. электрическим стартером - используется в автомобильных и пусковых тракторных двигателях. Для пуска дизельного двигателя требуется стартер значительно большей мощности, чем для карбюраторного;
3. вспомогательным бензиновым двигателем /пусковым двигателем/ - распространен на дизелях тракторов;
4. силовым генератором электротрансмиссии . Силовой генератор, приводящий электрические ходовые двигатели трактора с электротрансмиссией, на время пуска двигателя работает в режиме стартера и питается током от аккумуляторных батарей;
5. сжатым воздухом от баллона с давлением 15,0 МПа . Наименьшее давление воздуха в баллоне, обеспечивающее запуск дизеля,- 4,0 МПа.
В аварийных случаях можно запустить двигатель буксировкой на включенной передаче трансмиссии. У машин с электротрансмиссией тяговый электродвигатель при этом работает в режиме генератора, а силовой генератор - в режиме электродвигателя, вращая коленчатый вал дизеля.
Список литературы
1. Брянский Ю. А. и др. Тягачи строительных и дорожных машин. - М.: Высш. шк., 1976. - 360 с.
2. Гуревич A. M., Сорокин E. М. Тракторы и автомобили. - П.: Колос, 1971.
3. Делиховский С. Ф. и др. Устройство и эксплуатация автомобилей.- М.: Изд-во ДОСААФ, 1965. - 214 с.
КАКАЯ РАБОЧАЯ ТЕМПЕРАТУРА ДВИГАТЕЛЯ И ПОЧЕМУ ОНА ПОДНИМАЕТСЯ
Поддержание рабочей температуры мотора — важная задача системы охлаждения. От температуры охлаждающей жидкости зависит смесеобразование, расход топлива, мощность и приемистость мотора. Перегрев мотора сулит серьезные проблемы, вплоть до выхода из строя всего агрегата. Как этого избежать — узнаете далее.
КАКОЙ ДОЛЖНА БЫТЬ РАБОЧАЯ ТЕМПЕРАТУРА ДВИГАТЕЛЯ
Считается, что нормальная рабочая температура ДВС от 87° до 105°. Для каждого двигателя рабочая температура определяется своя, при которой он работает наиболее стабильно. Силовые агрегаты современных автомобилей работают при температуре 100°-105°. В цилиндрах двигателя, при воспламенении рабочей смеси, камера сгорания нагревается до 2500 градусов, и задача охлаждающей жидкости — поддерживать оптимальное значение температуры, не выходящей за пределы норм.
ПРИЧИНЫ ПЕРЕГРЕВА ДВИГАТЕЛЯ
Перегреву могут способствовать множество причин, все они связаны с неисправностью системы охлаждения, либо качеством охлаждающей жидкости, а также с загрязнением рубашки системы охлаждения, которая ухудшает пропускную способность жидкости. Немаловажно применять качественные запчасти, иначе нижеуказанные причины произойдут внезапно. Рассмотрим каждую из причин.
НИЗКИЙ УРОВЕНЬ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ
Наиболее распространенная проблема — недостаток охлаждающей жидкости в системе. Охлаждающая жидкость, в виде тосола или антифриза, постоянно циркулирует по системе, отводя тепло от нагретых деталей мотора. При недостаточном уровне ОЖ тепло будет будет отводится недостаточно, а значит рост температуры будет неизбежен.
Если нет возможности долить ОЖ, то включите печку, чтобы снизить вероятность перегрева. В крайнем случае долейте обычной или дистиллированной воды, после чего систему охлаждения нужно промыть, после залить свежий антифриз. При t° выше 90 градусов следует немедленно остановить автомобиль и выключить зажигание, дать мотору остыть.
ОТКАЗАЛ ЭЛЕКТРИЧЕСКИЙ ВЕНТИЛЯТОР ОХЛАЖДЕНИЯ
Электровентилятор нагнетает холодный воздух на радиатор, что особенно необходимо при движении на малой скорости, когда воздушного потока недостаточно. Вентилятор может устанавливаться как спереди, так и сзади радиатора. Если стрелка температуры начала подниматься — остановите авто и проверьте на исправность вентилятор. Причины отказа работы вентилятора:
- вышел из строя электродвигатель
- окислился разъем
- реле вентилятора сгорело
- вышел из строя датчик температуры ДВС.
Для проверки вентилятора снимите с него разъемы, и “подкиньте” провода напрямую к АКБ, что позволит определить причину отказа.
НЕИСПРАВНОСТЬ ТЕРМОСТАТА
Термостат — один из главных элементов системы охлаждения. В системе охлаждения есть два контура: малый и большой. Малый контур означает то, что жидкость циркулирует только по двигателю. В большом контуре жидкость циркулирует по всей системе. Термостат помогает скорее набрать и поддерживать рабочую температуру. Благодаря чувствительному элементу, который при 90 градусах открывает клапан, жидкость попадает в большой круг, и наоборот. Термостат считается неисправным в двух случаях:
- рабочая t° охлаждающей жидкости не достигается
- силовой агрегат стремится к перегреву.
Термостат может находится непосредственно в блоке цилиндров, в отдельном корпусе, или как одно целое с датчиком температуры и помпой.
ОБРЫВ РЕМНЯ ВЕНТИЛЯТОРА ОХЛАЖДЕНИЯ
У автомобилей с продольно расположенным двигателем, вентилятор может приводится в движение посредством приводного ремня от шкива коленчатого вала. В этом случае вентилятор работает принудительно. Ресурс приводного ремня от 30 до 120 тыс. км. Обычно одним ремнем приводится в движение несколько узлов. При обрыве ремня ДВС моментально стремится к перегреву, особенно при снижении скорости движения. Если у вас отечественный авто с ременным приводом вентилятора, рекомендуется установить дополнительно электровентилятор, во избежание неприятных случаев.
ГРЯЗНЫЙ РАДИАТОР
Раз в 80-100 тысяч километров требуется промывать радиатор вместе со всей системой охлаждения. Радиатор забивается по следующим причинам:
- несвоевременная замена антифриза
- применения некачественной жидкости
- применение в системе воды
- применение герметика системы охлаждения.
Для мойки радиатора следует использовать специальные составы, которые добавляются в старый антифриз, на этой “смеси” мотор работает в течении 10-15 минут, после нужно удалить воду из системы. Желательно снять радиатор, промыть его водой под давлением снаружи и внутри.
ПРИЧИНЫ НИЗКОЙ ТЕМПЕРАТУРЫ ДВИГАТЕЛЯ
Заниженная температура двигателя может быть в следующих случаях:
- применение несоответствующего термостата (температура открытия слишком ранняя)
- высокая производительность вентиляторов охлаждения, или их принудительная работа с момента запуска двигателя
- неисправность термостата
- несоблюдение пропорции смешивания антифриза с водой.
Если вы приобретаете антифриз концентрат, то его обязательно нужно разбавлять с дистиллированной водой. Если в вашем регионе t° снижалась, максимум, чем до -30°, то приобретайте антифриз с пометкой “-80” и разбавляйте его 1:1 с водой. В этом случае, полученная жидкость будет вовремя нагреваться и охлаждаться, а также не потеряет смазочных свойств, что крайне необходимо для помпы.
Разрушители легенд. Смесеобразование и сгорание в дизельном двигателе. Часть №1. Смесеобразование.
Как ни странно это прозвучит, но дизель работает не на обеднённой, а на обогащённой смеси …
Я, как и все, хотел написать "СМЕСИ", но это неправильный и даже вредный термин. Термин, который СРАЗУ очень сильно запутывает всё вИдение процессов, происходящих в дизельном двигателе. Потому я и начну свой опус именно с этого вопроса.
Для сжигания 1 кг бензина или 1 кг керосина или 1 кг пропана или 1 кг бутана или 1кг многих прочих углеводородов требуется около 15 кг воздуха. Для сжигания 1 кг дизельного топлива требуются те же самые 15 кг воздуха. Теплотворная способность всех этих топлив тоже практически не отличается.
Почему же дизельному двигателю требуется в разы большее количество воздуха, чем бензинке?
Потому что дизель работает не на СМЕСИ и это нужно чётко понимать.
Хотя СМЕСЬ в камере сгорания дизельного двигателя, конечно же, присутствует. Но!
Топливо подаётся в камеру сгорания В ЖИДКОМ ВИДЕ через распылитель в виде тумана.
Пыли. Аэрозоли. Взвеси. Суспензии. Мельчайших капелек. Назовите как хотите, но это не СМЕСЬ!
СМЕСЬ — это всё таки нечто более-менее однородное. Нечто, УЖЕ смешанное. Сладкий чай — это смесь. Гомогенная смесь. Если сахар бросили на дно стакана и чай не размешивали — на дне стакана какое-то время будет колыхаться густой сироп — получится та самая "гетерогенная"(неоднородная) смесь. Но чай, в который падает кусок сахара — нихрена не смесь вообще!
В дизеле реальная СМЕСЬ начинает образовываться ВОКРУГ КАЖДОЙ мельчайшей частицы топлива сразу же после распыления топлива форсункой. У поверхности капельки СМЕСЬ будет очень богатой. Чем дальше от поверхности капельки — тем смесь будет беднее. Где-то посередине между этими двумя крайностями концентрация СМЕСИ будет около- и стехиометрической. В области этой довольно тоненькой СФЕРЫ и находятся наиболее благоприятные условия и для САМОВОСПЛАМЕНЕНИЯ и для СГОРАНИЯ. И именно здесь и ТОЛЬКО ЗДЕСЬ и будет происходить ВСЁ сгорание СМЕСИ топлива и… и чего? воздуха?
На первом этапе — да, воздуха. Но сразу после первого этапа СМЕСЬ начинает представлять из себя ТАКОЕ, что ни в сказке сказать, ни вслух произнести…:
Давайте посмотрим ПОДРОБНЕЕ как НА САМОМ ДЕЛЕ происходит сгорание солярки в дизельном двигателе:
Гореть не умеют ни жидкие, ни, тем более, твёрдые вещества. Мало того — гореть не умеют даже отдельные молекулы топлива, которые находятся в таки обнаруженной нами СМЕСИ. В фактическом процессе сгорания участвуют только кирпичики(радикалы) знакомых нам элементов. Потому сразу после образования вокруг капельки топлива сферы стехиометрического состава СМЕСИ процесса горения не возникает. Сразу после испарения молекула углеводородного топлива начинает стремительно нагреваться и оттого разваливаться на части. Грубо говоря — на атомы водорода и углерода. Водород чрезвычайно активный элемент и он начинает взаимодействовать с кислородом воздуха первым. Даже это взаимодействие — чрезвычайно сложный и не быстрый процесс. Можете посмотреть на него поподробнее, если интересно:
Главное в другом. Каждое такое взаимодействие — это кроме молекулы воды ещё и хорошая порция энергии. По мере нагрева таких взаимодействий становится всё больше — выделяющаяся энергия перестаёт успевать рассеиваться в пространстве и начнёт ускорять рядом идущие взаимодействия и температура СМЕСИ вокруг капельки топлива начнёт нарастать ЛАВИНООБРАЗНО. В этот момент и начнётся знакомое нам горение с выделением лучистой энергии и прочими другими сопутствующими эффектами… Кислорода много. Топлива много. Всё замечательно перемешано. Температура высокая и растёт. Давление высокое и растёт. Начинает гореть даже углерод. Вся зона околостехиометрического соотношения вокруг капельки топлива разом воспламеняется. Нечто типа взрыва сверхновой звезды:
В "научно"-популярной литературе пишется, что температура скачком повышается до 2000 градусов. Какие нафиг 2000 градусов?! В серьёзных трудах утверждается, что азот более-менее интенсивно начинает окисляться при температурах выше 2500 градусов. В дизеле окислов азота образуется страшное количество, как и сажи(судя по всему азот окисляется СНАРУЖИ сферы пламени где много кислорода, а сажа образуется ИЗНУТРИ этой сферы, где много углерода, но кислорода почти нет), но подавляющая часть окислов азота при понижении температуры опять восстанавливается до азота. Потому, скорее всего, температура в зонах богатой смеси, где и происходит реальное сгорание, взлетает намного выше 3000 градусов. Потому и сажевые частицы излучают так много лучистой энергии. Давление взлетает до небес…
Цитата из умной книжки:
Т.е. всё сгорание происходит ЛОКАЛЬНО. В ОЧЕНЬ ограниченных, фактически ИЗОЛИРОВАННЫХ зонах.
Согласно исследованиям — температуру больше 2600К имеет всего около 0,2% массы рабочего тела в камере сгорания, больше 2400К – около 2%, больше 2200К – 22%, больше 2000К – 27%, больше 1700К — 28%, остальная часть рабочего тела (около 20%) — никогда не разогреется даже до 1700К…
Из-за такой изолированности тепло относительно слабо передаётся стенкам камеры сгорания.
Вернёмся на мгновение из микромира в макромир. Пока первая капелька впрыснутого топлива готовилась к взрыву(самовоспламенению) форсунка продолжала впрыскивать в камеру сгорания тысячи других капелек, каждая из которых тоже тут же начинала готовится к взрыву — нагреваться, испаряться и образовывать СМЕСЬ. Но как только самовоспламеняется СМЕСЬ вокруг первой капельки — энергии её взрыва хватает на детонацию и воспламенение СМЕСИ вокруг других капелек. Фактически одномоментно воспламеняется ВСЯ образовавшаяся в камере сгорания СМЕСЬ. Хотя правильнее будет сказать так — "ВСЕ образовавшиеся в камере сгорания СМЕСИ" — ведь все эти СМЕСИ изолированы и находятся на расстоянии друг от друга… почти как звёзды в космосе…
Так или иначе — возникает та самая дизельная детонация(взрывное горение) из-за которого дизель и стукатит. Хорошо, что пригодной к сгоранию СМЕСИ к моменту самовоспламенения образуется не так уж и много…
Дальнейшее СМЕСЕОБРАЗОВАНИЕ будет происходить в условиях страшного дефицита кислорода. И сгорание соответственно происходит совсем не так, как это описывается в литературе.
Возвращаемся в микромир. За то время пока мы отлучались зона околостехиометрического соотношения топлива и воздуха вокруг капельки уже вся выгорела. Ни топлива, ни кислорода в ней не осталось. Только продукты сгорания, разогретые до очень высоких температур — вода, углекислота, да щепотка окислов азота… С внешней поверхности этой РАСКАЛЁННОЙ, но ВЫЗЖЕННОЙ зоны начинают ДИФФУНДИРОВАТЬ молекулы воздуха с большим количеством свободного кислорода. Изнутри начинает подниматься та каша, что образовалась из углеводородов топлива в процессе сильного нагрева и сжатия — радикалы водорода и радикалы различных СОЕДИНЕНИЙ углерода. Скорость дальнейшего СМЕСЕОБРАЗОВАНИЯ и сгорания будет определяться скоростью поступления атомов кислорода извне и атомов топлива изнутри.
Весь свободный водород, образующийся в результате температурного разложения продолжающих испаряться углеводородов, даже в условиях сильного дефицита кислорода потихоньку-полегоньку, но начинает НЕОБРАТИМО сгорать по мере взаимодействия с кислородом. Водород очень уж активное вещество. Сгорание его идёт в очень широких стехиометрических и температурных пределах. Скорость его диффузии чрезвычайно высока и сопоставима со скоростью теплопереноса. Для сгорания двум атомам водорода(мы с Томарой ходим парой) достаточно одного атома кислорода. Потому на время все реакции окисления углерода фактически останавливаются… С углеродом начинается очень нехорошая и очень длинная история с образованием и преобразованием всяких формальдегидов, гидроксилов и всяческой другой заразы… Крекинг, гомолиз, пиролиз и много других страшных слов… По мере того как атомы водорода потихоньку сваливают из молекулы углеводорода в условиях дефицита кислорода она, эта самая молекула топлива потихоньку вырождается в молекулу… графита. Да-да. Выделяющиеся в результате пиролиза атомы углерода имеют четыре свободные связи, отдельно не существуют и в зонах недостатка кислорода соединяются между собой, образуя твёрдые кристаллы графита – мельчайшие частицы сажи размером 0,3-0,4 мкм. Сравнительно недавно было обнаружено, что в хорошо нам известной копоти присутствует и большое количество шарообразных молекул, состоящих из 60 и более(до 400) атомов углерода и, иногда, и из 24 и более атомов воды — их назвали фуллеренами, а открытие этой новой формы углерода было ознаменовано присуждением в 1996 году Нобелевской премии по химии. Таких частиц образуется в дизеле неимоверное количество. Но страшный чёрный дым, который извергает дизель при перегрузке, содержит всего около 1% сажевых частиц, образовавшихся в процессе сгорания дизельного топлива — подавляющая часть образовавшихся частиц сажи сгорает в процессе догорания топлива, когда весь свободный водород уже иссякает и перестаёт перехватывать кислород под носом у углерода, каждому атому которого для полного счастия сгорания необходимо СРАЗУ аж ДВА атома кислорода… По иронии судьбы к этому времени почти весь углерод находится в состоянии раскалённой "алмазной" пыли. Начинаются танцы, подобные сгоранию водорода, но намного более сложные и многоходовые, а потому намного более длительные…
А атомов свободного кислорода меж тем остаётся всё меньше и меньше…
Пока тянется этот химический полонез начинает опускаться поршень двигателя и давление(а следовательно и температура) начинают падать. Расстояние между атомами увеличивается, энергия рассеивается в пространстве, скорость атомов падает — реакции начинают стремительно замедляться. За счёт того, что частички сажи чрезвычайно раскалены — они умудряются ещё долго реагировать с кислородом, если тот таки встретится им на пути, но по мере опускания поршня вниз толку от этого догорания становится всё меньше, а вреда всё больше. Температура в камере сгорания — не самоцель, она нужна только для двух задач — вначале максимально ПОЛНО спалить ВСЁ топливо(вытащить ВСЮ энергию) и максимально разогреть РАБОЧЕЕ ТЕЛО(всё содержимое камеры сгорания) чтобы получить максимальное ДАВЛЕНИЕ(тот самый крутящий момент) газов.
Высокая степень РАСШИРЕНИЯ(не сжатия!) дизельного двигателя позволяет полнее преобразовать энергию расширяющихся от нагрева газов в механическую РАБОТУ. Именно поэтому температура выхлопных газов дизеля заметно ниже температуры выхлопа бензинки, притом что максимальная температура сгорания топлива выше у дизеля…
Чёта меня понесло в сторону.
Углерод выгодно сжигать полностью не только с точки зрения экологических норм — при сгорании 1 атома углерода образуется в 3 раза больше энергии, чем при сгорании 1 атома водорода! Недожиг углерода(сажи) очень заметно влияет на энергетический баланс в камере сгорания, а соответственно и на мощность и на расход двигателя любой конструкции и косвенно указывает на проблемы с организацией процессов сгорания. К тому же сажа — это очень компактные кристаллы, а углекислота — это газ, который уже и сам по себе создаёт дополнительное давление на поршень…
Вот для того, чтобы сжечь МАКСИМАЛЬНОЕ количество УГЛЕРОДА и применяют в дизеле избыток воздуха. Как по мне — так эта фраза тоже насквозь лживая и не отражающая сути. А суть в данном случае такова — и в дизеле и в бензинке равного литража на режиме НОМИНАЛЬНОЙ (максимальной) мощности количество воздуха в камере сгорания практически ОДИНАКОВО! НО.
В дизеле невозможно эффективно сжечь столько топлива, столько можно сжечь в бензинке равного литража — НЕ УСПЕВАЕТ дизельное топливо связать ВЕСЬ КИСЛОРОД воздуха за время сгорания — потому в дизеле до четверти(!) кислорода воздуха вылетает в трубу даже на максимальной мощности(когда дизель уже вовсю дымит). Потому дизельным выхлопом можно спокойно дышать длительное время(не верьте сказкам про дизельные душегубки фашистов), в отличие от выхлопа бензинок, где свободного кислорода практически нет. Потому МАКСИМАЛЬНАЯ ЛИТРОВАЯ мощность атмосферного дизеля меньше МАКСИМАЛЬНОЙ ЛИТРОВОЙ мощности атмосферной же бензинки на ОДИНАКОВЫХ оборотах на те самые 25%. Плюс-минус.
Прямовпрысковый дизель имеет эффективные обороты до 3000-3500 оборотов, вихрекамерник — до 4000 с небольшим, а самая захудалая бензинка легко крутится до 6000. Только за счёт этой разницы в максимальных оборотах бензинка уже на треть мощнее дизеля. Потому МАКСИМАЛЬНАЯ паспортная МОЩНОСТЬ бензинки В РАЗЫ превышает МАКСИМАЛЬНУЮ паспортную МОЩНОСТЬ дизеля.
Мало того. Поскольку с конца 80-ых годов дизелестроители сферы легкового транспорта активно боролись с окислами азота, то почти ВСЕ дизеля 80-ых, 90-ых и начала 2000-ых имеют затянутый впрыск топлива, поздний УОПТ, гипертрофированный ЕГР и несоразмерно высокий расход топлива на мощностных режимах. Сколько-нибудь продолжительно работать с максимальной паспортной мощностью эти дизеля не в состоянии уже прямо с завода из-за перегрева камеры сгорания и поршневой. Пробежные эти дизеля мрут как мухи уже при длительных 2\3 максимальной ПАСПОРТНОЙ мощности…
P.S.
Ну и напоследок ещё немного про макромир камеры сгорания дизельного двигателя.
Для полноты картины.
На вихрекамерных дизелях форсунка формирует один факел. У прямовпрысковых дизелей форсунка формирует 4-8 факелов:
Не обращайте внимания на размеры факелов на вышеприведённых фотографиях — они сняты в обычных комнатных условиях. При высоком давлении в камере сгорания реального двигателя дальнобойность факела не превышает сантиметра — топливо практически никогда не попадает на стенки камеры сгорания ни вихрекамерника, ни прямовпрыскового дизеля — именно поэтому это дизеля с ОБЪЁМНЫМ смесеобразованием:
За пределами ФАКЕЛА топлива практически нет и никогда за время впрыска НЕ БУДЕТ! Равномерно распределить частички топлива во ВСЁМ воздухе, находящемся в камере сгорания дизеля не возможно за то короткое время, что отводится на смесеобразование и сгорание. Как ни завихряй воздух в камере сгорания — довольно значительные объёмы воздуха к топливному факелу за время сгорания топлива так никогда и не приблизятся и кислород передать не смогут. При наличии колоссального ОБЩЕГО ИЗБЫТКА кислорода в камере сгорания дизельного двигателя — каждая КОНКРЕТНАЯ частичка топлива при окончании сгорания испытывает СТРАШНЫЙ ДЕФИЦИТ кислорода и буквально захлёбывается продуктами своего сгорания.
Работа двигателя. Процессы горения и передачи тепла
У бензиновых двигателей после прохождения поршнем ВМТ давление и температура в цилиндре за счет сгорания топливо-воздушной смеси достигают максимума - давления порядка 3-6 МПа и температуры свыше 2500 К. Весь процесс сгорания происходит вблизи ВМТ, длится 4060° угла поворота коленчатого вала (ПКВ), объем камеры сгорания при этом изменяется мало. Именно поэтому бензиновые двигатели с искровым зажиганием в литературе называют иногда двигателями с подводом тепла при постоянном объеме или двигателями Отто (работающими по циклу Отто).
Для дизелей условно принимают, что часть теплоты подводится при постоянном объеме, а часть - при постоянном давлении. Поскольку у дизелей степень сжатия существенно выше, чем у бензиновых двигателей (е = 21-22), то максимальное давление при сгорании также выше и достигает 5,5 МПа. При этом температура газов в цилиндре меньше и, как правило, не превышает 2000-5-2200 К.
Процесс сгорания топливо-воздушной смеси в двигателе очень сложен и до конца не изучен. При горении происходят химические реакции с выделением тепла и образованием продуктов сгорания. Процесс горения существенно зависит от большого числа физических явлений в цилиндре: от геометрии (формы) камеры сгорания до состава, скорости и направления движения смеси в цилиндре в данный момент времени в данной точке.
Для осуществления процесса горения необходимо, чтобы количество топлива, подаваемого в цилиндр, строго соответствовало количеству воздуха, поступающего в цилиндр на такте впуска. Соотношение количеств воздуха и топлива в смеси определяется коэффициентом избытка воздуха. где 15 - постоянный (стехиометрический) коэффициент для данного топлива - теоретически необходимое количество воздуха (кг) для полного сгорания 1 кг топлива. При а = 1, когда количество топлива точно соответствует количеству воздуха, необходимому для полного сгорания этого топлива, состав смеси называют стехиометрическим.
При сгорании коэффициент избытка воздуха а смеси для бензиновых двигателей традиционных конструкций должен находиться в интервале от 0,70-0,75 до 1,05-1,15 в зависимости от режимов работы двигателя. Для этого система питания двигателя должна строго дозировать топливо. Например, при разгоне целесообразно иметь, а меньше 1 ("богатая" смесь и большой крутящий момент), в то время как для установившегося режима движения автомобиля желательно, чтобы а было близко к 1 (нормальная или слегка обедненная смесь, высокая экономичность, а также приемлемая токсичность отработавших газов).
Для воспламенения и горения смеси у двигателей традиционных схем необходимо, чтобы топливо хорошо испарилось и перемешалось с воздухом еще на также сжатия, т. е. перед искровым разрядом. Это достигается внешним смесеобразованием, т. е. подачей топлива заранее во впускной трубопровод (с помощью карбюратора или форсунок системы впрыска). При этом топливо успевает практически полностью испариться перед воспламенением. После воспламенения смеси искровым разрядом образуется фронт пламени, распространяющийся по объему камеры сгорания.
Коэффициент избытка воздуха а существенно влияет не только на экономичность и мощность, но и на состав отработавших газов. Например, если основная часть продуктов сгорания - это углекислый газ СО2 и водяные пары Н20, то при работе на богатых смесях двигатель выделяет повышенное количество оксида углерода СО, а также несгоревшие углеводороды CnHm (СН). На некоторых режимах продукты сгорания содержат также повышенное количество оксидов азота NOx, что особенно характерно для двигателей с высокой степенью сжатия (оксиды азота образуются при высоких температурах).
Очень важное значение для состава отработавших газов имеет конструкция головки блока двигателя и особенно камеры сгорания - пространства между головкой и днищем поршня. От того, как организовано движение смеси по камере сгорания перед и во время сгорания, сильно зависит количество вредных выбросов типа СО, NOx и СН.
В конечном счете, все указанные факторы влияют и на количество выделившегося при сгорания тепла - чем оно больше, тем выше основные параметры двигателя. Например, двигатель, имеющий на определенном режиме большое количество СО и несгоревших углеводородов СН в отработавших газах, вряд ли обеспечит на этом режиме хорошую мощность или экономичность. С другой стороны, сгорание должно также происходить в строго определенной фазе цикла - слишком раннее или позднее сгорание приводит к уменьшению давления в цилиндре и, в конечном счете, к ухудшению основных параметров двигателя.
При сгорании в цилиндре выделяется большое количество тепла. Часть его уходит с отработавшими газами, другая часть передается в стенки головки и гильзу цилиндра, в поршень. Если бы конструкция поршня не позволяла отводить тепло от днища, то поршень очень быстро бы расплавился и прогорел. В самом деле, температура газа в камере сгорания превышает 1800-2000°С, в то время как рабочая температура деталей из алюминиевого сплава не должна быть больше 300-350°С. Для работы в таких условиях наиболее важна передача тепла через поршневые кольца в стенки цилиндра. При этом через верхнее кольцо уходит до 50-60% всего тепла, переданного из камеры в поршень, а через среднее - до 15-20%. Для того, чтобы обеспечить передачу тепла через кольца, необходимо точное (плотное) прилегание кольца к канавке поршня и к поверхности цилиндра. Дефекты кольца (плохое прилегание к цилиндру, поломки) и поршня (деформация или разрушение перемычек) приводят к снижению потока тепла от поршня и, соответственно, к его перегреву с последующим разрушением. Другая часть тепла от поршня передается через его юбку в стенку цилиндра, а также через палец в шатун и далее рассеивается в картере. Незначительная часть тепла уходит в картер в результате вентиляции внутри поршневого пространства при возвратно-поступательном движении поршня.
Тепловое состояние (т.е. распределение температуры) поршня в значительной степени зависит от его конструкции и материала. Эти факторы влияют на такие параметры, как зазор между поршнем и цилиндром, износ юбки и др. Чем хуже отвод тепла, тем больше температура поршня, тем больше его тепловое расширение и тем больше необходимый зазор. Если зазор между поршнем и цилиндром окажется меньше, чем надо, поршень в цилиндре может заклинить. При очень малом зазоре увеличивается трение юбки поршня о стенки цилиндра, из-за чего вместо отвода тепла может происходить его подвод (разогрев юбки от трения). После заклинивания и последующего остывания поршень, как правило, деформируется (сжимается по юбке), а на поверхности цилиндра появляются глубокие царапины (задиры), иногда со следами алюминия, перенесенного с поршня на материал гильзы.
При определенных условиях в эксплуатации бензиновых двигателей могут возникать нарушения процесса сгорания. К ним относятся детонация и преждевременное воспламенение.
Явление детонации широко известно. Внешние проявления детонации - характерный стук, появляющийся при работе на низкооктановом топливе с увеличением нагрузки (т. е. при открытии дроссельной заслонки).
Суть детонации заключается в ненормально быстром (в сотни раз быстрее обычного) сгорания части смеси. При этом образуются ударные волны, с большой скоростью распространяющиеся по камере сгорания. В ударной волне происходит скачкообразный рост давления и температуры среды, в которой распространяется волна. А это вызывает воспламенение смеси не в результате обычного распространения пламени (скорость порядка 20-30 м/с), а из-за ее разогрева в ударной волне, движущейся со скоростью более 1000 м/с.
Механизм возникновения детонации поддается изучению с большими трудностями. Опытным путем установлено, что компактные камеры сгорания с вытеснителями имеющие форму, близкую к сферической, менее склонны к образованию детонационных процессов, чем длинные и узкие камеры с острыми углами и выступами. Однако в каждом конкретном случае при разработке нового двигателя определить наилучшую форму камеры сгорания - дело очень ответственное, долгое и кропотливое.
В эксплуатации детонация наиболее часто возникает на низкооктановом топливе при малых и средних частотах вращения и больших нагрузках. Детонация изменяет характер протекания давления в цилиндре по углу поворота, резко увеличивает максимальное давление, температуру и нагрузки на детали двигателя. Последствия длительной работы двигателя с детонацией весьма тяжелы. В первую очередь это - поломка поршней и поршневых колец из-за ударных нагрузок. Наиболее подвержены поломкам перемычки поршней между канавками колец. Ударная волна, вызывая резкое повышение давления в зазоре между днищем поршня и цилиндром, бьет по верхнему поршневому кольцу. Удар передается на перемычку поршня, причем одновременно не по всей окружности кольца, а в конкретной достаточно узкой области, что облегчает поломку деталей.
Детонация вызывает не только поломку перемычек, но и перегрев и разрушение краев днища поршня (каверны на поверхности), поломку поршневых колец. Последующий перегрев поршня обычно настолько велик (из-за уменьшения теплоотвода через кольца), что выгорает огневой пояс поршня от днища до верхнего и даже нижнего поршневого кольца.
После поломки деталей падает давление в цилиндре и мощность двигателя, увеличивается прорыв газов в картер (и давление в картере), расход масла. Результатом длительной работы двигателя с детонацией может быть также износ по торцу верхней канавки поршня и верхнего кольца, износ поверхностей сопряжения поршня и поршневого пальца. Эти случаи встречаются довольно часто, но ускоренные износы не всегда удается связать с детонацией.
Режимы детонации ограничивают углы опережения зажигания на некоторых режимах. Это значит, что при увеличении опережения зажигания основные параметры двигателя повышаются, однако, работа на этих режимах недопустима из-за опасности поломки деталей. Электронные системы управления двигателем точно отлеживают эти режимы, в том числе с помощью датчиков детонации.
На некоторых двигателях (TOYOTA, NISSAN) вместо одной свечи устанавливают две на один цилиндр. Такая конструкция является достаточно эффективной для уменьшения склонности двигателя к детонации при повышении степени сжатия за счет сокращения длины пути фронта пламени по камере сгорания. Снижает вероятность возникновения детонации более низкая температура поверхностей камеры i сгорания и днища поршня. Это достигается интенсификацией i охлаждения камеры путем уменьшения толщины стенок, увеличения скорости течения охлаждающей жидкости у стенок и даже некоторым снижением уровня температуры охлаждающей жидкости (например, с 90-95°С до 80-85 0 С) за счет схемы и конструкции системы охлаждения двигателя.
У двигателей с впрыском топлива температура топливо-воздушной смеси на входе в цилиндр обычно меньше, чем у карбюраторных двигателей, поскольку у последних необходим подогрев смеси на впуске (иначе не будет качественного испарения и сгорания топлива). Поэтому двигатели с впрыском топлива при прочих равных условиях менее склонны к детонации, что позвопяет несколько увеличить у них степень сжатия. Аналогичное влияние оказывает промежуточное охлаждение воздуха у двигателей с наддувом.
Кроме детонации, на практике встречается явление преждевременного воспламенения, называемое также калильным зажиганием. При калильном зажигании происходит воспламенение смеси не от искрового разряда свечи, а от нагретых до очень высоких температур (более 700°С) поверхностей камеры сгорания. В качестве таких источников воспламенения могут выступать электроды свечи зажигания, тарелка выпускного клапана или частицы нагара, если нагар лежит на деталях достаточно толстым слоем.
Обычно калильное зажигание возникает из-за несоответствия характеристики свечи, рекомендованной изготовителем автомобиля, в частности, когда для двигателя с высокой степенью сжатия использована "горячая" свеча от низкофорсированного двигателя. При этом смесь в цилиндре самовоспламеняется несколько раньше, чем происходит искровой разряд, но процесс сгорания протекает нормальным образом. С ростом нагрузки и частоты вращения момент самовоспламенения отодвигается в раннюю сторону, из-за чего тепловое и силовое воздействие на детали двигателя, особенно, на поршень, значительно возрастает.
Опасность калильного зажигания заключается в том, что на начальной стадии его практически невозможно отличить "на слух" от обычного сгорания, в то время как с течение времени (обычно от нескольких десятков секунд до нескольких минут), когда у двигателя появляется посторонний звук и он начинает терять мощность, детали поршневой группы уже могут быть повреждены. Вследствие этого на двигателях современных автомобилей замена свечей зажигания оказывается весьма небезопасной для двигателя, если ставятся первые попавшиеся свечи.
Как температура и давление в цилиндрах дизеля влияют на работу мотора
Дизельный двигатель сегодня является вторым по степени распространенности типом ДВС после бензинового агрегата. Конструктивно дизельный мотор похож на бензиновый аналог, так как имеет все те же цилиндры, шатуны, поршни, коленвал и т.д. При этом все детали более массивные и тяжелые, ведь они должны выдерживать повышенные нагрузки.
Дело в том, что степень сжатия в дизеле выше, чем в агрегатах на бензине. Если в бензиновом моторе указанный средний показатель составляет от 9-и до 11-и единиц, то в дизельном уже целых 20-24. По этой причине дизельный двигатель тяжелее и крупнее бензинового агрегата.
После подачи в цилиндры рабочая смесь воспламеняется в камере сгорания от искры. При этом в дизельном двигателе топливо и воздух подаются отдельно, при этом смесь воспламеняется самостоятельно от резкого сжатия и нагрева.
Далее мы поговорим о том, какие процессы протекают в камере сгорания дизельного двигателя, как реализована подача дизтоплива, каким образом происходит смесеобразование и воспламенение заряда, а также какое давление и температура в камере сгорания дизеля.
Камеры сгорания дизельных двигателей и особенности работы такого ДВС
Начнем с того, что камеры сгорания дизельных двигателей несколько отличаются от бензиновых. Существует два основных типа камер:
- неразделенная камера сгорания дизельного мотора;
- разделенная камера сгорания дизельного ДВС;
Неразделенный тип является однообъемной камерой, как правило, простой формы, которая согласована с расположением форсунок. Такие камеры обычно выполняются в днище поршней, также могут быть изготовлены частично в днище и частично в ГБЦ, редко только в головке блока.
Если говорить о плюсах и минусах, первый тип позволяет обеспечить двигателю лучший КПД, однако температуры в такой камере сгорания выше. Также растут и ударные нагрузки. Что касается разделенных камер сгорания, КПД меньше, однако удается реализовать более полноценное сгорание топлива, такой дизель меньше коксуется, дымит и т.д.
Как сгорает топливо в дизельном двигателе
Теперь давайте рассмотрим сам процесс горения. Как известно, для горения топлива необходимо определенное количество кислорода, а также источник, который позволит смеси воспламениться.
В дизеле вместо внешней искры таким источником является высокая температура, то есть нагрев.
Другими словами, топливно-воздушная смесь в дизельном двигателе самовоспламеняется от высокого давления и нагрева. При этом нормальная работа мотора сильно зависит от правильно настроенного впрыска, качественного сжатия смеси, а также от полноты сгорания заряда в цилиндрах.
В самом начале в цилиндр подается воздух, сжимается и нагревается. Далее топливо впрыскивается в камеру сгорания дизельного двигателя, во время впрыска происходит его распыление.
Затем возникает самовоспламенение, пламя распространяется по цилиндру. Впрыск горючего останавливается, а остатки топлива продолжают гореть. Далее процесс повторяется.
Как видно, хотя подача и горение заряда в дизеле протекает за очень короткий промежуток времени, этот отрезок можно разделить на этапы:
- Первый этап- впрыск топлива до начала его воспламенения (задержка воспламенения). Форсунки на данном этапе подают солярку, причем в распыленном виде. Образуется топливный «туман», который распространяется в сильно сжатом и нагретом воздухе.
Фактически туман представляет собой мельчайшие капли топлива, но они не воспламеняются. Дело в том, что сначала горючее должно испариться.
Только после этого произойдет смешивание испаренного дизтоплива с воздухом, а сама смесь нагреется до температуры, необходимой для самостоятельного воспламенения. Отметим, что задержка воспламенения должна быть короткой.
- Второй этап-воспламенение и распространение фронта пламени по цилиндру. Дело в том, что после воспламенения сразу горит не весь объем, а возникают точечные «очаги» возгорания. Они локализуются в местах, где топливо наиболее качественно смешалось с воздухом, а температура в камере около 1700 К.
Такое начальное горение приводит к повышению температуры и давления в цилиндре. В результате топливо, которое еще не загорелось, активно испаряется и смешивается с воздухом. В этот момент фактически происходит полное возгорание смеси в цилиндре, при этом резко увеличивается давление.
- Наступает третий этап, года топливо непосредственно сгорает. Инжекторная форсунка еще впрыскивает солярку, горючее уже сразу загорается от контакта с пламенем в камере сгорания. Пламя в этот момент эффективно распространяется по всему объему, давление также максимально.
Именно на данном этапе давление в результате сгорающего топлива с большой силой толкает поршень, заставляя двигатель совершать полезную работу. Что касается температуры, показатель растет до 2200 К.
- Завершающий четвертый этап является моментом, когда остатки топлива догорают в цилиндре. В это время поршень уже перемещается вниз, что означает падение давления и температуры.
Если возникнут сбои, распространение пламени будет нарушено, температура в камере сгорания дизельного двигателя повышается, возникает риск детонации, топливо не сгорает в полном объеме и т.д.
Частые проблемы дизелей: момент впрыска и компрессия
Если сжатие смеси в цилиндре оказывается недостаточным, во время работы двигателя можно услышать шумы и металлические стуки. Дело в том, что в таком случае смеси нужно больше времени, чтобы нагреться до температуры воспламенения.
Получается, снижение компрессии дизельного двигателя увеличивает время до воспламенения заряда.
При этом в цилиндре несгоревшей смеси будет больше, чем нужно. В результате в момент возгорания такого заряда процесс горения приобретает взрывной характер, давление резко увеличивается, появляется ударная волна и детонация, разрушая ЦПГ и оказывая значительные нагрузки на детали мотора.
Затем поршень идет вниз, температура и давление дополнительно снижаются, нет условий для горения. Получается, несгоревшая солярка испаряется и далее попадает в выпускную систему
То же самое происходит и в том случае, если впрыск дизтоплива слишком поздний. Другими словами, компрессия в цилиндрах нормальная, но подача топлива с опозданием приводит к тому, что поршень уже идет вниз, нет нужного сжатия и давления для самовоспламенения.
Если же выхлоп черный, это может указывать на то, что форсунки «переливают», то есть подача горючего происходит в большем объеме, чем необходимо. Простыми словами, дизтоплива много, а кислорода просто недостаточно на такое количество горючего.
Имеющийся кислород позволяет выгореть только части топлива, а несгоревшие остатки превращаются в углерод, что и проявляется в виде характерного черного дыма из выхлопной трубы.
Рекомендуем также прочитать статью о том, что такое степень сжатия двигателя. Из этой статьи вы узнаете о данном параметре применительно к двигателю внутреннего сгорания и особенностям его работы.
Еще отметим, что к похожим проблемам может приводить недостаточная подача воздуха (например, забит воздушный фильтр), завоздушивание системы питания дизельного двигателя и т.д.
В итоге, если нарушается нормальный процесс смесеобразования, это закономерно влияет на момент воспламенения и последующую эффективность сгорания топливного заряда в цилиндрах.
Что в итоге
С учетом вышесказанного становится понятно, что дизель особенно нуждается в высокоточном топливном впрыске. От этого напрямую завит КПД, ресурс мотора, экономичность, уровень токсичности отработавших газов и ряд других важных параметров.
Рекомендуем также прочитать статью о том, почему в двигателе может быть повышенная компрессия. Из этой статьи вы узнаете об основных причинах возникновения данного отклонения от нормы и способах ремонта.
По этой причине дизельные форсунки на современных типах указанных моторов способны обеспечить так называемый фазированный (многофазный) впрыск, подавая дизтопливо до 10 раз за один рабочий такт мотора.
Подобные решения в сочетании с турбокомпрессором позволяют современному дизельному мотору уверенно конкурировать на рынке с бензиновыми аналогами, при этом высокая топливная экономичность остается главным преимуществом дизельного двигателя.
Показатель компрессии дизельного двигателя. Главные причины и основные признаки снижения компрессии. Запуск мотора с недостаточным давлением в цилиндрах.
Высокая компрессия в двигателе и основные причины повышения компресссии. Почему также происходит снижение компресссии по цилиндрам. Советы и рекомендации.
Влияние степени сжатия на мощность и другие характеристики мотора. Тюнинг и увеличение степени сжатия, а также понижение параметра в отдельных случаях.
Почему топливно-воздушная смесь детонирует в камере сгорания. Причины, вызывающие детонацию. Последствия детонационного сгорания топлива в цилиндрах ДВС.
Низкая комрессия в цилиднрах двигателя: главные причины. Как поднять компрессию в двигателе без ремонта мотора, доступные способы. Советы и рекомендации.
Проблемы с запуском дизеля. Признаки низкой компрессии и причины неисправности: ГРМ, зеркало цилиндров, поршень и кольца. Производим замер компрессии.
Читайте также: