каких значений достигает температура газов от сгорания рабочей смеси внутри цилиндра
Принцип работы ДВС. Рабочие циклы двигателя (Изучаем вместе)
На автомобилях устанавливают поршневые двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании. Рассмотрим принцип устройства и работы двигателя внутреннего сгорания (ДВС), а также его рабочие циклы.
🔧 Рабочий цикл четырехтактного бензинового двигателя
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.
Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.
• Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации — Фото 2-5
Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье "как устроены бензиновые и дизельные двигатели".
Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.
Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.
Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.
При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.
Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.
🔧 Рабочий цикл четырехтактного дизеля
В отличие от бензинового двигателя, при такте "впуск" в цилиндры дизеля поступает чистый воздух. Во время такта "сжатие" воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.
Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.
Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.
Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.
Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.
🔧 Принцип работы многоцилиндровых двигателей
На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).
Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.
• Диаграмма работы двигателя по схеме 1-2-4-3 Фото 6
Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.
Устройство автомобилей
Работа двигателя внутреннего сгорания может быть представлена в виде систематически повторяющихся процессов, которые принято называть рабочими циклами. Рабочим циклом двигателя называется ряд последовательных, периодических повторяющихся процессов в цилиндрах, в результате которых тепловая энергия топлива преобразуется в механическую работу. При этом каждый полный рабочий цикл может быть разделен на одинаковые (повторяющиеся) части – такты.
Часть рабочего цикла, совершаемого за время движения поршня от одной мертвой точки до другой, т. е. за один ход поршня, называется тактом . Двигатели, рабочий цикл которых совершается за четыре хода поршня (два оборота коленчатого вала), называются четырехтактными.
В головке блока цилиндров, над камерой сгорания (рис. 1) карбюраторного двигателя устанавливаются впускной 4 и выпускной 6 клапаны, управляемые газораспределительным механизмом, а также свеча зажигания 5.
Рабочий цикл карбюраторного четырехтактного двигателя состоит из последовательных тактов впуска, сжатия, расширения и выпуска.
Такт впуска
В результате вращения коленчатого вала при пуске двигателя (вручную или с помощью специального устройства - например, заводной рукоятки или электродвигателя - стартера) поршень совершает движение от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ). При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт.
Так как объем цилиндра при движении поршня вниз (к НМТ) быстро увеличивается, давление над поршнем уменьшается до 0,07. 0,09 МПа, т. е. внутри цилиндра создается вакуум – избыточное разрежение.
Впускной клапан 3 сообщается со специальным устройством – карбюратором, который приготавливает горючую смесь из топлива и воздуха. Вследствие разности давлений в карбюраторе и цилиндре горючая смесь всасывается через открытый впускной клапан в цилиндр двигателя.
Если двигатель уже работает, то горючая смесь, попадая в цилиндр из карбюратора, смешивается с остаточными продуктами сгорания от предыдущего цикла, и образует рабочую смесь. Смешиваясь с остаточными продуктами сгорания и соприкасаясь с нагретыми деталями цилиндра, рабочая смесь нагревается до температуры 75. 125 ˚С.
Такт сжатия
При подходе поршня к НМТ впускной клапан закрывается. Далее поршень начинает перемещаться вверх (к ВМТ), сжимая смесь воздуха, топлива и остаточных продуктов сгорания, которые не были удалены из цилиндра при выпуске. При движении поршня от НМТ к ВМТ вследствие сокращения объема цилиндра при закрытых клапанах повышаются давление, при этом возрастает температура рабочей смеси (в соответствии с законом Гей-Люссака).
В конце такта сжатия давление внутри цилиндра повышается до 0,9…1,5 МПа, а температура смеси достигает 270-480 ˚С.
В этот момент к электродам свечи зажигания 5 подводится высокое напряжение, которые вызывает между ними искровой разряд, результате чего рабочая смесь воспламеняется и сгорает.
В процессе сгорания топлива выделяется большое количество теплоты, из-за чего температура газов (продуктов сгорания) повышается до 2200-2500 ˚С, и давление внутри цилиндра достигает 3,0…4,5 МПа. Газы начинают расширяться, перемещая поршень вниз, к НМТ.
Такт расширения (рабочий ход)
Под давлением расширяющихся газов поршень движется от ВМТ к НМТ (при этом оба клапана закрыты). В этот промежуток времени (такт) происходит преобразование тепловой энергии в полезную работу, поэтому ход поршня в такте расширения называют рабочим ходом.
При движении поршня к НМТ объем цилиндра увеличивается, вследствие чего давление уменьшается до 0,3…0,4 МПа, а температура газов снижается до 900…1200 ˚С.
Такт выпуска
При подходе поршня к НМТ открывается выпускной клапан 6, в результате чего продукты сгорания рабочей смеси вырываются наружу из цилиндра.
При дальнейшем вращении коленчатого вала поршень начинает перемещаться от НМТ к ВМТ. Выталкивая отработавшие газы через открытый выпускной клапан, выпускной канал 7 и выпускную трубу в окружающую среду. К концу такта выпуска давление в цилиндре составляет 0,11…0,12 МПа, а температура – 600…900 ˚С.
При подходе поршня к ВМТ выпускной клапан закрывается, впускной открывается и начинается такт впуска, дающий начало новому рабочему циклу.
Рабочий цикл четырехтактного дизеля
Рабочий цикл дизельного двигателя принципиально отличается от цикла карбюраторного двигателя тем, что рабочая смесь (смесь топлива, воздуха и остаточных продуктов сгорания) приготовляется внутри цилиндра, поскольку воздух подается в цилиндр отдельно, а топливо отдельно – через форсунку. В дизельном двигателе нет специального устройства для поджигания рабочей смеси – она самовозгорается в результате высокой степени сжатия.
Т. е. в дизеле, в отличие от карбюраторного двигателя, через впускной клапан подается не горючая смесь, а атмосферный воздух, а топливо впрыскивается через форсунку в конце такта сжатия. В цилиндре, как и в случае с карбюраторным двигателем, остаются продукты сгорания рабочей смеси, которые не удалось удалить продувкой.
Смесеобразование (перемешивание воздуха, топлива и остаточных продуктов сгорания) в дизеле протекает внутри цилиндра, что и обуславливает основные отличия череды тактов, составляющих рабочий цикл.
Высокая степень сжатия приводит к тому, что поступивший в цилиндр через впускной клапан воздух, смешивается с остаточными газами и раскаляется (в буквальном смысле этого слова) до высоких температур. И в это время в цилиндр впрыскивается топливо, которое вспыхивает и начинает гореть.
Рабочие процессы в дизельном двигателе протекают в следующей последовательности (рис. 2) :
Такт впуска
В период такта впуска поршень 2 движется от НМТ к ВМТ. При этом впускной клапан 5 открыт, выпускной клапан 6 закрыт. В цилиндре 7 из-за разности давлений в окружающей среде и в цилиндре в конце такта впуска возникает разрежение 0,08. 0,09 МПа, при этом температура внутри цилиндра не превышает 40…70 ˚С.
Такт сжатия
В процессе такта сжатия оба клапана закрыты. Поршень 2 движется от НМТ к ВМТ, сжимая смесь воздуха и отработавших газов. Давление в конце такта сжатия достигает 3…6 МПа, а температура – 450…650 ˚С (превышает температуру самовоспламенения топлива).
При подходе поршня к ВМТ, в цилиндр через форсунку 3 впрыскивается распыленное жидкое топливо. Топливо подается к форсунке (через трубку высокого давления) топливным насосом 1 высокого давления (ТНВД). Форсунка обеспечивает тонкое распыление топлива в сжатом воздухе. Распыленное топливо самовоспламеняется и сгорает. В результате сгорания температура в цилиндре достигает 1600…1900 ˚С, давление – 6…9 МПа.
Такт расширения (рабочий ход)
Такт выпуска
При подходе к нижней мертвой точке (НМТ) выпускной клапан 6 открывается и большая часть отработавших газов под воздействием высокого давления вырывается из цилиндра в атмосферу. Поршень начинает перемещение от НМТ к ВМТ и через открытый выпускной клапан выталкивает оставшиеся в цилиндре отработавшие газы в окружающую среду. К концу такта давление газов в цилиндре составляет 0,11…0,12 МПа, а температура – 600. 700 ˚С.
Далее рабочий цикл повторяется.
Таким образом, в четырехтактном двигателе только один такт – рабочий ход является полезным с точки зрения совершения полезной работы, остальные три вспомогательные, они осуществляются за счет кинетической энергии маховика, закрепленного на конце коленчатого вала.
Рабочий цикл двухтактного двигателя
В двухтактных ДВС рабочий цикл осуществляется за один оборот коленчатого вала.
Схема двухтактного дизеля представлена на рис. 3 .
Воздух насосом 3 нагнетается через впускное (продувочное) окно 4 в цилиндр. В нижней части цилиндра напротив впускного окна имеется выпускное окно 7. В головке 5 блока цилиндра установлены форсунки 6.
Первый такт (рис. 3, а) совершается при движении поршня от НМТ к ВМТ за счет кинетической энергии маховика двигателя. Оба окна открыты. Нагнетаемый через впускное окно 4 воздух вытесняет из цилиндра оставшиеся в нем отработавшие газы, которые выходят через выпускное окно 7. Таким образом происходит очистка цилиндра от отработавших газов (продувка) и заполнение его свежим зарядом.
Движущийся вверх поршень 8 сначала закрывает впускное окно, а затем выпускное окно. С этого момента начинается процесс сжатия, в конце которого через форсунку 6 впрыскивается топливо.
Таким образом, за первую половину оборота коленчатого вала совершаются процессы наполнения и сжатия, и начинается сгорание топлива.
Второй такт (рис. 3. б) происходит при движении поршня ВМТ к НМТ. В результате выделения теплоты при сгорании топлива повышается температура и давление внутри цилиндра. Поршень перемещается вниз, совершая полезную работу.
Как только поршень открывает выпускное окно, отработавшие газы под давлением начинают выходить в окружающую среду. К моменту открытия впускного окна давление внутри цилиндра снижается на столько, что возможна очистка цилиндра путем вытеснения отработавших газов свежим зарядом воздуха, подаваемым в цилиндр насосом 3.
Этот процесс называется продувкой цилиндра. При этом одновременно с вытеснением отработавших газов происходит наполнение цилиндра свежим зарядом. Далее все процессы повторяются в той же последовательности.
Рабочий цикл двухтактного карбюраторного двигателя аналогичен рабочему циклу двухтактного дизеля. Отличие состоит в том, что в цилиндр поступает не чистый воздух, а горючая смесь, и в конце процесса сжатия в цилиндре посредством свечи зажигания подается искра, в результате чего происходит воспламенение горючей смеси.
Одним из преимуществ двухтактного двигателя по сравнению с четырехтактным является то, что каждый рабочий ход здесь протекает в период одного оборота коленчатого вала, а не двух. Очевидно, что снижение количества тактов должно привести к повышению КПД из-за уменьшения паразитических процессов . А поскольку в четырехтактном двигателе за два оборота коленчатого вала протекают четыре такта, из которых полезным является лишь такт рабочего хода (т. е. остальные три такта являются паразитическими), то естественно предположить, что КПД четырехтактного двигателя должен быть ниже, чем КПД четырехтактного двигателя.
Существенными недостатками двухтактных двигателей является их низкая топливная экономичность и меньший срок службы по сравнению с четырёхтактными двигателями. Объясняется этот недостаток тем, что при продувке цилиндра (или цилиндров) свежая горючая смесь частично удаляется вместе с отработавшими газами, поскольку, в отличие от четырехтактного двигателя, выпуск и впуск газов протекает одновременно.
Этими недостатками, а также большей токсичностью отработавших газов объясняется ограниченное применение двухтактных двигателей на автомобилях.
Работа двигателя. Процессы горения и передачи тепла
У бензиновых двигателей после прохождения поршнем ВМТ давление и температура в цилиндре за счет сгорания топливо-воздушной смеси достигают максимума - давления порядка 3-6 МПа и температуры свыше 2500 К. Весь процесс сгорания происходит вблизи ВМТ, длится 4060° угла поворота коленчатого вала (ПКВ), объем камеры сгорания при этом изменяется мало. Именно поэтому бензиновые двигатели с искровым зажиганием в литературе называют иногда двигателями с подводом тепла при постоянном объеме или двигателями Отто (работающими по циклу Отто).
Для дизелей условно принимают, что часть теплоты подводится при постоянном объеме, а часть - при постоянном давлении. Поскольку у дизелей степень сжатия существенно выше, чем у бензиновых двигателей (е = 21-22), то максимальное давление при сгорании также выше и достигает 5,5 МПа. При этом температура газов в цилиндре меньше и, как правило, не превышает 2000-5-2200 К.
Процесс сгорания топливо-воздушной смеси в двигателе очень сложен и до конца не изучен. При горении происходят химические реакции с выделением тепла и образованием продуктов сгорания. Процесс горения существенно зависит от большого числа физических явлений в цилиндре: от геометрии (формы) камеры сгорания до состава, скорости и направления движения смеси в цилиндре в данный момент времени в данной точке.
Для осуществления процесса горения необходимо, чтобы количество топлива, подаваемого в цилиндр, строго соответствовало количеству воздуха, поступающего в цилиндр на такте впуска. Соотношение количеств воздуха и топлива в смеси определяется коэффициентом избытка воздуха. где 15 - постоянный (стехиометрический) коэффициент для данного топлива - теоретически необходимое количество воздуха (кг) для полного сгорания 1 кг топлива. При а = 1, когда количество топлива точно соответствует количеству воздуха, необходимому для полного сгорания этого топлива, состав смеси называют стехиометрическим.
При сгорании коэффициент избытка воздуха а смеси для бензиновых двигателей традиционных конструкций должен находиться в интервале от 0,70-0,75 до 1,05-1,15 в зависимости от режимов работы двигателя. Для этого система питания двигателя должна строго дозировать топливо. Например, при разгоне целесообразно иметь, а меньше 1 ("богатая" смесь и большой крутящий момент), в то время как для установившегося режима движения автомобиля желательно, чтобы а было близко к 1 (нормальная или слегка обедненная смесь, высокая экономичность, а также приемлемая токсичность отработавших газов).
Для воспламенения и горения смеси у двигателей традиционных схем необходимо, чтобы топливо хорошо испарилось и перемешалось с воздухом еще на также сжатия, т. е. перед искровым разрядом. Это достигается внешним смесеобразованием, т. е. подачей топлива заранее во впускной трубопровод (с помощью карбюратора или форсунок системы впрыска). При этом топливо успевает практически полностью испариться перед воспламенением. После воспламенения смеси искровым разрядом образуется фронт пламени, распространяющийся по объему камеры сгорания.
Коэффициент избытка воздуха а существенно влияет не только на экономичность и мощность, но и на состав отработавших газов. Например, если основная часть продуктов сгорания - это углекислый газ СО2 и водяные пары Н20, то при работе на богатых смесях двигатель выделяет повышенное количество оксида углерода СО, а также несгоревшие углеводороды CnHm (СН). На некоторых режимах продукты сгорания содержат также повышенное количество оксидов азота NOx, что особенно характерно для двигателей с высокой степенью сжатия (оксиды азота образуются при высоких температурах).
Очень важное значение для состава отработавших газов имеет конструкция головки блока двигателя и особенно камеры сгорания - пространства между головкой и днищем поршня. От того, как организовано движение смеси по камере сгорания перед и во время сгорания, сильно зависит количество вредных выбросов типа СО, NOx и СН.
В конечном счете, все указанные факторы влияют и на количество выделившегося при сгорания тепла - чем оно больше, тем выше основные параметры двигателя. Например, двигатель, имеющий на определенном режиме большое количество СО и несгоревших углеводородов СН в отработавших газах, вряд ли обеспечит на этом режиме хорошую мощность или экономичность. С другой стороны, сгорание должно также происходить в строго определенной фазе цикла - слишком раннее или позднее сгорание приводит к уменьшению давления в цилиндре и, в конечном счете, к ухудшению основных параметров двигателя.
При сгорании в цилиндре выделяется большое количество тепла. Часть его уходит с отработавшими газами, другая часть передается в стенки головки и гильзу цилиндра, в поршень. Если бы конструкция поршня не позволяла отводить тепло от днища, то поршень очень быстро бы расплавился и прогорел. В самом деле, температура газа в камере сгорания превышает 1800-2000°С, в то время как рабочая температура деталей из алюминиевого сплава не должна быть больше 300-350°С. Для работы в таких условиях наиболее важна передача тепла через поршневые кольца в стенки цилиндра. При этом через верхнее кольцо уходит до 50-60% всего тепла, переданного из камеры в поршень, а через среднее - до 15-20%. Для того, чтобы обеспечить передачу тепла через кольца, необходимо точное (плотное) прилегание кольца к канавке поршня и к поверхности цилиндра. Дефекты кольца (плохое прилегание к цилиндру, поломки) и поршня (деформация или разрушение перемычек) приводят к снижению потока тепла от поршня и, соответственно, к его перегреву с последующим разрушением. Другая часть тепла от поршня передается через его юбку в стенку цилиндра, а также через палец в шатун и далее рассеивается в картере. Незначительная часть тепла уходит в картер в результате вентиляции внутри поршневого пространства при возвратно-поступательном движении поршня.
Тепловое состояние (т.е. распределение температуры) поршня в значительной степени зависит от его конструкции и материала. Эти факторы влияют на такие параметры, как зазор между поршнем и цилиндром, износ юбки и др. Чем хуже отвод тепла, тем больше температура поршня, тем больше его тепловое расширение и тем больше необходимый зазор. Если зазор между поршнем и цилиндром окажется меньше, чем надо, поршень в цилиндре может заклинить. При очень малом зазоре увеличивается трение юбки поршня о стенки цилиндра, из-за чего вместо отвода тепла может происходить его подвод (разогрев юбки от трения). После заклинивания и последующего остывания поршень, как правило, деформируется (сжимается по юбке), а на поверхности цилиндра появляются глубокие царапины (задиры), иногда со следами алюминия, перенесенного с поршня на материал гильзы.
При определенных условиях в эксплуатации бензиновых двигателей могут возникать нарушения процесса сгорания. К ним относятся детонация и преждевременное воспламенение.
Явление детонации широко известно. Внешние проявления детонации - характерный стук, появляющийся при работе на низкооктановом топливе с увеличением нагрузки (т. е. при открытии дроссельной заслонки).
Суть детонации заключается в ненормально быстром (в сотни раз быстрее обычного) сгорания части смеси. При этом образуются ударные волны, с большой скоростью распространяющиеся по камере сгорания. В ударной волне происходит скачкообразный рост давления и температуры среды, в которой распространяется волна. А это вызывает воспламенение смеси не в результате обычного распространения пламени (скорость порядка 20-30 м/с), а из-за ее разогрева в ударной волне, движущейся со скоростью более 1000 м/с.
Механизм возникновения детонации поддается изучению с большими трудностями. Опытным путем установлено, что компактные камеры сгорания с вытеснителями имеющие форму, близкую к сферической, менее склонны к образованию детонационных процессов, чем длинные и узкие камеры с острыми углами и выступами. Однако в каждом конкретном случае при разработке нового двигателя определить наилучшую форму камеры сгорания - дело очень ответственное, долгое и кропотливое.
В эксплуатации детонация наиболее часто возникает на низкооктановом топливе при малых и средних частотах вращения и больших нагрузках. Детонация изменяет характер протекания давления в цилиндре по углу поворота, резко увеличивает максимальное давление, температуру и нагрузки на детали двигателя. Последствия длительной работы двигателя с детонацией весьма тяжелы. В первую очередь это - поломка поршней и поршневых колец из-за ударных нагрузок. Наиболее подвержены поломкам перемычки поршней между канавками колец. Ударная волна, вызывая резкое повышение давления в зазоре между днищем поршня и цилиндром, бьет по верхнему поршневому кольцу. Удар передается на перемычку поршня, причем одновременно не по всей окружности кольца, а в конкретной достаточно узкой области, что облегчает поломку деталей.
Детонация вызывает не только поломку перемычек, но и перегрев и разрушение краев днища поршня (каверны на поверхности), поломку поршневых колец. Последующий перегрев поршня обычно настолько велик (из-за уменьшения теплоотвода через кольца), что выгорает огневой пояс поршня от днища до верхнего и даже нижнего поршневого кольца.
После поломки деталей падает давление в цилиндре и мощность двигателя, увеличивается прорыв газов в картер (и давление в картере), расход масла. Результатом длительной работы двигателя с детонацией может быть также износ по торцу верхней канавки поршня и верхнего кольца, износ поверхностей сопряжения поршня и поршневого пальца. Эти случаи встречаются довольно часто, но ускоренные износы не всегда удается связать с детонацией.
Режимы детонации ограничивают углы опережения зажигания на некоторых режимах. Это значит, что при увеличении опережения зажигания основные параметры двигателя повышаются, однако, работа на этих режимах недопустима из-за опасности поломки деталей. Электронные системы управления двигателем точно отлеживают эти режимы, в том числе с помощью датчиков детонации.
На некоторых двигателях (TOYOTA, NISSAN) вместо одной свечи устанавливают две на один цилиндр. Такая конструкция является достаточно эффективной для уменьшения склонности двигателя к детонации при повышении степени сжатия за счет сокращения длины пути фронта пламени по камере сгорания. Снижает вероятность возникновения детонации более низкая температура поверхностей камеры i сгорания и днища поршня. Это достигается интенсификацией i охлаждения камеры путем уменьшения толщины стенок, увеличения скорости течения охлаждающей жидкости у стенок и даже некоторым снижением уровня температуры охлаждающей жидкости (например, с 90-95°С до 80-85 0 С) за счет схемы и конструкции системы охлаждения двигателя.
У двигателей с впрыском топлива температура топливо-воздушной смеси на входе в цилиндр обычно меньше, чем у карбюраторных двигателей, поскольку у последних необходим подогрев смеси на впуске (иначе не будет качественного испарения и сгорания топлива). Поэтому двигатели с впрыском топлива при прочих равных условиях менее склонны к детонации, что позвопяет несколько увеличить у них степень сжатия. Аналогичное влияние оказывает промежуточное охлаждение воздуха у двигателей с наддувом.
Кроме детонации, на практике встречается явление преждевременного воспламенения, называемое также калильным зажиганием. При калильном зажигании происходит воспламенение смеси не от искрового разряда свечи, а от нагретых до очень высоких температур (более 700°С) поверхностей камеры сгорания. В качестве таких источников воспламенения могут выступать электроды свечи зажигания, тарелка выпускного клапана или частицы нагара, если нагар лежит на деталях достаточно толстым слоем.
Обычно калильное зажигание возникает из-за несоответствия характеристики свечи, рекомендованной изготовителем автомобиля, в частности, когда для двигателя с высокой степенью сжатия использована "горячая" свеча от низкофорсированного двигателя. При этом смесь в цилиндре самовоспламеняется несколько раньше, чем происходит искровой разряд, но процесс сгорания протекает нормальным образом. С ростом нагрузки и частоты вращения момент самовоспламенения отодвигается в раннюю сторону, из-за чего тепловое и силовое воздействие на детали двигателя, особенно, на поршень, значительно возрастает.
Опасность калильного зажигания заключается в том, что на начальной стадии его практически невозможно отличить "на слух" от обычного сгорания, в то время как с течение времени (обычно от нескольких десятков секунд до нескольких минут), когда у двигателя появляется посторонний звук и он начинает терять мощность, детали поршневой группы уже могут быть повреждены. Вследствие этого на двигателях современных автомобилей замена свечей зажигания оказывается весьма небезопасной для двигателя, если ставятся первые попавшиеся свечи.
Процесс сгорания топлива в двигателе
При сгорании рабочей смеси в поршневых двигателях увеличивается температура и повышается давление в цилиндрах. Для повышения эффективности работы двигателя желательно, чтобы сгорание происходило вблизи в.м.т. поршня, когда рабочая смесь занимает минимальный объем, имеет наименьшую поверхность соприкосновения со стенками цилиндра. Чем меньше поверхность теплоотвода, тем меньше тепла уходит в окружающую среду и тем большая доля его превращается в полезную работу.
Смесь сгорает не мгновенно, а в течение некоторого времени. Продолжительность и характер протекания процесса сгорания зависят от типа смесеобразования. Рассмотрим процесс сгорания рабочей смеси для двигателей с искровым зажиганием и для дизелей.
Сгорание рабочей смеси в двигателях с искровым зажиганием
О протекании процесса сгорания можно судить по индикаторным диаграммам, показывающим графически изменение давления Р в цилиндре в зависимости от угла ф поворота коленчатого вала. Площадь индикаторной диаграммы пропорциональна работе, совершенной при сгорании рабочей смеси внутри цилиндра за один цикл. Если зажигание выключено, то давление в цилиндре при вращении коленчатого вала изменяется почти симметрично относительно в.м.т. (нижняя кривая). Для нормальной работы двигателя зажигание должно включаться тогда, когда должна возникнуть искра между электродами свечи. Момент искрообразования соответствует положению точки 1 на диаграмме, а давление в камере сжатия — ординате P1.
Процесс сгорания условно делят на три фазы.
Начальная фаза — Q1 начинается в момент образования искры. Возле электродов свечи зажигания воспламеняется небольшой объем рабочей смеси. Она горит сравнительно медленно. Давление в цилиндре на протяжении этого периода остается практически таким же, как и при выключенном зажигании.
Третья фаза Q3 — фаза сгорания смеси на периферийных участках камеры в такте расширения. За начало этой фазы принимают точку 3. Давление в цилиндре в этот момент будет максимальным.
Продолжительность первой фазы зависит от ряда факторов.
Чем ближе величина коэффициента избытка воздуха а к оптимальному значению, тем лучше состав смеси и тем короче продолжительность первой фазы. При значительном обеднении смеси воспламенение ее ухудшается и экономичность работы двигателя снижается. Чем мощнее искровой разряд, тем интенсивнее распространение пламени и тем короче первая фаза.
На продолжительность второй фазы сгорания оказывают влияние те же факторы, что и на продолжительность первой фазы. Кроме того, вторая фаза зависит от величины угла опережения зажигания и частоты вращения коленчатого вала.
Влияние степени сжатия
При изменении степени сжатия Е изменяется качество подготовленности рабочей смеси к сгоранию. Степень сжатия может быть нарушена неправильно подобранной толщиной прокладки, устанавливаемой между головкой цилиндров и блоком, при срезании плоскости головки цилиндра или поршня, изменении длины шатуна или радиуса кривошипа в процессе ремонта.
Увеличение степени сжатия по сравнению с оптимальным значением сопровождается повышением жесткости работы двигателя и максимального давления сгорания.
Снижение величины Е замедляет процесс сгорания и ухудшает экономичность работы.
Влияние угла опережения зажигания
Рис. Влияние угла фз, опережения зажигания на форму индикаторной диаграммы карбюраторного двигателя: 1 — ф1 = 0°; 2 — ф2 = 7°; 3 — ф3 = 22°; 4 — ф4 = 27°.
Величину угла опережения зажигания фз устанавливают при конструировании двигателя. Оптимальное его значение указывают в руководстве по эксплуатации. Нарушение этого угла ведет к ухудшению процесса сгорания и снижению эксплуатационных показателей двигателя.
При уменьшении угла опережения (запаздывании зажигания) период задержки воспламенения увеличивается. В результате этого рабочая смесь сгорает после прохождения поршнем в.м.т., когда объем над ним увеличится. Это приводит к увеличению поверхности теплоотдачи и снижению вихревых движений в камере. Так, например, при оптимальном значении угла фз опережения зажигания, равном 27° до в.м.т., максимальное давление сгорания Pz равно 4 МПа и находится у в.м.т. По мере запаздывания зажигания, в нашем случае при фз = 0°, давление сгорания снижается до 2,6 МПа и смещается в сторону запаздывания.
Вследствие этого двигатель перегревается, а мощность и экономичность его снижаются. Оптимальное значение угла опережения зажигания для данного двигателя составляет 22° (кривая 5). При этом ф3 рабочая смесь хорошо подготовлена к сгоранию, вихревые движения обеспечивают перемешивание горючей смеси. Все это способствует наиболее полному сгоранию топлива вблизи в.м.т., когда объем камеры минимальный.
Влияние состава рабочей смеси
Влияние частоты вращения коленчатого вала
При увеличении частоты вращения n коленчатого вала увеличивается скорость движения топливовоздушной смеси во впускном трубопроводе и усиливаются вихревые движения смеси в камере сжатия. Опыты показывают, что с увеличением n длительность первой фазы Q1 сгорания, выраженная в градусах угла поворота коленчатого вала Ф, возрастает, процесс сгорания развивается с запаздыванием. Максимальное давление Р цикла снижается и все больше смещается на такт расширения. Экономичность двигателя ухудшается. Если же при увеличении n увеличить на определенную величину фз, то основная фаза сгорания приблизится к в.м.т., давление Р цикла увеличится, и несмотря на то, что третья фаза сгорания (догорание) заканчивается позже, чем при меньших значениях n, экономичность цикла улучшается (кривые 3 к 1, рис. б). Следовательно, для получения максимальной мощности и эффективности двигателя необходимо автоматически обеспечивать оптимальное значение угла опережения зажигания для каждого скоростного режима.
Детонация
В двигателях с искровым зажиганием при определенных условиях работы двигателя возникает быстрый, приближающийся к взрыву процесс сгорания рабочей смеси. Называется он детонацией. Признаки, указывающие на детонацию при работе двигателя: звонкие металлические стуки в цилиндрах, перегрев двигателя, снижение мощности, появление черного дыма (сажи) в отработавших газах.
Основные причины появления детонации:
- применение топлива, октановое число которого ниже рекомендованного для данного двигателя;
- повышение степени сжатия, вызванное низким качеством ремонта или обслуживания;
- увеличение угла опережения зажигания; качество рабочей смеси не соответствует требованиям, которые предъявляются к топливу для данного двигателя. Наиболее склонна к детонации рабочая смесь при а = 0,9.
На появление детонации также влияет материал головки цилиндров и поршней. Двигатели, у которых эти детали изготовлены из алюминиевых сплавов, меньше склонны к детонации, чем двигатели, у которых эти детали изготовлены из чугуна. Так как чугун обладает худшей теплоотдачей, то в жаркую погоду детали перегреваются, и это приводит к детонации.
Детонация повышает давление и температуру в цилиндрах, вызывает вибрацию двигателя. Вследствие этого ухудшается смазка трущихся поверхностей, обгорают клапаны, поршни, разрушаются подшипники коленчатого вала.
Преждевременное воспламенение рабочей смеси
Воспламенение от сжатия при выключенном зажигании
Сгорание рабочей смеси в дизелях
Период сгорания топлива в цилиндре дизеля условно делят на три фазы:
Величина максимального давления Pz и момент достижения его зависят от того, как протекает сгорание в первой и во второй фазах.
Период задержки воспламенения
За этот период в камеру сгорания поступает незначительная часть впрыскиваемого за цикл топлива. На индикаторной диаграмме в течение этого периода не наблюдается заметных изменений в протекании линии сжатия: давление в цилиндре продолжает увеличиваться так, как будто топливо не поступает в него. При увеличении Qi в камере сгорания к моменту воспламенения накапливается много топлива. Это повышает жесткость работы дизеля. Продолжительность периода задержки воспламенения зависит от следующих основных факторов: качества топлива, угла опережения впрыска топлива, давления и температуры сжатого воздуха в момент начала впрыска топлива, давления начала впрыска, нагрузки на дизель и частоты вращения коленчатого вала.
Рассмотрим влияние каждого фактора на величину Qi.
Химический состав дизельного топлива сильно влияет на продолжительность Qi. Лучшими дизельными топливами являются топлива парафинового ряда, обладающие более высоким цетановым числом и обеспечивающие наименьшую продолжительность Qi и мягкую работу дизеля.
Для каждой конструкции дизеля принят свой угол опережения впрыска топлива фвп. Оптимальное его значение зависит от нагрузки, теплового режима, частоты вращения коленчатого вала, давления и температуры воздуха. При увеличении фвп топливо, впрыскиваемое в камеру сгорания, попадает в холодную среду с низким давлением, т. е. меньшей объемной концентрацией кислорода. Воспламенение топлива вследствие этого задерживается. В цилиндре накапливается топливо, которое сгорает до прихода поршня в в.м.т. Это вызывает повышение жесткости работы дизеля и давления Pz. При малой величине фвп топливо сгорает не полностью, ббльшая его часть сгорает в процессе расширения (в третьей фазе), увеличивается теплоотдача в стенки цилиндров, мощность дизеля снижается.
Увеличение давления и температуры сжатого воздуха в момент начала впрыска способствуют более раннему самовоспламенению топлива, сокращению периода задержки воспламенения, более мягкой работе двигателя.
Увеличение давления начала впрыска приводит к дополнительному запаздыванию начала впрыска, сокращается продолжительность впрыска. При уменьшении давления начала впрыска ухудшается качество распыливания топлива и смесеобразования, что приводит к ухудшению рабочего процесса.
Увеличение нагрузки сопровождается большей подачей топлива за цикл, улучшаются условия подготовки рабочей смеси к сгоранию. Следовательно, продолжительность Qi с увеличением нагрузки сокращается.
Частота вращения коленчатого вала n влияет следующим образом на величину Qi. При изменении n изменяются фвп, давление и продолжительность впрыска топлива, качество его распыливания. Давление и температура воздуха в камере сжатия к моменту начала впрыска также изменяются. На быстроходных дизелях, предназначенных для работы с часто меняющимися скоростными режимами, устанавливают устройства, обеспечивающие автоматическое изменение величины фвп при изменении n.
Из сказанного видно, что момент начала впрыска и период задержки воспламенения оказывают большое влияние на процесс сгорания, на мощность и экономичность дизелей. Поэтому при их эксплуатации эти показатели надо поддерживать в заданных пределах.
Чем больше поступает топлива в цилиндр в течение периода Qi задержки воспламенения, тем жестче работа двигателя и тем большей величины достигает максимальное давление сгорания Рz.
Характер поступления топлива определяется профилем кулачка, диаметром и величиной хода плунжера топливного насоса, конструкцией дизеля и качеством топлива. Так, например, применение бензина вместо дизельного топлива вызывает появление ударных волн и вибрацию давления в цилиндре дизеля.
Принцип работы ДВС. Рабочие циклы двигателя
На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании.
Рассмотрим принцип устройства и работы двигателя внутреннего сгорания, а также его рабочие циклы.
Рабочий цикл четырехтактного бензинового двигателя
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.
Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.
Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации)
Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье как устроен двигатель внутреннего сгорания.
Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.
Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.
Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.
При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 - 0.75 МПа, а температура до 950 - 1200 о С.
Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.
Рабочий цикл четырехтактного дизеля
В отличие от бензинового двигателя, при такте 'впуск' в цилиндры дизеля поступает чистый воздух. Во время такта 'сжатие' воздух нагревается до 600 о С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.
Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 - 0.095 МПа, а температура 40 - 60°С.
Сжатие. Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.
Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 - 9 МПа, а температура 1800 - 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ - происходит рабочий ход. Около НМТ давление снижается до 0.3 - 0.5 МПа, а температура до 700 - 900 о С.
Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 - 0.12 МПа, а температура до 500-700 о С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.
Более подробно про работу дизеля в статье Дизельные двигатели. Устройство и принцип работы.
Принцип работы многоцилиндровых двигателей
На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).
Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.
Диаграмма работы двигателя по схеме 1-2-4-3
Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.
Каких значений достигает температура газов от сгорания рабочей смеси внутри цилиндра
Рабочим циклом двигателя внутреннего сгорания называют совокупность процессов, повторяющихся в цилиндре в такой последовательности: впуск свежего заряда, сжатие, расширение или рабочий ход, выпуск.
Цикл может быть осуществлен либо за четыре, либо за два такта. В первом случае цикл называется четырехтактным, во втором – двухтактным.
Рабочий цикл поршневого двигателя проходит по одной из двух схем, представленных на рис.1. На схеме, изображенной на рис.1,а, представлен рабочий цикл с внешним смесеобразованием (бензиновые и газовые двигатели), а на рис.1,б – рабочий цикл с внутренним смесеобразованием (дизели и бензиновые с непосредственным впрыском).
Рисунок 1 – Схемы рабочего цикла двигателей
а) с внешним смесеобразованием; б) с внутренним смесеобразованием
Рабочий цикл четырехтактного бензинового двигателя
При рассмотрении цикла условно принять, что начало рабочего цикла совпадает с ВМТ, а каждый такт начинается и заканчивается в одной из мертвых точек.
Первый такт – впуск
При вращении коленчатого вала (по направлению стрелки) поршень перемещается из ВМТ в НМТ, впускной клапан открывается, выпускной клапан закрыт. Через открытый клапан цилиндр соединяется с системой впуска. Вследствие гидравлического сопротивления впускного трубопровода, впускного клапана и увеличения объема при перемещении поршня давление в цилиндре становится меньше атмосферного и воздух поступает в цилиндр. Горючая смесь, состоящая из паров мелкораспыленного топлива и воздуха, поступает под действием разряжения из впускного трубопровода в цилиндр, где смешивается с небольшим количеством остаточных газов, оставшихся от предыдущего цикла, и образует рабочую смесь.
При подходе поршня к НМТ давление в цилиндре на 0,01…0,02 МПа меньше атмосферного, а температура смеси вследствие подогрева от контакта с нагретыми деталями двигателя и перемешивания с отработавшими газами повышается до 350…390 К.
Второй такт – сжатие
Такт впуска заканчивается, когда поршень приходит в НМТ. При дальнейшем повороте коленчатого вала поршень перемещается из НМТ в ВМТ и сжимает рабочую смесь. В течение такта сжатия оба клапана остаются закрытыми.
Объем смеси при сжатии уменьшается, а давление внутри цилиндра увеличивается и достигает (в зависимости от степени сжатия) 1,0…1,5 МПа, а температура 600…650 К.
Для наилучшего использования теплоты, выделяющейся при сгорании, необходимо, чтобы сгорание топлива заканчивалось при положении поршня, возможно близком к ВМТ. Поэтому воспламенение топлива в бензиновых двигателях, осуществляемое электрической искрой, обычно производится до прихода поршня к ВМТ.
Третий такт – расширение или рабочий ход
Оба клапана закрыты. Сжатая рабочая смесь воспламеняется и быстро сгорает, образуя большое количество горячих газов, вследствие чего в цилиндре резко увеличиваются температура и давление. Под действием давления газов поршень перемещается к НМТ, газы расширяются и совершают полезную работу.
В начале расширения давление составляет 3…4 МПа, температура 2300…2500 К, а при подходе поршня к НМТ, вследствие увеличения объема, давление снижается до 0,3…0,5 МПа, а температура составляет 1200…1500 К.
Четвертый такт – выпуск
Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра в выпускной трубопровод и в атмосферу.
При такте выпуска не достигается полная очистка цилиндра от отработавших газов, поэтому в конце выпуска давление в цилиндре составляет 0,105…0,120 МПа, а температура 700…900 К.
После окончания такта выпуска рабочий цикл повторяется в рассмотренной выше последовательности.
Только при такте расширения совершается полезная работа, а остальные такты являются вспомогательными и поршень при этих тактах перемещается за счет энергии вращающегося коленчатого вала с маховиком и работы других цилиндров (в многоцилиндровых двигателя).
Рабочий цикл четырехтактного дизеля
Рабочий цикл четырехтактного дизеля, как и рабочий цикл четырехтактного бензинового двигателя, состоит из четырех повторяющихся тактов: впуска, сжатия, расширения газов или рабочего хода и выпуска. Однако рабочий цикл дизеля существенно отличается от рабочего цикла бензинового двигателя. В цилиндр дизеля поступает чистый воздух, а не горючая смесь. Воздух сжимается с высокой степенью сжатия, вследствие чего значительно повышается его давление и температура. В конце сжатия в нагретый воздух из форсунки впрыскивается мелкораспыленное топливо, воспламеняющееся не от электрической искры, а от соприкосновения с горячим воздухом.
Первый такт – впуск
При движении поршня от ВМТ к НМТ давление в цилиндре снижается вследствие гидравлического сопротивления воздухоочистителя, впускного трубопровода и через открытый впускной клапан в цилиндр поступает очищенный воздух. Воздух перемешивается с небольшим количеством оставшихся от предыдущего цикла отработавших газов, температура его повышается, но меньше, чем в бензиновом двигателе, так как количество остаточных газов в цилиндре дизеля меньше, чем в бензиновом двигателе. Кроме того, подогрев воздуха происходит и от контакта с нагретыми деталями двигателя, и в конце такта впуска температура воздуха достигает 320…350 К, а давление 0,08…0,09 МПа.
Второй такт – сжатие
Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Давление и температура воздуха увеличиваются и при подходе поршня к ВМТ составляют: давление 4,0…5,5 МПа, а температура 850…1000 К. В конце такта сжатия с помощью насоса через форсунку в цилиндр под высоким давлением впрыскивается мелкораспыленное топливо. Давление впрыскивания составляет 13,0…18,5 МПа. Топливо от соприкосновения с нагретым воздухом испаряется, его пары перемешиваются с воздухом и воспламеняются.
Третий такт – расширение или рабочий ход
При сгорании топлива, вследствие подвода большого количества теплоты, резко увеличивается давление и температура образовавшихся газов.
В начале такта расширения давление газов составляет 6,0…8,0 МПа, а температура 2100…2300 К.
Под действием давления поршень из ВМТ перемещается в НМТ, совершая полезную работу. Объем цилиндра увеличивается, давление и температура газов снижаются и при подходе поршня к НМТ составляют: давление 0,2…0,4 МПа, температура 800…1200 К.
Четвертый такт – выпуск
Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в атмосферу.
В конце такта выпуска давление газов 0,11…0,12 МПа, температура 800…900 К.
После такта выпуска рабочий цикл дизеля повторяется.
Рабочий цикл двухтактного карбюраторного двигателя
В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы впуска и выпуска совмещены по времени с процессами сжатия и расширения. В отличие от четырехтактного двигателя очистка цилиндра от отработавших газов и наполнение его свежим зарядом происходит при положении поршня вблизи НМТ. При этом очистка цилиндра от отработавших газов осуществляется не выталкиванием их поршнем, а предварительно сжатым до определенного давления воздухом или горючей смесью.
На рис.2 представлена схема двухтактного карбюраторного двигателя с кривошипно-камерной продувкой.
Рисунок 2 – Схема двухтактного карбюраторного двигателя
1 – впускное окно; 2 – выпускное окно; 3 – свеча зажигания; 4 – цилиндр; 5 - поршень; 6 – перепускное окно; 7 – канал; 8 – герметичный картер
В этом двигателе нет специального механизма газораспределения. Вместо него цилиндр имеет окна: впускное окно 1, соединяющее цилиндр с карбюратором; выпускное окно 2 и перепускное окно 6, соединяющее цилиндр с герметичным картером при помощи канала 7. Перемещающийся внутри цилиндра поршень в определенной последовательности открывает и закрывает окна, выполняя функции механизма газораспределения. В цилиндр двухтактного двигателя с кривошипно-камерной продувкой горючая смесь поступает через картер. Для подготовки двигателя к работе необходимо сделать два подготовительных хода: первый – впуск горючей смеси в картер; второй – перепуск горючей смеси из картера в цилиндр.
Первый такт
Поршень 5 перемещается снизу вверх и боковой поверхностью сначала закрывает перепускное окно 6, а затем и выпускное 2. В цилиндре происходит сжатие рабочей смеси, а в картер вследствие разряжения из карбюратора поступает горючая смесь. При подходе поршня к ВМТ между электродами свечи зажигания появляется электрическая искра, в результате чего рабочая смесь в цилиндре воспламеняется и сгорает.
Второй такт
Образовавшиеся горячие газы расширяются и давят на поршень, вследствие чего он опускается вниз, совершая рабочий ход. В конце рабочего хода поршень сначала открывает выпускное окно 2, и отработавшие газы из цилиндра через глушитель выходят в атмосферу. Опускаясь ниже, поршень открывает перепускное окно 6, и горючая смесь по каналу 7 поступает в цилиндр, заполняет его и вытесняет отработавшие газы. Незначительная часть горючей смеси вместе с отработавшими газами выходит в атмосферу и не принимает участия в рабочем цикле.
Примечание: Параметры цикла (давление и температура) соответствуют параметрам четырехтактного бензинового двигателя.
Двухтактные двигатели, работающие по данной схеме газообмена, имеют сухой картер, т.е. в картере отсутствует смазочный материал. Для смазывания трущихся деталей двигателя смазочный материал добавляют к топливу в пропорции 1:20 по объему. Следовательно, горючая смесь в виде воздуха, топлива и масла обеспечивает при своем движении одновременно и смазку двигателя.
На рис.3 показан принцип действия четырех- и двухтактного двигателя внутреннего сгорания.
Читайте также: