Сервопривод из стеклоподъемника схема
Познакомимся поближе с сервоприводами. Рассмотрим их разновидности, предназначение, подсказки по подключению и управлению.
Что такое сервопривод?
Сервопривод — это мотор с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения. Сервомотором является любой тип механического привода, имеющий в составе датчик положения и плату управления.
Простыми словами, сервопривод — это механизм с электромотором, который может поворачиваться в заданный угол и удерживать текущее положение.
Элементы сервопривода
Рассмотрим составные части сервопривода.
Электромотор с редуктором
За преобразование электричества в механический поворот в сервоприводе отвечает электромотор. В асинхронных сервоприводах установлен коллекторный мотор, а в синхронных — бесколлекторный.
Однако зачастую скорость вращения мотора слишком большая для практического использования, а крутящий момент — наоборот слишком слабый. Для решения двух проблем используется редуктор: механизм из шестерней, передающий и преобразующий крутящий момент.
Включая и выключая электромотор, вращается выходной вал — конечная шестерня редуктора, к которой можно прикрепить нечто, чем мы хотим управлять.
Позиционер
Для контроля положения вала, на сервоприводе установлен датчик обратной связи, например потенциометр или энкодер. Позиционер преобразует угол поворота вала обратно в электрический сигнал.
Плата управления
За всю обработку данных в сервоприводе отвечает плата управления, которая сравнивает внешнее значения с микроконтроллера со показателем датчика обратной связи, и по результату соответственно включает или выключает мотор.
Выходной вал
Вал — это часть редуктора, которая выведена за пределы корпуса мотора и непосредственно приводиться в движение при подаче управляющих сигналов на сервопривод. В комплектации сервомоторов идут качельки разных формфакторов, которые одеваются на вал сервопривода для дальнейшей коммуникации с вашими задумками.
Не рекомендуем прилагать к валу нагрузки, которые больше крутящего момента сервопривода. Это может привести к разрушению редуктора.
Выходной шлейф
Для работы сервопривода его необходимо подключить к источнику питания и к управляющей плате. Для коммуникации от сервопривода выходит шлейф из трёх проводов:
Если сервопривод питается напряжением от 5 вольт и потребляет ток менее 500 мА, то есть возможность обойтись без внешнего источника питания и подключить провод питания сервомотора непосредственно к питанию микроконтроллера.
Управление сервоприводом
Алгоритм работы
Интерфейс управления
Чтобы указать сервоприводу желаемое состояние, по сигнальному проводу необходимо посылать управляющий сигнал — импульсы постоянной частоты и переменной ширины.
То, какое положение должен занять сервопривод, зависит от длины импульсов. Когда сигнал от микроконтроллера поступает в управляющую схему сервопривода, имеющийся в нём генератор импульсов производит свой импульс, длительность которого определяется через датчик обратной связи. Далее схема сравнивает длительность двух импульсов:
Для управления хобби-сервоприводами подают импульсы с частотой 50 Гц, т.е. период равен 20 мс:
Обратите внимание, что на вашем конкретном устройстве заводские настройки могут оказаться отличными от стандартных. Некоторые сервоприводы используют ширину импульса 760 мкс. Среднее положение при этом соответствует 760 мкс, аналогично тому, как в обычных сервоприводах среднему положению соответствует 1520 мкс.
Это всего лишь общепринятые длины. Даже в рамках одной и той же модели сервопривода может существовать погрешность, допускаемая при производстве, которая приводит к тому, что рабочий диапазон длин импульсов отличается. Для точной работы каждый конкретный сервопривод должен быть откалиброван: путём экспериментов необходимо подобрать корректный диапазон, характерный именно для него.
Часто способ управления сервоприводами называют PWM (Pulse Width Modulation) или PPM (Pulse Position Modulation). Это не так, и использование этих способов может даже повредить привод. Корректный термин — PDM (Pulse Duration Modulation) в котором важна длина импульсов, а не частота.
Характеристики сервопривода
Рассмотрим основные характеристики сервоприводов.
Крутящий момент
Момент силы или крутящий момент показывает, насколько тяжёлый груз сервопривод способен удержать в покое на рычаге заданной длины. Если крутящий момент сервопривода равен 5 кг×см, то это значит, что сервопривод удержит на весу в горизонтальном положении рычаг длины 1 см, на свободный конец которого подвесили 5 кг. Или, что эквивалентно, рычаг длины 5 см, к которому подвесили 1 кг.
Скорость поворота
Скорость сервопривода — это время, которое требуется выходному валу повернуться на 60°. Характеристика 0,1 с/60° означает, что сервопривод поворачивается на 60° за 0,1 с. Из неё можно вычислить скорость в оборотах в минуту, но так сложилось, что при описании сервоприводов чаще всего используют именно интервал времени за 60°.
Форм-фактор
Сервоприводы различаются по размерам. И хотя официальной классификации не существует, производители давно придерживаются нескольких размеров с общепринятым расположением крепёжных элементов.
Форм-фактор | Вес | Размеры |
---|---|---|
Микро | 8-25 г | 22×15×25 мм |
Стандартный | 40-80 г | 40×20×37 мм |
Большой | 50-90 г | 49×25×40 мм |
Внутренний интерфейс
Сервоприводы бывают аналоговые и цифровые. Так в чём же их отличия, достоинства и недостатки?
Внешне они ничем не отличаются: электромоторы, редукторы, потенциометры у них одинаковые, различаются они лишь внутренней управляющей электроникой. Вместо специальной микросхемы аналогового сервопривода у цифрового собрата можно заметить на плате микропроцессор, который принимает импульсы, анализирует их и управляет мотором. Таким образом, в физическом исполнении отличие лишь в способе обработки импульсов и управлении мотором.
Оба типа сервопривода принимают одинаковые управляющие импульсы. После этого аналоговый сервопривод принимает решение, надо ли изменять положение, и в случае необходимости посылает сигнал на мотор. Происходит это обычно с частотой 50 Гц. Таким образом получаем 20 мс — минимальное время реакции. В это время любое внешнее воздействие способно изменить положение сервопривода. Но это не единственная проблема. В состоянии покоя на электромотор не подаётся напряжение, в случае небольшого отклонения от равновесия на электромотор подаётся короткий сигнал малой мощности. Чем больше отклонение, тем мощнее сигнал. Таким образом, при малых отклонениях сервопривод не сможет быстро вращать мотор или развивать большой момент. Образуются «мёртвые зоны» по времени и расстоянию.
Эти проблемы можно решать за счёт увеличения частоты приёма, обработки сигнала и управления электромотором. Цифровые сервприводы используют специальный процессор, который получает управляющие импульсы, обрабатывает их и посылает сигналы на мотор с частотой 200 Гц и более. Получается, что цифровой сервопривод способен быстрее реагировать на внешние воздействия, быстрее развивать необходимые скорость и крутящий момент, а значит, лучше удерживать заданную позицию, что хорошо. Конечно, при этом он потребляет больше электроэнергии. Также цифровые сервоприводы сложнее в производстве, а потому стоят заметно дороже. Собственно, эти два недостатка — все минусы, которые есть у цифровых сервоприводов. В техническом плане они безоговорочно побеждают аналоговые сервоприводы.
Материалы шестерней
Шестерни для сервоприводов бывают из разных материалов: пластиковые, карбоновые, металлические. Все они широко используются, выбор зависит от конкретной задачи и от того, какие характеристики требуются в установке.
Пластиковые, чаще всего нейлоновые, шестерни очень лёгкие, не подвержены износу, более всего распространены в сервоприводах. Они не выдерживают больших нагрузок, однако если нагрузки предполагаются небольшие, то нейлоновые шестерни — лучший выбор.
Карбоновые шестерни более долговечны, практически не изнашиваются, в несколько раз прочнее нейлоновых. Основной недостатой — дороговизна.
Металлические шестерни являются самыми тяжёлыми, однако они выдерживают максимальные нагрузки. Достаточно быстро изнашиваются, так что придётся менять шестерни практически каждый сезон. Шестерни из титана — фавориты среди металлических шестерней, причём как по техническим характеристикам, так и по цене. К сожалению, они обойдутся вам достаточно дорого.
Коллекторные и бесколлекторные моторы
Существует три типа моторов сервоприводов: обычный мотор с сердечником, мотор без сердечника и бесколлекторный мотор.
Обычный мотор с сердечником (справа) обладает плотным железным ротором с проволочной обмоткой и магнитами вокруг него. Ротор имеет несколько секций, поэтому когда мотор вращается, ротор вызывает небольшие колебания мотора при прохождении секций мимо магнитов, а в результате получается сервопривод, который вибрирует и является менее точным, чем сервопривод с мотором без сердечника. Мотор с полым ротором (слева) обладает единым магнитным сердечником с обмоткой в форме цилиндра или колокола вокруг магнита. Конструкция без сердечника легче по весу и не имеет секций, что приводит к более быстрому отклику и ровной работе без вибраций. Такие моторы дороже, но они обеспечивают более высокий уровень контроля, вращающего момента и скорости по сравнения со стандартными.
Сервоприводы с бесколлекторным мотором появились сравнительно недавно. Преимущества те же что и у остальных бесколлекторных моторов: нет щёток, а значит они не создают сопротивление вращению и не изнашиваются, скорость и момент выше при токопотреблении равном коллекторным моторам. Сервоприводы с бесколлекторным мотором — самые дорогие сервоприводы, однако при этом они обладают лучшими характеристиками по сравнению с сервоприводами с другими типами моторов.
Сервопривод постоянного вращения
Сервоприводы обычно имеют ограниченный угол вращения 180 градусов, их так и называют «сервопривод 180°».
Но существуют сервоприводы с неограниченным углом поворота оси. Это сервоприводы постоянного вращения или «сервоприводы 360°».
Сервопривод постоянного вращения можно управлять с помощью библиотек Servo или Servo2 . Отличие заключается в том, что функция Servo.write(angle) задаёт не угол, а скорость вращения привода:
Функция Arduino | Сервопривод 180° | Сервопривод 360° |
---|---|---|
Servo.write(0) | Крайне левое положение | Полный ход в одном направлении |
Servo.write(90) | Середнее положение | Остановка сервопривода |
Servo.write(180) | Крайне правое положение | Полный ход в обратном направлении |
Для иллюстрации работы с сервами постоянного вращения мы собрали двух мобильных ботов — на Arduino Uno и Iskra JS. Инструкции по сборке и примеры скетчей смотрите в статье собираем ИК-бота.
Примеры работы с Arduino
Схема подключения
Многие сервоприводы могут быть подключены к Arduino непосредственно. Для этого от них идёт шлейф из трёх проводов:
Для подключения к Arduino будет удобно воспользоваться платой-расширителем портов, такой как Troyka Shield. Хотя с несколькими дополнительными проводами можно подключить серву и через breadboard или непосредственно к контактам Arduino.
Можно генерировать управляющие импульсы самостоятельно, но это настолько распространённая задача, что для её упрощения существует стандартная библиотека Servo .
Ограничение по питанию
Обычный хобби-сервопривод во время работы потребляет более 100 мА. При этом Arduino способно выдавать до 500 мА. Поэтому, если вам в проекте необходимо использовать мощный сервопривод, есть смысл задуматься о выделении его в контур с дополнительным питанием.
Рассмотрим на примере подключения 12V сервопривода:
Ограничение по количеству подключаемых сервоприводов
На большинстве плат Arduino библиотека Servo поддерживает управление не более 12 сервоприводами, на Arduino Mega это число вырастает до значения 48. При этом есть небольшой побочный эффект использования этой библиотеки: если вы работаете не с Arduino Mega, то становится невозможным использовать функцию analogWrite() на 9 и 10 контактах независимо от того, подключены сервоприводы к этим контактам или нет. На Arduino Mega можно подключить до 12 сервоприводов без нарушения функционирования ШИМ/PWM, при использовании большего количества сервоприводов мы не сможем использовать analogWrite() на 11 и 12 контактах.
Пример использования библиотеки Servo
По аналогии подключим 2 сервопривода
Библиотека Servo не совместима с библиотекой VirtualWire для работы с приёмником и передатчиком на 433 МГц.
Альтернативная библиотека Servo2
Библиотеки для управления сервоприводами (Servo) и для работы с приёмниками / передатчиками на 433 МГц VirtualWire используют одно и то же прерывание. Это означает, что их нельзя использовать в одном проекте одновременно. Существует альтернативная библиотека для управления сервомоторами — Servo2.
Все методы библиотеки Servo2 совпадают с методами Servo.
Пример использования библиотеки Servo
Примеры работы с Espruino
Примеры работы с Raspberry Pi
Вывод
Сервоприводы бывают разные, одни получше — другие подешевле, одни надёжнее — другие точнее. И перед тем, как купить сервопривод, стоит иметь в виду, что он может не обладать лучшими характеристиками, главное, чтобы подходил для вашего проекта. Удачи в ваших начинаниях!
Несмотря на то, что автоматизированные системы управления вошли в наш быт, далеко не всем известно про сервопривод. Что это такое? Он представляет собой систему, реализующую высокоточные динамичные процессы. Устройство состоит из двигателя, датчика и блока управления, обеспечивающих отработку требуемых скорости, позиции и момента.
К сервоприводам относятся различные усилители и регуляторы, но термин больше применяется в автоматических системах при обозначении электропривода с отрицательной обратной связью по положению. Основой является корректировка работы электродвигателя при подаче управляющего сигнала.
Как устроен сервопривод
Что это такое, легче понять, если рассмотреть конструкцию и работу устройства. Электромеханический узел сервопривода размещается в одном корпусе. Его характеристиками являются конструкция, рабочее напряжение, частота и крутящий момент. По показаниям датчика от контроллера или микросхемы поступает сигнал на корректировку работы серводвигателя.
Простейшее устройство представляет собой электродвигатель постоянного тока, схему управления и потенциометр. Конструкция предусматривает наличие редуктора, чтобы получить заданную скорость перемещения выходного вала.
Схема управления
Подключение сервопривода можно производить с помощью простой схемы с таймером NE555 в режиме генератора импульсов.
Положение вала двигателя определяется шириной импульса, которая устанавливается переменным резистором R1. Сигналы должны подаваться генератором непрерывно, например каждые 20 мсек. При поступлении команды (перемещение движка резистора) выходной вал редуктора поворачивается и устанавливается в определенное положение. При внешнем воздействии он будет сопротивляться, пытаясь оставаться на месте.
Механическое регулирование системы отопления
Сервопривод - что это такое? Это хорошо понятно по его работе в системе теплого пола как приспособления, регулирующего поток теплоносителя. Если это делать вручную, придется непрерывно крутить вентили на коллекторах, поскольку расход горячей воды, подаваемой в обогревающие контуры, является переменной величиной.
Для автоматического регулирования систем теплого пола применяются разные устройства. Простейшим является термоголовка, устанавливаемая на регулирующий клапан. Она состоит из ручки механической настройки, пружинного механизма и сильфона, соединенного с толкателем. При повышении температуры внутри сильфона нагревается толуол, который при этом расширяется и давит на шток клапана, закрывая его. Поток теплоносителя перекрывается, и он начинает остывать в отопительном контуре. При охлаждении до заданного уровня сильфон снова открывает клапан, и новая порция горячей воды поступает в систему.
Механические регуляторы устанавливаются на каждый контур теплого пола и настраиваются вручную, после чего температура автоматически поддерживается постоянной.
Электрический сервопривод для отопления
Более совершенным устройством является электрический сервопривод для отопления или теплого пола. Он включает систему взаимосвязанных механизмов, обеспечивающих поддерживание температуры воздуха в помещении.
Сервопривод для отопления работает вместе с термостатом, который монтируется на стену. Кран с электроприводом устанавливается на подающей трубе, перед коллектором водяного теплого пола. Затем производится подключение, подача питания 220 В и установка на терморегуляторе заданного режима. Система снабжается двумя датчиками: один - в полу, а другой - в комнате. Они передают команды на термостат, который управляет сервоприводом, соединенным с краном. Точность регулирования будет выше, если установить еще прибор на улице, поскольку климатические условия постоянно меняются и влияют на температуру в помещениях.
Сервопривод управляет двух- или трехходовым клапаном. Первый изменяет температуру теплоносителя в системе отопления. Трехходовой клапан с сервоприводом поддерживает температуру постоянной, но изменяет расход горячей воды, подаваемой в контуры. Од содержит 2 входа для горячей жидкости (подающий трубопровод) и холодной (обратка). Выход всего один, через него подается смесь с заданной температурой. Клапан обеспечивает смешивание потоков, регулируя таким путем подачу тепла в коллекторы. Если один из входов открывается, то другой начинает прикрываться. При этом расход на выходе остается постоянным.
Сервопривод крышки багажника
Современные автомобили большей частью выпускаются с автоматическим открыванием и закрыванием багажника. Для этого требуется установка сервопривода. Производители применяют 2 способа, чтобы обеспечить авто подобной опцией. Надежным вариантом является пневмопривод, но он стоит дороже. Электропривод управляется несколькими способами на выбор:
- с пульта;
- кнопка на дверной панели водителя;
- ручка на крышке багажника.
Ручное открывание не всегда удобное, особенно зимой, когда замок может замерзнуть. Сервопривод багажника совмещается с замком, что дополнительно защищает авто от несанкционированного проникновения.
Устройства применяются на иномарках, но при желании их можно установить на отечественных моделях. Предпочтительно использовать привод с электродвигателем.
Есть еще устройства с магнитными пластинами, но они сложней и применяются реже.
Самыми дешевыми являются электроприборы, предназначенные только для открывания. Можно подобрать привод багажника, состоящий из электродвигателя с инерционным механизмом, отключающийся при возникновении препятствия перемещению. Дорогие модели состоят из устройства подъема и опускания крышки, доводчика запорного механизма, контроллера и датчиков.
Установка и настройка сервопривода крышки багажника производятся на заводе, но простые устройства могут быть установлены своими руками.
Характеристики сервоприводов
Устройства выпускаются аналогового и цифрового типов. Приводы внешне ничем не отличаются, но различие между ними существенное. Последние обладают более точной отработкой команд, поскольку управление производится микропроцессорами. Для сервоприводов пишутся и вводятся программы. Аналоговые устройства работают от сигналов микросхем. Их преимуществами являются простое устройство и меньшая цена.
Основными параметрами для выбора являются следующие:
- Питание. Подача напряжения производится по трем проводам. По белому передают импульс, через красный - рабочее напряжение, черный или коричневый является нейтральным.
- Размеры: большие, стандартные и микроустройства.
- Скорость. От нее зависит, за какой промежуток времени вал повернется на угол 60 0 . Недорогие устройства обладают скоростью 0,22 сек. Если требуется высокое быстродействие, она составит 0,06 сек.
- Величина момента. Параметр является приоритетным, поскольку при малом вращающем моменте управление затрудняется.
Как управлять цифровым сервоприводом?
Приводы подключаются к программируемым контроллерам, среди которых хорошо известен Arduino. Подключение к его плате производится тремя проводами. По двум подается питающее напряжение, а по третьему - управляющий сигнал.
Инструкция сервопривода с цифровым управлением предусматривает наличие в контроллере простой программы, позволяющей считывать с потенциометра показания и переводить их в число. Затем оно преобразуется в команду передачи на поворот вала сервопривода в заданное положение. Программа записывается на диске, а затем передается на контроллер.
Заключение
Мы подробно рассмотрели сервопривод. Что это такое, станет понятным, когда потребуется автоматизация различных процессов, где требуется поворачивать и удерживать в заданном положении вал электродвигателя. Устройства выпускаются аналоговые и цифровые. Последние нашли более широкое применение благодаря высокому уровню разрешения, большой мощности и точности позиционирования.
Когда нужно самому установить ЭСП (электростеклоподъемники), то как всегда в интернете сложно найти правильные и понятные каждому схемы.
Имея опыт в радиоэлектронике для всех выкладываю правильные и понятные схемы подключения ЭСП, интеллектуального доводчика стекол Pandora DWM-210 (но лучше поставить Sheriff PWM-200), а также простых доводчиков только на подъем стекла, устанавливаемых в разрыв провода на плюс мотора.
Процесс собственной установки ЭСП подробно мной описан здесь: www.drive2.ru/l/4651635/
Берем силовые кнопки ЭСП производителя «АВАР» (НЕ слаботочные триггерные (мультиплексные) от Итэлма), а именно силовые: блок от «Гранты», а кнопку от «Калины» нового образца (именно она силовая), так как они самые симпатичные по виду. Это конечно не двухрежимные импортные кнопки, но с интеллектуальным доводчиком будут работать не хуже. Также ставим сам доводчик типа Sheriff PWM-200.
Силовые кнопки легко определить по контактам — у них они толстые и плоские лопаточки, а у триггерных они тонкие штырьки как иголки!
Силовые провода (выделенные жирным на схемах) используем толстые >= 1мм2, управляющие же можно брать тонкие = 0,5 мм2.
Исключение! Если кнопки будут не на двери, а на центральной консоли и протянуты толстые провода >= 1,5мм2 от них к каждой двери — тогда можно обойтись без реле, так как дублирующей кнопки здесь нет, а каждая на свою дверь — соответственно просадки минимальны. Тогда далее можно не читать. Либо установить от каждой кнопки два 5-ти контактных реле в каждой двери максимально близко к мотору ЭСП, при этом протянув толстые провода на плюс и на минус, а от кнопок тонкие управляющие.
Плюс +12В нужно брать от блока предохранителей, а не от зажигания, иначе не будет работать автодоводчик стекол при постановке на охрану.
Массу лучше брать от болта за монтажным блоком, а не в двери, так как контакт в двери может быть не очень хорошим. Хотя в двери контакт тоже хороший если авто не старый. Клеммы брать луженые.
Схема подключения силовой кнопки стеклоподъемника «АВАР»
Схемы подключения дублирующей кнопки на двери водителя к основной кнопке пассажирской двери
При установке двух кнопок на один стеклоподъёмник они обычно устанавливаются последовательно (либо параллельно, но тогда обязательно развязываются через реле).
Основная кнопка — это кнопка, которая управляет стеклоподъемником той двери, на которой она установлена.
Дублирующая кнопка — водительская, которая дополнительно с места водителя управляет другим стеклоподъемником.
Последовательное подключение (для слаботочных триггерных кнопок)
Выход допкнопки 1 в водительской двери подаем на вход 6, а выход 7 на вход 3 основной кнопки на пассажирской двери. Разрезаем в колодке провода, соединяющие контакты 5-6 и 6-3. Минус контакта 5 идет теперь только на подсветку, а контакты 6 и 3 теперь берут выход с допкнопки 1 и 7 водительской двери и в нормально разомкнутом состоянии от них идет минус. Внимание! Подключение кнопок параллельно приведет к короткому замыканию при подъёме и опускании, поэтому только последовательно как на схеме! Жирным выделены силовые провода.
Так как цепь последовательная, то получаются большие просадки напряжения по длинным проводам и пассажирское стекло двигается очень медленно!
Поэтому при использовании дублирующей кнопки обязательно используем два 5-ти контактных реле, у которых выходной 30-й контакт без подачи напряжения на контакты обмотки (85 и 86) постоянно замкнут на контакт 88 (87а в импортных реле), что дает нам необходимый минусовой контакт при обесточенном реле (работает как переключатель). У дублирующей кнопки (на водительской двери) реле не нужны, так как она по сути является управляющей через пассажирскую кнопку для её же реле.
Реле нужно располагать как можно ближе к электродвигателю ЭСП пассажира (если нет доводчика) или же перед входом в доводчик (после доводчика нельзя, так как не будет работать детектор электромагнитного шума и будет крутить пока не сгорит!), то есть как можно ближе к потребителю!
Если на обмотку на контакт 85 подано напряжение, то выходной 30 контакт отключается от контакта 88 и подключается к контакту 87. Контакт 86 обмотки соединяется с минусом (массой). Использовать только такие 5-ти контактные силовые реле!
Реле 90.3747 — в пластмассовом корпусе с фланцем крепления;
Реле 113.3747 или 75.3777 — в металлическом корпусе с фланцем крепления;
При использовании слаботочных мультиплексных (триггерных) кнопок подключение всех двигателей ЭСП выполнять только через реле! При использовании обычного доводчика реле так же нужны, так как их нет в блоке доводчика на длительное нажатие и весь ток идет через кнопки и провода от них. Если же в доводчике есть свои реле и они используются и на короткое и на длинное нажатие, то отдельные реле не нужны.
Параллельное подключение (только для силовых кнопок)
Так как при последовательном подключении все-равно без реле не обойтись, то можно сделать схему дублирования кнопки параллельно, развязав основную от дублирующей кнопки через два 5-ти контактных реле: провода от основной кнопки рядом с двигателем ЭСП водителя идут напрямую на 88 контакт реле и с контакта 30 сразу на двигатель, а длинные провода от дублирующей кнопки идут на контакт 85 обмотки реле, а уже реле дает подпитку мощным плюсом двигателю ЭСП пассажира. При параллельном на основной кнопке (пассажирской) не нужно реле (провода здесь короткие), и мы тем самым исключаем лишнее щелканье реле при нажатии основной кнопки на двери пассажира.
Но все же даже для силовых кнопок лучше использовать последовательное соединение, чтобы не пригорали контакты в кнопках.
Тем более для несиловых слаботочных (триггерных) кнопок в данном случае обязательно придется использовать еще 2 лишних реле, чтобы разгрузить пассажирскую кнопку (поэтому для триггерных кнопок всегда используется последовательное подключение).
Схема подключения мультиплексной (слаботочной) кнопки ЭСП
Схема подключения ЭСП когда мультиплексная кнопка замыкает контакты на массу
Размеры места установки под кнопки ЭСП «АВАР»
Доводчик стекол Pandora DWM-210
Что он дает:
— полный ход стекла за одно кратковременное нажатие (“one touch”) — НО НЕ РАБОТАЕТ ОДНОВРЕМЕННО НА 2 СТЕКЛА (так как модуль имеет только один датчик электромагнитного шума мотора, тока и времени);
— остановка стекла в любом положении повторным нажатием в любом направлении;
— автоматическая остановка стекла при встрече с препятствием в проёме окна;
— автоматическое отключение двигателей ЭСП по превышению тока;
— автоматическое закрывание стекол при постановке автомобиля на охрану;
— автоматическое открытие стекол при снятии с охраны в прежнее положение перед постановкой на охрану, если стоянка продолжалась не более 20 минут. (Счетчик оборотов работает довольно условно и может оставить закрытые окна или недозакрыть).
Доводчик устанавливается в водительской двери.
ВНИМАНИЕ!
При удержании кнопки доводчик не использует свои реле, которые берут плюс (через предохранитель 20А) и минус от доводчика, а пускает на мотор весь ток прямо от кнопки, поэтому нужно после выхода от кнопки с длинными проводами ставить реле! Видимо это сделано для того, чтобы если выйдет из строя доводчик — всегда можно было закрыть окно простым удержанием кнопки. При коротком же нажатии на кнопку срабатывает доводчик со своими реле и доводит стекло.Реле ставить только на вход в доводчик с выхода после дублирующей кнопки! Если этого не сделать, то из-за просадок по длинным проводам последовательного подключения кнопок пассажирское стекло будет еле двигаться. Выход доводчика должен соединяться напрямую с мотором без реле, иначе не будет работать детектирование электромагнитного шума двигателя и доводчик работать не будет!
На выходе водительской силовой кнопки реле не нужны, так как там все силовые провода короткие.
Идеально ставить 2 доводчика на каждую дверь как делают штатно на иномарках — тогда режим AUTO будет сразу на 2 двери параллельно, а не поочередно. К тому же не нужно будет тянуть 2 лишних толстых провода на мотор из водительской двери в пассажирскую.
Знал бы сразу, что Pandora DWM-210 такое кетайское г**но без своих реле в силовой части доводчика, приобрел и установил бы доводчик Sheriff PWM-200, в котором четко разделена силовая часть от управляющей и к тому же можно одновременно закрывать два стекла в одно касание! То есть он определенно лучше!
Стеклоподъемники включаются модулем последовательно, после подачи запускающего импульса: сперва водительская дверь, потом пассажирская, причем следующий канал включается после отработки предыдущего. Если стекло уже закрыто, то модуль сразу же переключится на следующий канал. Контроль закрытия осуществляется по электромагнитному шуму двигателя.
При включении питания модуль доводчика нуждается в калибровке по току срабатывания защиты. Нужно КОРОТКИМ нажатием опустить до конца каждое стекло, затем так же поднять. При этом доводчик запоминает характеристики двигателя.
Управляющий сигнал на закрытие, открытие — ТОЛЬКО ОТРИЦАТЕЛЬНЫЙ.
Управление можно сделать от центрального замка или от дополнительного канала сигнализации.
Необходимо присоединить управляющий вывод охранной системы соответственно к «Бело/красному» (поднятие стёкол) И «Белому» (опускание стёкол) выводам модуля. Длительность запускающего импульса должна быть не менее 500мс. (0,5сек.).
Внимание: у старых выпусков были перепутаны местами провода кнопок и двигателей — для таких блоков меняем местами провода под номерами: 9<->2, 16<->20, 15<->10, 14<->19, 13<->18.
На последних пандорах (ноябрь 2011 и новее) схема правильная, так что менять местами провода от кнопок и двигателей не нужно!
Доводчики в разрыв провода на подъем ЭСП типа Convoy CL-200
Дополнение от 05.10.2014 г. по просьбе SIBUR95
Есть доводчики типа Convoy CL-200, которые подключаются в разрыв провода на подъем, который идет на двигатель ЭСП.
От доводчика идет 2 провода (вход и выход) и они в нем постоянно замкнуты. При включении доводчика они разрываются и на выходном появляется плюс +.
На GREEN при работе доводчика (постановке на охрану) появляется плюс и он идет на движок, а минус идет от кнопки (или от реле от 88 контакта на 30) на движок.
Когда же доводчик не работает, то он просто замкнутым своим реле пропускает с BLUE на GREEN ток и все.
Здесь схема отличается только тем, что минус двигателя подсоединен напрямую к кнопке (или к реле, если кнопка дублирующая), а плюс так же проходит через доводчик, а реле стоит только на ВХОДЕ в доводчик, тем самым не нарушая детектирование шума двигателя.
Еще можно сделать схему дублирования кнопки не последовательно, а параллельно на двух 5-ти контактных реле.
Плюс в том, что исключается последовательная цепь, реле не будет лишний раз щелкать от основной кнопки, которая ближе к движку (с короткими проводами) а только от дублирующей.
Минус в том, что для несиловых (триггерных) кнопок в данном случае придется использовать 2 лишних реле (реле 3 и 4 на схеме).
Схема на любое количество дублирующих кнопок и количество дверей
В параллель можно ставить сколько угодно кнопок и одновременно нажимать в разных направлениях —
схемотехнически короткое замыкание невозможно!
В ситуации когда на основной кнопке жмем подъем, а на дублирующей опускание — просто остановится, так как на обеих силовых линиях будет одинаковый потенциал.
Отличие доводчика — всего лишь наличие МК между кнопками и силовыми реле.
Преимущество схемы в том, что силовая коммутация в одном месте, нет потерь в жгутах и на кнопках, минимум "протяжек" проводов — по 2 всего на канал + масса.
В добротных, полнофункциональных доводчиках силовая часть и линии управления реализованы таким же образом + еще добавлены функции "автоопределения" активных управляющих уровней.
Если ставится доводчик типа PWM-200 on Sheriff со слаботочным управлением, то смысла в этих реле нет, так как они уже смонтированы в доводчике.
Эта схема с реле — для понимания сути реверсивного управления и дублирования кнопок в параллель.
Силовые выходы и в ЦЗ и в доводчиках реализованы именно таким образом.
Также желательно подключить неполярные электролитические конденсаторы на 22 мкФ 25В на контакты моторов ЭСП, чтобы сгладить размах токовых пульсаций в силовом канале доводчика и он корректно работал даже при износе моторов и внезапно не останавливал стекла при открытии и закрытии.
Обычная схема дублирующих кнопок на 4 двери
Дублирующие кнопки также нужно обязательно дополнить двумя 5-ти контактными реле (на схеме их нет).
Известно, что автоматические стеклоподъёмники приводятся в работу с помощью электродвигателя, который вмонтирован в дверь автомобиля. Наряду с электродвигателем существует и такое понятие как сервопривод мотора. О двух этих явлениях и о принципе работы электродвигателя, а также о его установке и снятию мы поговорим в нашей статье.
1. Сервопривод электродвигателя стеклоподъемника
Перед тем, как разобраться в том, что такое сервопривод электродвигателя стеклоподъемника, наверное стоит, для начала, вникнуть в значение непосредственно самого сервопривода. Это привод с руководством через отрицательную обратную связь, которая позволяет точно руководить параметрами движения.
Под таким названием может существовать любой тип механического привода (устройства, рабочего органа), владеющий датчиком (положения, скорости, усилия и т. п.) и блоком руководства силовой тягой (электронной схемой или механической системой тяги), поддерживающим нужные параметры на датчике в автоматическом режиме (и, как правило, на устройстве) исходя от заданного значения извне (положению ручки управления или численному значению от других систем).Говоря простыми словами, сервопривод это своеобразный «автоматически точный исполнитель».
Электродвигатель стеклоподъёмника с сервоприводом работает по тому же принципу управления через отрицательную обратную связь, которая и руководит параметрами движения.
Он оборудован разъемом и шестерней. В разъеме установлены пара бесконтактных селекторов на датчике Холла. Бесконтактный переключатель на вышеупомянутом датчике пользуется набором магнитов на оси, которая вращается, для извлечения информации об оборотах электродвигателя стеклоподъемника с сервоприводом и толкает синхронный импульс к передовому выключателю стеклоподъемника. Таким образом, при каждом вращении оси электродвижка стеклоподъемника бесконтактный переключатель пускает один импульс. Соответствующе, главный выключатель стеклоподъемника устанавливает угловую скорость и направление вращения электродвигателя.
2.Снятие и установка электродвигателя стеклоподъёмника
Снять и установить электродвигатель сможет и человек, не имеющий никакого отношения к работникам СТО.Следуя незамысловатой схеме и выполняя все установки правильно и деликатно, вы сможете сделать это легко и быстро.Что ж, давайте разбираться, как же снять электромотор стеклоподъемника передней двери. Для начала, вы должны убедиться, что вы отсоединили провод массы от АКБ. Далее переходим непосредственно к самой двери. Во –первых, нужно снять накладку с помощью рычага U30800. Затем отсоединяем декоративную решётку динамика с помощью рычага U30800. Воспользовавшись рычагом T20043 отсоединяем панель обивки.
Далее мы работаем непосредственно с самим стеклом: поднимаем его и опускаем вниз пока не откроется доступ к винтам зажимных колодок. Тогда мы попросту ослабляем винти этих самых колодок и опускаем стекло до середины. После проделанной работы нам придется приподнять заднюю часть стекла , и повернуть для извлечения.
После того, как стекло будет извлечено, нужно выкрутить винты, которые фиксируют замок двери, после чего нужно снять корпус личинки замка. Далее, дело остается за малым: снимаем фиксатор с ручки двери и снимаем обивку несущей панели двери с рамы двери. Выкручиваем винты и снимаем защитный кожух с обивки несущей панели. Добравшись, наконец-то, до электродвигателя следует отсоединить разъёмы электродвигателя стеклоподъёмника, выкрутить винты и снять электродвигатель. Вот вы и осилили эту, думалось бы, очень замысловатую задачу.
Установка электродвигателя происходит в обратном режиме, но при работе нужно обратить внимание на регулировку дверного замка. Многие задаются вопросом как же проверить исправность работы электродвигателя стеклоподъемника.Дабы проверить электродвигатель для стеклоподъемника, вам нужно сначала перенести напряжение с позитивно заряженного вывода аккумуляторной батареи и присоединить к массе выводы электродвигателя.
Многие задаются вопросами о том, что делать, если неполадки в работе электродвигателя стеклоподъёмника все же обнаружены. В таком случае, вы можете, как правило, обратиться с этой проблемой к работникам СТО, или же попробовать самому проделать ремонт следуя нашим нехитрым инструкциям. Итак, если вы уж взялись за дело самостоятельно, первое, что вам нужно сделать это снять электродвигатель по принципу, который был указан выше.
Далее, вам следует открутить крепление крышки моторедуктора и снять крышку. После того как мы это сделали, мы демонтируем ведомую шестерню и поворачиваем винты крепления электродвижка к корпусу редуктора. После того, как вы отключите провода электромотора из колодки, вы можете смело приступать к проталкиванию уплотнителя вместе с проводами внутрь корпуса электродвигателя. Затем, нужно отсоединить мотор от корпуса редуктора. И теперь начинается самое главное.
Ловкими руками вы зажимаете вал якоря электромоторчика в тисках, обернув его тканевой основой, чтобы не подвергнуть каким-либо повреждениям червяк. Далее вы выбиваете якорь ударами молотка по корпусу электродвижка через подставку из мягкого металла. После проделанной роботы вы сможете вынуть из отверстия в конце вала пластмассовый упор. Затем, вы упираете втулку в опору, и молотком через пробойник ударяете по окончанию вала. После отсоединения задней втулки от вала можно приступать к зачистке двигателя. Во-первых, с помощью «наждачки» нужно очистить внутреннюю поверхность корпуса электромотора и вал якоря от ржавчины. Потом, вам следует тщательно промыть все детали бензином. После очистки вы можете вставить заднюю втулку вала в корпус электродвигателя и запрессовать ударами молотка через подставку. Потом дело за малым.
Ставим щетки электродвижка, и фиксируем проводками, после чего устанавливаем якорь в корпус редуктора. Наконец, освобождаем щетки, и оцениваем их контакт с коллектором.Проверяем электродвигатель на исправность. Конечно, самостоятельный ремонт требует ловкости рук и тщательности исполнения, а также, можно сказать, дольки терпения и времени. Но плюсы его в том, что во-первых, вы сэкономите на визите в СТО и, во-вторых, докажете себе, что вы мастер! Хотя, если вы не уверены в своих силах, при неисправности электродвигателя стеклоподъёмника лучше обратиться к профессионалам.
3. Принцип работы электродвигателя стеклоподъёмника
Интересно, а по какому же принципу работает электродвигатель стеклоподъёмника? Основываясь на импульсивных команд от бесконтактных переключателей на датчике Холла в электродвижке стеклоподъемника модуль руководства стеклоподъемника в его главном выключателе устанавливает нужное положение окна и направление, в котором оно будет двигаться. Соответственно, главный выключатель руководит технологией сервопривода стеклоподъемников с позиции водителя. Когда первичное положение устанавливается перед передачей автомобиля, размещение стекла окна и направление работы способны запечатлиться в модуле управления в главном выключателе стеклоподъемника с сервоприводом.
В случае отсоединения кабеля от отрицательного вывода аккумуляторной батареи, а также при отсоединении разъема главного выключателя или разъема электродвигателя стеклоподъемника с сервоприводом, стабилизация исходного положения является обязательным пунктом выполнения. С помощью электродвигателя, движется и стеклоподъёмник. Популярными на сегодня стали системы «одного касания», когда благодаря одному нажатию на кнопку стеклоподъёмника стекло постепенно опускается вниз или поднимается вверх до крайней точки.
Работая в режиме подъема одной командой или одним касанием, окно может двигаться в выбранном вами направлении до тех пор, пока выключатель не поменяет положение на обратное, что приведет к остановке мотора, или пока к ECU не поступит сигнал от схемы двери. Главной проблемой «одного касания» есть тот факт, что если ребенок, к примеру, окажется зажатым в окне, он подвергается получению серьезной травмы. Дабы не допустить до такого, следует воспользоваться технологией возврата. Данная система предполагает прикрепление к якорю мотора дополнительного коммутатора, который благодаря двум щеткам передает сигнал, соответствующий скорости вращения движка. Если система обнаружит изменения скорости двигателя при закрывании окна ниже предположительного порога, то ECU реверсирует направленность движения двигателя, пока окно не откроется полностью.
После подсчитки количества принятых импульсов, ECU может также определить положение окна. Это очень важно, так как стеклоподъемник не должен реверсировать курс, когда происходит торможение окна в закрытом состоянии. В таком случае, нужно выполнить инициализацию, дабы ECU смог запомнить положение окна. Как правило, это делается простым путем включения моторчика до полного открытия окна, я затем до полного закрытия. Если вы не проделаете такую работу, то функция «закрыть в одно касание» попросту не заработает.
Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.
Принцип работы, функции и место расположения мотора стеклоподъемника
Когда стеклоподъемник установлен в машине и водитель постоянно пользуется возможностью открывать и закрывать окна, его не особо волнует, что за устройство внутри двери подталкивает механизм к работе. Как он устроен и где именно расположен?
Эти вопросы часто кажутся лишними. Вплоть до того момента, когда внезапно случаются проблемы. Стекло не двигается, в салон машины забирается ветер, всем пассажирам холодно. Именно в такие минуты приходится разбираться, в чем проблема.
Устройство, помогающее закрывать и открывать окно в машине, – это абсолютно обычный моторчик, который оказывает воздействие на моторедуктор стеклоподъемника.
В свою очередь, он заставляет работать червячную передачу, которая преобразовывает угловую скорость и зубчатую шестерню. Ядром всего этого механизма является якорь с роторной медной обмоткой. Он совершает вращения в корпусе цилиндрической формы, внутри которого находится статор. Когда совершается вращение ротора, червячная передача влияет на зубчатое колесо, которое носит характер поворотной ручки.
Работа механизма, его перечисленных выше компонентов, влияет на подъем и спуск стекла в автомобиле. Для каждого стекла предназначен свой собственный моторчик. Часто их можно различить благодаря специальной наклейке. Механизм находится между корпусом двери и обшивкой, и прикручен к двери при помощи винтов и гаек (автор видео — Стеклоподъем.РФ).
Ищем причину поломки и устраняем её
Прежде чем приводить в действие механизм стеклоподъёмника, нужно вставить ключ в замок зажигания и запустить двигатель автомобиля. Если стёкла при нажатии на кнопку не меняют своего положения, стоит искать причину и устранять её. Все возможные проблемы делятся на две группы: электрические и механические.
Электрические поломки
Неисправности этого характера одинаковы для всех систем, которые управляют движением стёкол в автомобиле. Для их выявления стоит проделать следующие действия:
- Проверяем выключатели и предохранители.
- Проводимость электрического тока необходимо проверить в том случае, если стёкла не приходят в действие только на некоторых дверях (чаще задних) или работают только от главного блока управления.
- Если предыдущие действия не принесли результата, то стоит провести осмотр проводов на предмет разрывов. Наличие на них гари или отсутствие цельности изолирующей системы служит поводом осуществить замену проводов.
- Осматриваем мотор стеклоподъёмника, который элементарно мог поломаться. Нужно подготовить схему электропроводки вашего авто, чтобы измерить напряжение на моторе и проверить саму проводку. Для этого потребуется вольтметр или обычная лампа с проводом.
Для проверки напряжения нужно подсоединить на концы моторчика вольтметр, включить зажигание автомобиля и нажать любую кнопку, которая активирует систему управления стёклами. В том случае, если стёкла не подают признаков жизни, а вольтметр отображает наличие напряжения, то необходима замена мотора стеклоподъёмника.
Механические поломки
Электроника выходит из строя не так часто, как механические детали, которые создаются из пластмассы. Если мотор подаёт признаки жизни, но со стеклом ничего не происходит, то можно смело предполагать о неисправности внутренних деталей. Вариантов может быть несколько:
- Холостая работа зубчатого колеса, которое потребуется заменить. Здесь не обойтись без разбора дверных панелей, извлечения неисправной детали и установки новой комплектующей.
- Обрыв троса возникает очень часто. Причин для этого может быть несколько. Истечение срока эксплуатации или перепады температурного режима, что делает трос хрупким. Об этой проблеме вы узнаете по стеклу, которое опустится в самую нижнюю часть двери. Здесь выход только один: открываем дверь, разбираем её карту, снимаем оборванный трос, устанавливаем и регулируем новый. При этих манипуляциях стёкла должны быть закрытыми.
- Рычаги стеклоподъёмника ломаются редко, но исключать эту проблему не стоит. Их замена осуществляется быстро и не вызывает особых проблем.
- Не стоит исключать механическое повреждение направляющих элементов, по которым стекло перемещается.
Инструкция по самостоятельной диагностике привода
Ремонт моторчика стеклоподъемника — не такое сложное занятие, как может показаться на первый взгляд.
Делается это следующим образом:
- Необходимо снять обшивку нужной двери, открутив шурупы.
- Открутить ручку двери, а также пластик с внутренней стороны.
- После этого нужно аккуратно вытянуть обшивку снизу вверх.
- Отсоединить динамик, который закреплен в двери.
- Через свободные отверстия нужно открутить шурупы, которые держат стекло. Важно: выкручивая шурупы, нужно соблюдать предельную осторожность, чтобы стекло не разбилось.
- Стекло извлечь.
- Далее нужно открутить механизм и извлечь его, при этом запоминая, где какой контакт был подсоединен, чтобы при замене все сделать в таком же порядке.
- После извлечения можно разобрать моторчик, чтобы тщательно обследовать его и прочистить. Также почистить можно обмотку, только очень осторожно, чтобы не повредить контакты. Если контакты окислились, их необходимо заменить, а механизм собрать.
- Замена стеклоподъемника и сборка происходит в обратном порядке.
Цена вопроса
На фотографиях ниже предоставлена информация о стоимости стеклоподъемника. Кроме этого, можно увидеть некоторые варианты этих устройств.
1. Стеклоподъемник Гранат (цена — 3560 рублей)
2. Стеклоподъемник Гранат на передние двери (цена — 3570 рублей)
3. Электростеклоподъемник Гранат (цена — 3630 рублей)
Правильно снимаем стеклоподъёмник
С тем, как снять стеклоподъёмник, проблем возникнуть не должно. Поскольку здесь всё просто:
- орудуем отвёрткой, откручивая крепёжные элементы, которые держат обшивку;
- снимаем плёнку защитную;
- откручиваем моторчик;
- отсоединяем узел, после этого стекло должно передвигаться легко от давления руки;
- откручиваем оставшиеся крепления на механизме стеклоподъёмника.
Стекло необходимо поддерживать и аккуратно снимать, чтобы оно не разбилось, не треснуло или не надкололось.
Раз уж вам пришлось разбирать двери и добираться до внутренней системы, то выделите время на смазывание всех элементов, которые поддаются трению. Таким образом, работа стеклоподъёмников продлится, а подготовка автомобиля к зиме станет на один пункт короче.
Вряд ли сегодня кого-то можно удивить тем количеством электрических приборов, которые окружают человека в повседневной жизни. Многие из которых давно взяли на себя часть человеческого труда и обязанностей. Повсеместная автоматизация процессов охватила самые разнообразные отрасли, начиная автомобилестроением, и заканчивая устройствами в быту. Львиную долю нагрузки относительно автоматического управления параметрами работы умных машин берет на себя сервопривод.
Что такое сервопривод?
Под сервоприводом следует понимать такое устройство, которое обеспечивает возможность управления рабочим органом посредством обратной связи. Само название произошло от латинского servus, что в переводе означает помощник. Изначально сервопривод использовался в качестве вспомогательного оборудования для различных станков, машин и механизмов. Однако с развитием технологий и постоянно растущей необходимостью повышать точность электронных устройств им начали отводить куда более значимую роль.
Устройство и принцип работы
Устройство и принцип работы каждого сервопривода может кардинально отличаться от других моделей. Однако в качестве примера мы рассмотрим наиболее актуальные варианты.
Конструктивно он может состоять из:
- Привода – устройства, приводящего в движение рабочий орган. Может выполняться посредством синхронного или асинхронного двигателя, пневмоцилиндра и т.д.
- Передаточный механизм – система шестеренчатой кривошипной или другой передачи, редуктор.
- Рабочий элемент – управляет перемещением в пространстве, непосредственно вал редуктора, передаточный механизм и т.д.
- Датчик – сигнализирует о достигнутом положении и передает информацию по каналу обратной связи.
- Блок питания – может применяться в случае прямого подключения сервопривода к сети, где требуется преобразование уровня и типа напряжения.
- Блок управления – осуществляет подачу управляющих сигналов на сервомотор для передвижения или корректировки места положения. Для этого применяются микропроцессоры, микроконтроллеры и т.д. К примеру, очень популярна плата Arduino.
Принцип действия заключается в подаче управляющего импульса на асинхронный или синхронный двигатель, который начинает вращаться, пока рабочий орган не окажется в нужной позиции. Как только будет достигнуто установленное положение, на датчике обратной связи появится нужный сигнал, который, перейдя на блок управления, прекратит питание электромеханического устройства. Движение сервопривода прекратится до появления новых электрических сигналов.
Далее начнется новый цикл работы устройства, число команд и последовательность их выполнения определяется заложенной программой.
Сравнение с шаговым двигателем
Вполне вероятно вы могли слышать, что та же функция часто выполняется шаговыми двигателями, однако между этими двумя устройствами имеется существенное отличие. Шаговый привод действительно осуществляет точное позиционирование объекта за счет четкого числа подаваемых на электрическую машину импульсов, они достаточно тихоходны и не создают лишнего шума. В остальном сервоприводы обладают рядом весомых преимуществ по сравнению с шаговыми электродвигателями:
- Могут использовать для привода любой тип электрической машины – синхронный, асинхронный, электродвигатель постоянного тока и т.д.
- Точность механического привода не зависит от износа деталей, появления люфтов, термических и механических изменений конструктивных элементов.
- Диагностирование неисправностей происходит моментально за счет обратной связи.
- Скорость вращения – любой обычный электродвигатель вращается быстрее шагового привода.
- Экономичность – вращение вала у шаговой электрической машины осуществляется при максимально допустимом напряжении питания, чтобы обеспечить максимальный момент.
Но кроме перечисленных преимуществ есть ряд позиций, по которым сервопривод уступает шаговому двигателю:
- Сложность системы управления и необходимость реализации ее работы – шаговый двигатель контролируется обычным счетчиком числа импульсов.
- Необходимость контролировать как частоту вращения, так и принимать меры для принудительного затормаживания в нужной точке – это приводит к дополнительным затратам энергии, программных и механических ресурсов.
- Обязательно используется дополнительный измерительный блок, контролирующий положение рабочего органа.
- Сервопривод обладает значительно большей стоимостью, поэтому применение шагового двигателя обходится дешевле.
Назначение
Сервопривод используется в самых различных направлениях науки и техники, где электрический привод, помимо функции вращения каких-либо элементов, должен выполнить и точное позиционирование. На практике они повсеместно используются в ЧПУ станках, автоматических задвижках, электронных клапанах, заводских станках с программным управлением, робототехнике.
В бытовых системах сервомоторы устанавливаются в системах отопления для регулировки подачи теплоносителя, топлива, управления нагревательным элементом, контроля переключения между центральными и автономными системами энергетических ресурсов и т.д. В автомобилях их используют для отпирания, запирания багажника, электронных блокировок.
Разновидности
За счет многолетнего развития сервоприводов сегодня можно встретить самые различные виды устройства. Поэтому мы рассмотрим наиболее распространенные критерии разделения.
По типу привода:
- асинхронные сервоприводы – получаются дешевле, чем с синхронным электродвигателем, могут обеспечить точность даже при низких оборотах выходного вала;
- синхронные – более дорогой вариант, но быстрее разгоняется, что повышает скорость выполнения операций;
- линейные – не используют классических электрических моторов, но способны развивать большое ускорение.
По принципу действия выделяют:
- электромеханический сервопривод – движение обеспечивается электрической машиной и шестеренчатым редуктором;
- гидромеханический серводвигатель – движение осуществляется при помощи поршневого цилиндра, обладают значительно большей скоростью перемещения;
По материалу передаточного механизма:
- полимерные – износоустойчивые и легкие, но плохо переносят большие механические нагрузки;
- металлические – наиболее тяжелый вариант, относительно быстро изнашиваются, но могут выдерживать любые нагрузки;
- карбоновые – имеют средние характеристики по прочности и износоустойчивости, в сравнении с двумя предыдущими, но имеют более высокую стоимость.
По типу вала двигателя:
- с монолитным ротором – тяжелые сервоприводы, создают вибрацию при вращении;
- с полым ротором – самые легкие модели, быстро реагируют на команды и набирают обороты, их легче контролировать;
- с бесколлекторным ротором – не имеют подвижных контактов, которые создают дополнительное сопротивление вращению, наиболее дорогой вариант.
Технические характеристики
При выборе конкретной модели сервопривода необходимо руководствоваться основными техническими параметрами, которые изготовитель указывает в паспорте устройства.
Наиболее значимыми характеристиками сервомотора являются:
- Усилие на валу серводвигателя – определяет механический момент и способность перемещать определенный вес, создавать усилие при резке, фрезеровке и т.д.
- Скорость вращения – показывает, сколько поворотов вала может совершить устройство за единицу времени.
- Величина питающего напряжения – чаще всего электроснабжение сервопривода выполняется постоянным током, хотя встречаются модели и с переменным током выходного напряжения. Подключение питания к сервоприводу осуществляется тремя проводами: питающим, управляющим и общим.
- Угол вращения сервопривода – поворот выходного элемента, как правило, выпускается на 180° и 360°.
- Скорость поворота – подразделяется на сервоприводы с постоянным вращением и с переменной частотой.
Способы управления
По способу управления могут быть аналоговые или цифровые сервоприводы, первый из них подает сигналы с разной частотой, которая задается специальной микросхемой, контролирующей работу устройства. Цифровые сервоприводы, в свою очередь, отличаются наличием процессора, который принимает команды и реализует их в качестве различных режимов работы на приводе.
Их практическое отличие заключается в наличии мертвых зон у аналоговых способов, цифровые лишены этого недостатка, к тому же они быстрее реагируют на изменения и обладают большей точностью. Однако цифровой способ управления имеет большую себестоимость и на свою работу он расходует больше электроэнергии.
На рисунке 8 приведен пример управления сервоприводом с помощью подаваемых импульсов:
Рис. 8. Схема управления сервоприводом
Как видите на рисунке, сигнал поступает к генератору опорных импульсов (ГОП), подключенному к потенциометру. Далее сигнал поступает на компаратор (К), сравнивающий величины на выходе схемы и поступающие от датчика на рабочем органе. После этого прибор управления мостом (УМ) открывает нужную пару транзисторов моста для вращения вала мотора (М) по часовой или против часовой стрелки, также может задавать усилие за счет полного или частичного открытия перехода.
Читайте также: