Показания датчиков мазда 6 gh
В макс моторс на мазде был.
1) я там перед НГ заежал с одной проблемой, так мне сказали, что у меня накрылась коробка и надо менять привод левый, тот который хрустел, при выворачивании колес. И мастер в рубашечке и галстуке сказал, что КОРОБКА надо снимать.
2) по осени ездил на диагностику с ошибкой Р2004 эл. маг клапан во впускном коллекторе. Тоже такой страх наговорили, в итоге оказалось, когда сам начал смотреть-фишка не до конца одета была (грибке) который под заслонкой стоит. БОЛЬШЕ К НИМ НЕ НОГОЙ!
Больше не хочу продолжать, что в итоге оказалось, по первому пункту.
да какой раз на раз)))
Если официалы не могли определить, что развалилась наружняя граната. Начали говорить, коробку надо снимать и дело может быть в приводе. Я когда её в гараже снял там весь сепаратор уже развалился(((
я вообще сканер за 1 рубль купил и делаю когда надо :)
у меня кстати значения были, но дома где-то.
я вообще сканер за 1 рубль купил и делаю когда надо :)
у меня кстати значения были, но дома где-то.
Диагностируемые автомобили:
Азия: Toyota, Lexus, Honda, Nissan, Mitsubishi, Proton, Mazda, Subaru, Suzuki, Isuzu, Infiniti, Holden, Hyundai, Kia, Daewoo, Ssangyong
Европа: Benz, BMW, Audi, Volkswagen, Seat, Skoda, Saab, Opel, Renault, Peugeot, Citroen, Ford, Fiat, LADA, GAZ, UAZ
США: General Motors, Chrysler, Ford
Диагностируемые системы:
Все электронные системы и электрические цепи автомобиля:
ENG, ENG-2, BM/GM, EA, CCS, TCS, ISC, ESCM, IFI/ERE, ELR, EDS, ABS/ETS/ASR, AIRBAG/ETR (SRS), A/T, BAS, ADS, ASD, SPS, 4WD, RB, RST, A/C, IMMO, EPS, ECS, AHLS, AAC, FWDS, FFH, KCS и др.
Функциональные возможности сканера:
- чтение и расшифровка кодов ошибок
- стирание ошибок
- вывод текущих данных (в цифровом и графическом виде)
- формирование групп параметров вручную
- проверка (активация) исполнительных механизмов
- возможность графического сравнения выбранного параметра со всеми остальными
- запись текущих параметров
- идентификация систем (блоков управления)
- проведение адаптации
- сброс сервисных интервалов
- чтение и программирование иммобилайзера
- поддержка протоколов OBD-I, OBD-II, EuroOBD
Дополнительно:
- возможность подключения к стандартному компьютеру (обработка результатов измерений)
- возможность подключения дополнительного оборудования через разъем USB
- возможность выхода на принтер (стационарный, переносной)
- универсальное питание
- программное обеспечение для ПК
- анализ записанных данных по результатам измерений
- загрузка обновлений через специальную программу
Основные функции сканера:
- диагностические коды ошибок
- текущие данные
- запись
- активационный тест
- адаптация
- программирование.
Спецификация:
Языки
ширина 125мм
Английский
длина 223мм
Китайский
толщина 68/43мм
Немецкий
вес основного блока 500гр.
Французский
Процессор: 16 bit Intel 80C196 20MHz 512byte RAM
Оперативная память: 256Mb
Дисплей: ЖК с разрешением 320х240 и с подсветкой
Связь с РС: USB cable
Вес основного блока: 0.5 кг
Вот характеристики нормального сканера.
Панель приборов Мазда 6 несет информацию водителю о работе различных систем автомобиля посредством показаний приборов и индикаторов. Для того, чтобы не растеряться, когда загорится очередной символ или пиктограмма, или значка лучше знать, что каждый индикатор обозначает. При появлении на дисплее сообщений о неисправности необходимо проверить состояние автомобиля или обратиться на сервисную станцию официального дилера Mazda.
Предупредительные индикаторы
Обозначение приборов и индикаторов приведено по рисунку.
Панель приборов Мазда 6 включает:
15 – Спидометр. Показывает скорость движения автомобиля в км/ч. Цена деления 5 км/ч. Mazda 6 Европа имеет максимум 260 км/ч, Mazda 6 США — основной циферблат до 160 м/ч, дополнитльный до 260 км/ч, Mazda Atenza Япония/Ю.Корея максимальная скорость 180 км/ч, Mazda 6 Южная Америка — основной циферблат до 260 км/ч, дополнительный до 160 м/ч.
18 – Кнопка переключения показаний одометра и счетчика суточного пробега. При длительном удерживании кнопки нажатой в режиме счетчика суточного пробега происходит обнуление показаний суточного пробега.
ВАЖНО! Длительная эксплуатация автомобиля с горящей лампой не рекомендуется, так как может привести к увеличению расхода топлива, ухудшению тяговых характеристик автомобиля и поломкам двигателя.
Индикаторы информируют о неисправностях и относятся к системам безопасности
- сигнализатор включения стояночного тормоза загорается и горит постоянно при включенном стояночном тормозе, если выключатель зажигания находится в положении «START» или «ON» (зажигание включено). Индикатор гаснет при выключении стояночного тормоза;
- сигнализатор недостаточного уровня тормозной жидкости. Если сигнализатор продолжает гореть после выключения стояночного тормоза, возможной причиной является неисправность тормозной системы.
ВАЖНО! Заглушите двигатель и проверьте уровень тормозной жидкости в бачке главного тормозного цилиндра, при необходимости долейте жидкость, доведя ее уровень до нормы.
Если сигнализатор продолжает гореть или есть другие признаки неисправности тормозной системы, дальнейшее движение на автомобиле запрещено. Доставьте автомобиль на эвакуаторе на сервисную станцию Mazda.
ВАЖНО! При горящем сигнализаторе усилитель рулевого управления не функционирует. В этом случае значительно возрастает усилие на рулевом колесе.
Системы помощи в критических ситуациях и стабилизации
Индикаторы дополнительных и специальных систем
Индикаторы, которыми оборудованы дизельные автомобили
9 – Индикатор красный наличия воды в топливном фильтре для автомобилей с дизельным двигателем.
Water in Fuel – предупреждение о наличии воды в топливе, также может указывать на необходимость сервисного обслуживания системы очистки топлива.
Включены свечи накала. Загорается после включения зажигания. Запуск двигателя производится после того, как значок исчезнет.
Diesel Particulate Filte — фильтра макрочастиц (сажевый фильтр) требует замены.
Diesel Exhaust Fluid – добавьте жидкость для каталитической реакции очищения отработавших газов.
Причиной загорания индикатора может стать слишком высокий уровень эмиссии в системе очистки выхлопных газов.
Индикатор ЕDC указывает на неисправность в системе электронного управления впрыска топлива (Electronic Diesel Control). При этом мотор автомобиля может работать с перебоями, глохнуть или не заводится. Возникновение данной проблемы может быть следствием загрязнения топливного фильтра, неисправность форсунки или клапана на топливном насосе, а также завоздушивание топливной системы.
Вода в дизтопливе или неисправность электронных систем управления двигателя.
Замените ремень ГРМ. Индикатор загорится при включении зажигания и потухнет, когда запустите двигатель.
Индикаторы внешних световых приборов
11- Индикатор указателей поворота (аварийной сигнализации) в виде стрелок зеленого цвета. Мигает при включении левого или правого указателя поворота или аварийной сигнализации. При неисправности одной из ламп мигают с удвоенной частотой.
12 – Индикатор включения дальнего света синего цвета.
36 -Индикатор включения приборов наружного освещения желтого цвета. Загорается при включении габаритных огней.
37 – Индикатор желтого цвета выключения/неисправности системы адаптивного головного (AFS).
Дополнительные индикаторы
- 0 комментариев
Мазда 6 (2008+). Датчик массового расхода воздуха: признаки неисправности
Расходомер воздуха в автомобиле, как и все компоненты в нем, подвержены дефектам. Этот электронный компонент в машине также называют ДМРВ - датчик массового расхода воздуха.
Этот важный датчик устанавливается, как правило, в систему впуска двигателя и располагается между корпусом воздушного фильтра и дроссельной заслонкой. Причем этим датчиком оснащаются как бензиновые, так и дизельные автомобили.
С помощью расходомера воздуха электронный блок управления двигателем определяет массу всасываемого двигателем воздуха. На основе данных с датчика электроника регулирует впрыск топлива, которое в необходимом количестве, должно быть смешано с поступающим кислородом. Это позволяет создавать в камере сгорания двигателя оптимальную топливную смесь для идеального сгорания.
Датчик массового расхода воздуха часто становится причиной появления ошибок в электронике автомобиля, что в итоге отражается на работе двигателя. Например, если расходомер воздуха в машине неисправен, то двигатель машины перестает работать в оптимальном режиме. В результате в большинстве случаев мотор начинает работать в аварийном режиме, а на приборной панели появляется предупреждающий значок "Чек двигателя".
Расходомер воздуха является чрезвычайно чувствительным компонентом, то он часто может быстро выходить из строя при неправильной установке. Именно поэтому мы не рекомендуем самостоятельную замену датчика.
Признаки неисправности расходомера воздуха (ДМРВ)
Датчик массового расхода воздуха не только важен для мощности вашего автомобиля, но и необходим для регулирования минимального уровня загрязняющих веществ в выхлопной системе машины. Если расходомер воздуха неисправен или загрязнен, он не будет давать правильные показания блоку управления двигателем. Итог: оптимальное количество топлива не будет подаваться в камеру сгорания.
В результате может получиться так, что система впрыска топлива будет подавать в камеру сгорания или впускной канал двигателя либо слишком мало, либо слишком много топлива.
Обычно при неисправности ДМРВ симптомы варьируются от потери мощности, потери плавности хода и нестабильности оборотов двигателя на холостом ходу, до осечек в системе зажигания и неправильного выхлопа. Иногда из-за поломки датчика массового расхода воздуха из выхлопной трубы может идти черный дым.
Однако обращаем ваше внимание, что подобные признаки могут появиться и при других неисправностях автомобиля. Например, похожие симптомы поломки могут быть при неисправности турбокомпрессора или из-за неисправности системы зажигания. Поэтому эти признаки неисправности не могут являться 100% индикаторами выхода из строя датчика расхода воздуха.
При определенных обстоятельствах, если датчик массового расхода воздуха начинает работать неправильно, двигатель автомобиля обычно переходит в аварийный режим (аварийную программу). При этом, как правило, на приборной панели автомобиля появляется значок "Чек двигателя".
Эта программа необходима, чтобы защитить мотор от повреждений и сохранить более-менее чистый выхлоп насколько это возможно. Естественно, при этом происходит уменьшение мощности двигателя. Чтобы владелец машины знал, что мотор перешел в аварийную программу и придуман значок на приборке "Чек двигателя".
Также с появлением "Чек двигателя" в электронной системе автомобиля в памяти записывается код ошибки, с помощью которой при диагностике можно узнать причину включения аварийной программы работы силового агрегата.
Проверка расходомера воздуха
Так как неисправность датчика массового расхода воздуха приводит к аварийному режиму работы мотора, а также к появлению в памяти компьютера автомобиля ошибки неисправности, самым надежным способом выяснить причину появления значка на приборной панели "Чек двигателя" является электронная диагностика автомобиля. Во время этой диагностики через специальный разъем специалист подключает оборудование для считывания из системы машины возникших ошибок.
Бывает так, что в памяти компьютера автомобиля нет активных ошибок. В этом случае необходим визуальный осмотр расходомера воздуха. Правда в большинстве случаев, визуальный осмотр не сможет точно установить неисправность датчика. В этом случае обычно автомастера предлагают владельцам установить для теста рабочий ДМРВ и проверить как поведет себя машина с новым датчиком. Естественно, если после тестирования выяснится, что признаки неисправности ушли, то старый датчик однозначно работал неправильно.
Правда этот способ подходит только, если мастер на 99% уверен, что причина плохой работы двигателя является неисправность ДМРВ. Дело в том, что не всегда у автослесаря найдется в запасах рабочий ДМРВ для вашей модели автомобиля.
В этом случае вам придется купить новый датчик.
Самым же простым тестом для проверки работоспособности датчика массового расхода воздуха является простое испытание, которое может сделать любой.
Для этого вам необходимо обесточить датчик.
Если двигатель после отключения расходомера воздуха стал работать лучше, то, скорее всего, ДМРВ неисправен. Однако этот тест, к сожалению, подходит не для всех автомобилей.
Причины дефектов в расходомере воздуха
Расходомер воздуха является износостойким компонентом в машине. Но ничто не вечно в нашем мире. Естественно, чем больше пробег машины, тем больше изнашивается запчастей. Это касается и датчика массового расхода воздуха. Например, по мере увеличения пробега автомобиля с каждым разом ДМРВ посылает блоку управления двигателем все больше неверных значений.
И рано или поздно ДМРВ выйдет из строя. К сожалению, на первых порах вы можете не заметить неправильную работу мотора. Но по мере увеличения износа датчика вы начнете замечать, что автомобиль ведет себя неправильно. Во-первых, первым признаком неисправности ДМРВ является заметное увеличение расхода топлива.
Но не всегда выход из строя датчика расхода воздуха связан с большим пробегом машины. Иногда расходомер воздуха может выйти из строя очень рано.
Например, если вы часто ездите быстро в сильный дождь, то вода может проходить через воздушный фильтр попадая на датчик массового расхода воздуха.
В итоге, вода может в короткий срок привести к дефекту датчика. Кроме того, датчик может быстро выйти из строя из-за негерметичности системы впуска или из-за несвоевременной замены воздушного фильтра. Дело в том, что если на датчик будет попадать песок и другая грязь из фильтра или с улицы, то он не сможет долго работать исправно.
Известно, что официальные дилеры зачастую грешат своей склонностью списывать неполадки с двигателем (а порой вообще все проблемы с автомобилем) на некачественное топливо, которое хотя бы раз использовал владелец при заправке своего авто. Сегодня как раз такой случай.
Здесь дублирую просто тщеславия ради.
В нашу мастерскую обратился владелец Mazda 6 2017 года выпуска с бензиновым двигателем объемом 2,0 литра. Изначальный повод для обращения — замена свечей зажигания. Учитывая год выпуска и пробег около 17 000 км, мы удивились и спросили, чем вызвана эта необходимость. Оказалось, изначальная проблема у владельца — горящая лампа Check engine и иногда заводящийся не с первого раза двигатель. Машина еще на гарантии, поэтому сначала владелец обратился к официальному дилеру. Тот провел диагностику, результат которой был приведен в заказ-наряде:
«Подключение MMDS. Считывание кодов неисправностей. Код Р0171 (РСМ) — система слишком обеднена. Выполнена проверка показателей работы ДВС в регистраторе данных. Обнаружены завышенные подстройки топливоподачи в сторону обогащения — бедная смесь. Выполнена проверка состояния свечей зажигания — присутствует нагар светло-бурого цвета — признак использования топлива низкого уровня качества. Выполнена проверка системы впуска и систем PCV, EVAP — норма. Для дальнейшей диагностики требуется выполнить демонтаж и осмотр топливных форсунок с дальнейшей чисткой. Рекомендуется смена постоянно используемой АЗС».
Циничные работники независимых СТО такие диагнозы переводят следующим образом: «мы проверили — подсосов неучтенного воздуха нет, вероятно, забились форсунки из-за некачественного топлива, поэтому мы не хотим согласовывать работы по гарантии. Дальше надо помыть форсунки. Это может не помочь, тогда будем разбираться дальше».
Для полноты картины: эта «диагностика» обошлась владельцу в 4000 рублей. Помыть форсунки предлагали за 38 000 рублей. Это довольно неожиданная цена, учитывая стоимость неоригинальных новых форсунок в районе 5000 рублей за штуку.
Что ж, начнем работать. Как показывает практика, любой диагноз от сторонней мастерской или от автовладельца требует обязательной перепроверки. Хотя бы потому, что, знай они точный диагноз, — к нам бы нипочем не обратились.
Чтение ошибок
Подключаемся сканером. По счастью, для диагностики систем впрыска обычно достаточно тех параметров, которые выдаются по стандартному протоколу OBD, без применения заводских протоколов. Это значит, что не надо расчехлять мультимарочный сканер с ноутбуком, а достаточно взять простую «читалку ELM327», которая, как правило, работает несколько быстрее.
Ошибка действительно есть — P0171 — слишком бедная смесь (рис. 1).
Здесь же мы видим и значение долговременной топливной коррекции 20,3 %. Для дальнейшего обсуждения необходимо явно проговорить, как это работает.
1. Блок управления по датчику массового расхода воздуха, датчику давления во впуске и датчику температуры воздуха во впуске понимает, сколько воздуха попадает в цилиндр.
2. Исходя из стехиометрического соотношения, а также с учетом показаний датчика положения педали газа рассчитывает, сколько топлива надо впрыснуть. Количество топлива регулируется временем открытия форсунки, оно же — время впрыска.
3. Блок управления также учитывает показания датчика кислорода в выхлопе — по нему можно понять, была ли смесь на предыдущем такте сгорания бедной или богатой. Если смесь была бедной, блок управления увеличивает время впрыска, если богатой — уменьшает. Это изменение и называется коррекцией, или кратковременной коррекцией (short term fuel trim).
4. Если кратковременная коррекция долгое время находится в значениях выше определенного порога, блок управления увеличивает так называемую долговременную коррекцию (или адаптацию, или long term fuel trim), при этом уменьшая кратковременную коррекцию.
При штатно работающей системе адаптация имеет постоянное значение, близкое к нулю, коррекция постоянно изменяется в пределах ±2 % от нуля, и никаких вопросов не возникает. Ошибка P0171 возникает, если по какой-то причине смесеобразование нарушено так, что адаптация достигает некоего порогового значения. У разных производителей этот порог разный. У Mazda, как мы видим, это 20 %, у Toyota/Lexus — 50 %, у Opel — около 30 % и так далее. Конкретные цифры уже не столь важны. Главное — причина возникновения ошибки именно в превышении данной величины.
Эта ошибка относится к категории системных. То есть она свидетельствует о неправильной работе системы в целом, без указания на конкретный элемент (в отличие, например, от ошибки по какому-то датчику).
В данном случае проблема может быть вызвана:
- подсосом неучтенного воздуха через неплотности во впуске или через системы EVAP (рециркуляция паров топлива) и PCV (вентиляция картерных газов). В этом случае смесь всегда формируется без учета дополнительного воздуха, вызывая необходимость постоянной коррекции;
- неправильными показаниями датчиков на впуске (ДМРВ, etc). Ситуация аналогична предыдущей, только здесь количество воздуха занижается расходомером из-за его неисправности;
- неправильными показаниями лямбда-зонда. В этой ситуации количество топлива рассчитывается верно, но неправильно оценивается состав смеси, сгоревшей в предыдущем такте;
- забитыми форсунками. В данном случае проблема вызвана тем, что их производительность ниже расчетной, то есть фактически впрыскивается меньше топлива, чем изначально «хочет» блок управления;
- проблемами с ТНВД или некорректными показаниями датчика давления. Проблема сводится к предыдущей, то есть к несоответствию фактического и расчетного количества впрыснутого топлива.
Теперь каждую из теорий необходимо рассмотреть и проверить. Первый вариант уже проверен дилером, но это не избавляет от необходимости перепроверки.
Проверка диагноза от дилера
Если свести к простому, то системы EVAP и PCV сводятся к дополнительным трубкам, подключенным ко впуску в обход расходомера. Если оттуда подается слишком много воздуха, когда блок управления рассчитывает на меньшее, — смесь формируется неправильно. Значит, самая простая проверка — сдернуть все эти трубки, заткнуть их во впуске, завести двигатель и посмотреть на значение адаптации. Увы, чуда не произошло — адаптация осталась на том же уровне.
Вторая проверка – герметичность впуска. Конечно, по-хорошему ее надо проверять с помощью дымогенератора. За неимением такового проверять приходится кустарно, с помощью баллончика очистителя карбюратора, брызгая им во все подозрительные стыки на впуске. В случае неплотности очиститель засосет в камеру сгорания, где он и сгорит вместе с подаваемым бензином, вызвав кратковременное повышение оборотов двигателя. В нашем случае обнаружить неплотности не удалось, так что версию о подсосах воздуха решено исключить.
Итак, первичные проверки дилеров подтверждены и нареканий (кроме стоимости) не вызывают.
А что там с некачественным топливом? Там же на свече должен быть какой-то ужас? Ну-ка, посмотрим!
А вот здесь (рис. 2) к дилерам есть ряд вопросов. Например, как, по мнению дилеров, должна выглядеть свеча при работе двигателя на «топливе высокого уровня качества». В общем, после этого заключение от дилера остается только нервически скомкать и выбросить в мусор.
Рассмотрение собственных предположений
Неправильные показания датчиков на впуске исключаем, основываясь на двух пунктах:
1) показания на холостом ходу похожи на правильные;
2) вообще, случаи «уставших» расходомеров известны, но не с таким возрастом и пробегом.
Неправильные показания лямбда-зонда тоже отметаем, так как «уставшая» лямбда обычно просто медленно реагирует на изменение состава смеси, а вот постоянного занижения или завышения показаний не наблюдается. Разумеется, предварительно посмотрели и на показания лямбды в графическом виде, не ограничиваясь теорией.
Следующая теория — о давлении топлива. Поскольку у нас система с непосредственным впрыском, блок управления отслеживает давление в топливной системе с помощью отдельного датчика, показания которого доступны сканеру. Видно, что давление в норме и быстро растет при прогазовке (рис. 3).
О неисправностях датчиков давления, занижающих показания, слышать тоже не доводилось, а с ТНВД, судя по графику, все в норме. Конечно, возможно, это наша персональная неквалифицированность, но пока эту версию тоже отметаем.
Пока все ведет нас к теории о забитых форсунках. Однако прежде, чем снимать их, сделаем еще один шаг. Вообще-то, обычно такой шаг считают признаком отсутствия квалификации, но нам в конце концов надо машину починить, а не имидж крутых диагностов строить. Поэтому уверенно открываем поисковик и вводим в него что-то типа «Mazda 6 p0171 skyactiv». И результат нас радует: в выдаче куча ссылок на форумы владельцев, где разные люди жалуются на такую проблему и обсуждают ее. Из всего этого изобилия информации важны два пункта:
1) проблема действительно часто возникает на свежих Mazda 6 с этим двигателем;
2) проблема действительно уходит после промывки форсунок.
План действий
Хорошо, форсунки надо снять и промыть. Снять мы можем, а вот с промывкой есть вопросы — стенда у нас нет. Можно, конечно, обратиться в стороннюю организацию, но это долго. А главное — с трудом верится в то, что это «топливо низкого уровня качества» умудряется забить форсунки изнутри — как-то же ездят по стране десятки и сотни тысяч автомобилей с системами FSI, TSI, GDI и прочих синонимов непосредственному впрыску.
А вот что еще попадает на форсунки непосредственного впрыска — так это нагар. Это дело нешуточное. Он и при сгорании идеального топлива появится, и при идеальном составе смеси, и вообще ДВС без него практически не бывает. А форсунка ведь торчит наконечником прямо в камеру сгорания. Теоретически при неудачной конструкции форсунки или ее неудачном расположении в камере сгорания возможна ситуация, когда нагар будет препятствовать нормальному распылу топлива. Учитывая количество обсуждений проблемы в сети, выглядит вполне реально. В этом случае загрязнения вполне возможно промыть снаружи без стенда и ультразвука.
Поэтому в итоге с клиентом согласовывается такой план действий: форсунки снимаются, промываются снаружи, ставятся на место и, если это не поможет, снимаются повторно, с визитом в стороннюю организацию на полноценную промывку.
Ход работ
Снять форсунки на этом моторе несложно. Впуск хоть и громоздкий, но держится всего на шести болтах. Куда больше проблем доставляет необходимость снятия всех клипс крепления проводки (рис 4).
Рампу с форсунками тоже снять несложно — четыре болта крепления и гайка топливной трубки (рис. 5).
Внешний осмотр форсунок настраивает на оптимизм. В смысле на подтверждение выдвинутой теории: отверстия, через которые впрыскивается топливо, расположены на форсунке в районе, обведенном на фотографии красным (рис. 6).
Там же наблюдается и максимальная концентрация нагара. В одном из материалов в Интернете говорилось также об изобилии нагара в канале ГБЦ, в который устанавливается форсунка. Туда тоже заглядываем, но никакого «криминала» не видим (рис. 7).
Очистителем карбюратора в канал, правда, все же брызгаем, смывая все это, но очевидно, что самое главное — в промывке форсунок. Стенда, как уже говорилось, у нас нет, поэтому действуем кустарными способами. В качестве чистящего средства берем жидкость для раскоксовки как достаточно активную, чтобы размыть отложения, и в то же время достаточно щадящую, чтобы не навредить. Для промывки наливаем жидкость в подходящую емкость и ставим форсунку наконечником в эту жидкость (рис. 8).
«Отмачивались» форсунки около 40 минут, по причине не слишком большого количества свободного времени. После извлечения из жидкости и смыва ее очистителем получили результат (рис. 9) – неидеально, но явно лучше, чем было.
Так и тянет пройтись еще тряпочкой, но страшновато затолкать нагар в отверстия еще сильнее. Он и так не вышел из отверстий до конца. Остается только надеяться на то, что от воздействия жидкости нагар стал мягким и вымоется бензином при работе двигателя. С этой мыслью и ставим форсунки на место.
Результат и выводы
После установки форсунок автомобиль завелся не с первого раза, добавив пару седых волос, но на второй раз завелся, первое время подымив белым дымом с характерным запахом сгорающего реагента для раскоксовки. Зато после прогрева и подключения сканера результат обнадежил: долговременная коррекция (адаптация) установилась на отметке 11,5 %, кратковременная коррекция при этом колебалась в пределах ±2 % от нуля. А после тестовой поездки адаптация и вовсе пришла к цифре 5,5 % (рис. 10).
Мы этим не ограничились и поймали клиента еще через пару дней — он как раз проехал пару сотен километров. Результат удивил в хорошем смысле — за это время адаптация упала до 3,9 % (рис. 11). В итоге довольный клиент отправился ездить дальше, дав напоследок обещание непременно заехать на проверку показаний адаптации через несколько тысяч километров пробега.
Так что проблема подтверждена, решение, вроде бы, найдено. Осталось продумать методику — стоит ли увеличить длительность «отмачивания» форсунок, а также имеет ли смысл в подобных случаях выполнять очистку камеры сгорания с применением соответствующих жидкостей. Ну и где-то в глубине души надеяться на отзывную кампанию от Mazda по решению этой проблемы — все лучше, чем дилерам штамповать заказ-наряды с отказами в гарантии по причине «топлива низкого уровня качества».
UPD: 10.01.2020 подключался к автомобилю и повторно смотрел коррекции. За это время автомобиль проехал что-то около 7000 км. Долговременная коррекция осталась в районе 3-4%. Учитывая предыдущий пробег, ожидал роста коррекций. С чем связано отсутствие — неясно. Известные изменения — владелец сменил заправку (тоже сетевая и из числа солидных брендов). Говорит ли это что-то о качестве бензина? Не знаю.
Некоторые водители обнаруживая ошибки Mazda 6 GH предпочитают не обращаться в сервисный центр за профессиональной помощью, а диагностируют и устраняют их самостоятельно.
Рассмотрим, где находится диагностический разъем у Мазда 6 GH, при помощи которого нужно подключать устройство для считывания кодов неисправностей.
Где и какой диагностический разъем у Мазда 6
Для проведения диагностики Mazda 6 необходимо точно знать, где находится разъем, через который подключается сканер считывания неисправностей систем. В зависимости от года выпуска модели местоположение разъема может меняться.
- С 1988 по 1995 гг. Разъем MECS находится в подкапотном пространстве, в левой части возле стойки.
- С 1996 по 2000 гг. Размещался в подкапотном пространстве также в левой части. Представляет собой 17 контактный коннектор типа DLC.
- С 2000 года разъем находится под передней панелью над педалями, в виде 16 контактного коннектора.
Разъем имеет прямоугольную форму, позволяет подключить устройство, считывающее ошибки Мазда 6.
Разъем OBD II в Mazda 6
Разъем для диагностики OBD II начал устанавливаться на автомобили Мазда 6 GH начиная с 2000 года в Европе.
Сам разъем имеет 16 контактов, по 8 штук сверху и снизу. Для считывания ошибок Mazda 6 не лишним будет знать цоколевку разъема. Рассмотрим назначение по номерам контактов.
Правильное проведение диагностики
У Mazda 6 второго поколения (GH) режима самодиагностики нет, поэтому нужно проводить ее только сканером.
- К диагностическому разъему Мазда 6 подключается сканер ошибок при выключенном зажигании.
- Производится установка связи между сканером и подключенным устройством (телефоном, планшетом, ноутбуком) по bluetooth.
- В программе выбрать Мазда 6, дополнительно указав год выпуска (поколение) и тип кузова.
- Запустить двигатель автомобиля параллельно с режимом диагностики на устройстве.
- Через некоторое время программа выведет на экран один или несколько кодов, которые остались с предыдущего сеанса устранения неполадок.
- Осуществляется удаление найденных ошибок на Mazda 6.
- Теперь нужно проехать несколько км и повторно запустить анализ, это даст возможность найти действующие ошибки.
- Переписать коды, чтобы в дальнейшем расшифровать, если автосканер не делает этого автоматически.
- Отключить прибор для диагностики.
Программа для диагностики Forscan одна из лучших для сканирования Мазда 6 GH адаптером ELM 327.
Лучшие недорогие автомобильные сканеры
Среди недорогих сканеров для автомобилей Scan Tool Pro (Black Edition) один из лучших. Он является лучшим сканером, способным работать с большинством существующих автомобильных марок.
В процессе диагностики Мазда 6 он считывает не только коды силового агрегата, но и анализирует состояние систем АСС, ABS и т.д.
Кроме считывания ошибок на Mazda 6, сканер отобразит на экране доступные датчики, показывая их состояние в реальном времени. Также он отображает действительный пробег, вин-номер авто, производителя блоков управления и их версию. Подключение осуществляется беспроводным типом, через bluetooth либо wi-fi.
Ошибки Мазда 6
Диагностика Mazda 6 GH покажет основные проблемы.
Чтобы выявить среди них действительные, которые не дают автомобилю работать в нормальном режиме, нужно следовать инструкции при работе со сканером. Это позволит выделить на общем фоне приоритетные коды, которые рекомендуется расшифровывать в первую очередь для устранения имеющихся неполадок.
Ошибка P0661
При появлении ошибка Р0661 на Мазде 6 нужно проверить клапаны на впускном коллекторе. Их два, они отличаются по цвету: коричневый и черный.
Чтобы проверить каждый из них на работоспособность, нужно первоначально снять клеммы, используя мультиметр проверить контакты. Показателем исправного клапана будет сопротивление в 35 Ом. Если клапан неисправен, будет диагностирован обрыв цепи.
Чтобы снять неисправный клапан, нужно сначала вынуть 2 патрубка, открутить болты, крепящие пластину, к ней же прикручен и клапан. После того, как болты, крепящие пластину будут сняты, нужно открутить гайку снизу пластины используя ключ на 10, далее клапан вынимается. Для замены на исправный клапан нужно знать каталожный номер установленного.
Временной бюджетной заменой за 250 рублей является клапан от автомобиля ВАЗ-2107, сопротивление соленоида составляет 35 Ом, код детали — 1902.3741. Но придется поколхозить.
P2187
Ошибка Р2187 Мазда 6 GH может сигнализировать о нескольких появившихся проблемах:
- отсутствие герметичности на впуске у шлангов абсорбера
- открытый клапан абсорбера
- в прокладках коллектора имеются дыры
- 1-ая лямбда работает неправильно
- установленное ГБО где-то травит
В процессе диагностики, как правило, выявляется проблема с ГБО, это означает наличие подсоса через «капельницу».
Устранив эту неполадку, при повторной диагностике датчик бедной смеси более не появляется. При этом долгосрочная коррекция опускается ниже 5%, после непродолжительной поездки она достигает нулевой отметки.
Р0841
Появившуюся ошибку Р0841 на Мазда 6 GH устранить очень легко. Причиной ее появления является датчик давления масла — FNE2-21-2J1A. Он располагается с внешней стороны АКПП, что делает его замену быстрой. Стоимость нового, оригинального датчика 2300 рублей.
Замена старого датчика на новый занимает всего 5 минут, при повторной диагностике код не отображается.
Читайте также: