Для чего нужен электрический стартер
Для успешного запуска двигателя внутреннего сгорания необходимо устройство, которое придаст кривошипно-шатунному механизму начальный импульс, то есть провернет маховик до нужных оборотов. Таким устройством является стартер и именно он отвечает за пуск двигателя. В статье подробно рассмотрим устройство и принцип работы стартера автомобиля, а также его возможные неисправности.
Устройство стартера
Стартер автомобиля представляет собой электродвигатель. Он преобразует электрическую энергию от аккумулятора в механическую работу, которая приводит в движение маховик и коленчатый вал, для начала процесса движения поршней. Стартером оборудованы все двигатели.
Принцип работы устройства основан на законах физики, которые известны со школьной скамьи. Если между двумя полюсами магнита поместить проволочную рамку с двумя концами, а потом пустить через нее ток, то она начнет вращаться. Это и есть самый простой электродвигатель.
Простой автомобильный стартер представляет собой металлический корпус, в котором находятся четыре магнитных сердечника (башмаки). Эти магниты в корпусе и представляют собой статор электродвигателя. Раньше на башмаках наматывалась обмотка возбуждения, на которую подавался электрический ток от аккумулятора. То есть это был классический электромагнит. На современных же устройствах применяются обычные магниты.
Другой важной деталью устройства является якорь. Он представляет собой вал с напрессованным сердечником из электротехнической стали. В пазах сердечника находятся те самые рамки, которые будут вращаться вокруг полюсов магнита. Концы рамок соединены с коллектором, к которому подходят четыре щетки – две положительные от АКБ и две отрицательные, которые будут идти к массе.
В закрывающей задней крышке находятся щеткодержатели с пружинками, которые постоянно поддавливают щетки к коллектору для обеспечения контакта. Также в задней крышке установлена опорная втулка якоря или подшипник.
На металлическом корпусе находится входной контакт. К этому контакту подключается плюсовая клемма аккумулятора (+). Ток проходит по рамкам якоря и выходит на отрицательные щетки массы. Масса соединяется с отрицательной клеммой аккумулятора. Таким образом, создается магнитное поле вокруг рамок якоря и он вращается.
Плюсовой провод АКБ, который подходит к стартеру, значительно толще остальных. По этому проводу подается пусковой ток, равный примерно 400А.
Ток от аккумулятора на стартер не может подаваться постоянно. Он нужен только в момент запуска двигателя. Поэтому между плюсовым проводом аккумулятора и контактом стартера есть так называемый медный пятак, который замыкает контакты.
На валу якоря также выполнено шлицевое соединение, на котором находится направляющая втулка и бендикс с шестерней с возможностью осевого перемещения. Это движение обеспечивает контакт шестерни непосредственно с зубчатым венцом маховика. Простыми словами можно сказать, что бендикс подходит к маховику, проворачивает его, сколько это необходимо, а потом отходит обратно.
Якорь начинает вращение только тогда, когда шестерня уже вошла в зацепление с маховиком.
Основные компоненты
Таким образом, основными составляющими стартера можно назвать:
- магнитный статор;
- вал с якорем;
- втягивающее реле с компонентами (электромагнит, сердечник, контакты);
- щеткодержатель с щетками;
- бендикс с шестерней;
- вилка;
- элементы корпуса.
Принцип работы
Учитывая устройство стартера, рассмотрим его работу пошагово:
- Водитель включает зажигание и на втягивающее реле подается управляющее напряжение. Катушка реле намагничивается и перемещает сердечник.
- Сердечник подводит бендикс и шестерню к маховику при помощи вилки и в конце своего хода замыкает контактные пятаки на электродвигатель.
- Пусковой ток подается на обмотку якоря, который начинает вращаться в магнитном поле статора. Стартер начал работать.
- Двигатель запустился, водитель повернул ключ из положения пуска. Управляющий ток перестал подаваться на втягивающее реле, пятаки разомкнулись, а бендикс с шестерней вернулся в исходное положение под действием возвратной пружины. Стартер прекратил свою работу.
Устройство бендикса
Бендикс представляет собой довольно интересное устройство. Иногда его называют муфтой свободного хода или обгонной муфтой.
Для запуска двигателя нужно, чтобы маховик вращался не медленнее, чем 100 об/мин. Так как шестерня стартера намного меньше зубчатого венца маховика, ей нужно вращаться в 10 раз быстрее, чтобы придать маховику необходимое ускорение. Это 1000 об/мин.
Когда двигатель заводится, маховик начинает вращаться очень быстро. Он передает это быстрое вращение на шестерню. Нетрудно посчитать, что скорость вращения шестерни при этом будет уже 10 000 об/мин. Если на вал стартера передалось такое ускорение, то он бы не выдержал. Именно для этого и нужен бендикс. Он передает вращение от шестерни на маховик, но не передает его обратно от маховика на шестерню.
Сам бендикс состоит из двух частей: шестерни и корпуса. Внутренняя обойма шестерни входит в корпус с внешней обоймой. Внутри этой обоймы находятся четыре ролика с пружинками. Корпус бендикса вращается через вал стартера. При вращении внутренняя обойма шестерни как бы заклинивает в корпусе и вращается, а при вращении шестерни от маховика эти ролики расходятся и не передают вращение на вал. Сам вал стартера при этом вращается с прежней скоростью.
Виды стартеров
Как было описано выше в современных стартерах применяются не башмаки с обмоткой возбуждения, а магниты. Магниты в качестве статора позволяют значительно уменьшить габариты устройства. При этом частота вращения якоря повышается. Поэтому иногда применяется редуктор.
Исходя из этого, стартеры делятся на:
- редукторные;
- простые (безредукторные).
С устройством и работой простого стартера мы уже познакомились. Работа редукторного основана на тех же принципах, что и простого, но имеет немного другое устройство. Крутящий момент от якоря вначале поступает в планетарный редуктор, который его преобразует, и далее на вал бендикса. Вращение от якоря на шестерню передается через водило планетарного механизма.
Этот вид стартера имеет следующие преимущества:
- более высокий КПД;
- меньшее потребления тока;
- небольшие размеры;
- запуск двигателя даже при низком заряде аккумулятора.
Но такая конструкция сказывается на сложности ремонта.
Основные неисправности
Все возможные виды неисправностей стартера можно разделить на механические и электрические.
С механическими узлами может быть связано:
- Залипание контактных пятаков.
- Износ подшипников и удерживающих втулок.
- Износ роликов бендикса.
- Заклинивание вилки или сердечника втягивающего реле.
Проблемы с электрикой:
- Выработка щеток и пластин коллектора.
- Обрыв цепи в обмотке башмаков (статора) или втягивающего реле.
- Замыкание и перегорание обмоток.
Щетки и втягивающее реле не ремонтируются. Эти детали меняются на новые. Ремонт обмотки лучше доверить квалифицированному автоэлектрику. Однако необходимо понимать, что зачастую выходит из строя не сам стартер, а сопутствующие элементы. В таком случае необходимо провести диагностику для более детального выявления причины неисправности. Проще всего это сделать персональным диагностическим сканером, к примеру, с помощью недорогого мультимарочного устройства Rokodil ScanX.
После диагностики сканер укажет на точную причину неисправности, будь то перегоревший предохранитель, неисправность выключателя зажигания или неисправность электрической цепи. Rokodil ScanX подойдет практически для любых автомобилей с ODB-II разъемом и поможет сэкономить деньги на ремонте.
Стартер – это довольно сложный механизм, который требует внимания от водителя. Любые шумы и скрежет лучше оперативно устранять. Но несмотря на общую сложностью устройства, принцип его работы очень простой. Поняв его, можно самостоятельно устранить многие неисправности.
Газоразрядные источники света давно вошли в повседневную жизнь. Они применяются для освещения жилых и производственных помещений и дают устойчивое освещение. Оно достаточно стабильно, когда нет никакой деградации элементов в схеме.
Стартер нужен только для пуска схемы на газоразрядных лампах. Далее он не принимает участия в работе светильника.
Люминесцентная лампа (Она же газоразрядная или дневного света) является герметичной колбой. В ней расположены с разных сторон электроды. Внутренняя ее часть покрыта люминофором – веществом, которое светится при эмиссии электронов. Трубка содержит пары ртути.
Стандарт дает светильнику 10 секунд на включение с момента подачи напряжения.
Устройство стартера для лл (люминесцентной лампы)
Пусковое устройство – необходимый элемент схемы освещения на этом типе источника света. Это второй по важности элемент осветителя.
Классический стартер – вещь чувствительная к условиям эксплуатации, это самый недолговечный компонент системы. При его выходе из строя, осветительная система не может быть запущена.
Схема подключения стартера к лампам дневного света
При рассмотрении схемы становятся понятны функции, выполняемые стартером.
- Включается в момент подачи напряжения питания,
- В момент старта прогреваются катоды, так как без их прогрева эмиссия электронов не возможна.
- Размыкает цепь после прогрева.
Схема биметаллического стартера всегда одна и та же. Существуют различные варианты исполнения.
Внешний вид стартера
Корпус зачастую изготавлен из пластика, контакты размещаются на пластине из текстолита (может использоваться и другой диэлектрический материал). Некоторые изготовители снабжают стартеры прозрачным смотровым окошком. Стартеры времен СССР имели корпуса из алюминия. Внутри всего два элемента: колба с биметаллическими контактами и конденсатор. Они включены параллельно. Конденсатор стартера требуется для сглаживания высоких токов, гасит дуговой разряд между электродами, также необходим для размыкания электродов. Конденсатор снижает износ стартера. Если конденсатора нет, то электроды могут спаяться в момент дугового разряда между ними. Как долго после будет работать схема – непредсказуемо. Дроссель (катушка индуктивности) необходим для создания импульса.
В колбе находятся два электрода, сама она заполнена инертным газом. Обычно применяют неон, реже – водородно-гелиевая смесь. Электроды биметаллические, подвижные. Разработаны две конструкци: либо два подвижных контакта (симметричный), либо один (несимметричный). Первый более распространен. Он дешевле при производстве. Пускатели старого образца стабильно работали при разбросе питающего напряжения в пределах 20 процентов. При большем отклонении от номинала работа не гарантировалась. Новые такой проблемы не имеют.
Принцип работы стартера
Компоненты пускового устройства рассмотрены. Как он работает?
- Нет напряжения – электроды внутри колбы разомкнуты.
- Подается напряжение питания. Между электродами стартера появляется тлеющий разряд, токи небольшие (обычно не более 50 мА).
- Тлеющий разряд ведет к разогреву электродов. Под действием температуры происходит обратимая деформация электродов. Разряд завершается с замыканием этих биметаллических электродов.
- Цепь замкнулась, начинается прогрев электродов для начала эмиссии.
- Электроды внутри колбы стартера начинают остывать и возвращаются в исходное положение. Цепь разрывается.
- Весь этот процесс приводил к появлению импульса высокого напряжения, проходящего через дроссель. Свет зажигается, яркость достигает нормативной.
- Стартер подключается параллельно источнику света. На его контактах напряжение ниже номинального. Уже не возникает тлеющего разряда, биметаллические контакты внутри колбы не разогреты. Сработать он не может самопроизвольно. Необходимый ток уходит на обеспечение эмиссии между катодами, это необходимо для свечения.
Схема подключения
Мощность источника света должна коррелировать с параметрами остальных компонентов. Если они не совпадают, то возможно либо, что схема вообще не запуститься, либо при запуске запуска электроды разрушатся из-за перегрева.
Для подключения двух лл не требуется дубляж схемы. Целесообразно сократить количество элементов. В этом случае высвобождается один из дросселей.
На второй схеме дополнительный газоразрядные лампы соединены последовательно, а стартеры включены в параллель. В остальном схемы идентичны. Различие будет в номинале дросселя. Он должен быть рассчитан на суммарную мощность ламп. Стартер должен соответствовать мощности лампы. Обычно, в схеме с двумя лампами, используют одинаковые мощности. Конденсатор желателен в параллели источнику переменного тока. Он предназначен для улучшения параметров питания. При мощностях ламп порядка 40 Ватт, обычно достаточно емкости от 2 до 10 мкФ. Напряжение конденсатора выбирается не ниже двукратного напряжения питания.
Виды стартеров, их основные параметры и маркировки.
- Срок службы много больше.
- При старении компонентов стартер не сработает, балластное устройство не перегреется.
- Более широкий температурный диапазон.
- Встроенная защита от перегрузки по току.
- Исключаются полностью электромагнитные помехи при старте осветителя.
- Фиксированного время прогрева электродов люминесцентной лампы, следовательно, повышается срок службы.
- Источник света включается сразу без мерцания.
Сейчас есть и полностью готовые инженерные решения. Это так называемые ЭПРА – электронные пускорегулирующие аппараты.
Этот вид представляет собой металлический корпус, в котором размещена электронная схема, дополнительные элементы не потребуются. На вход приходит напряжение питания, выходы предназначены для подключения к электродам.
При необходимости легко выбрать устройство на требуемое количество ламп. Монтаж и схема существенно упрощаются. Применение ЭПРА существенно продлевает срок эксплуатации благодаря «теплому запуску». Отсутствие подвижных биметаллических контактов обеспечивает бесшумность старта. Свечение ламп будет ровным. ЭПРА обеспечивают стабилизацию параметров питания. Соответственно параметры электронного пускорегулирующего аппарата и ламп должны совпадать.
Такое решение сочетает достоинства электронных стартеров и простоту схемы подключения. Это полностью готовое решение. Одно устройство может применяют для нескольких ламп.
Из минусов – цена. Электронные компоненты дороже чем совокупная цена пускателя, конденсатора и дросселя. Что удобно, сама схема подключения как правило разрисована на самом устройстве, либо в инструкции. Также схемы всегда есть на сайтах заводов-изготовителей.
Маркировка однозначно идентифицирует стартер и прописана в ГОСТ Р МЭК 60155-99 «Стартеры тлеющего разряда для люминесцентных ламп».
Чтобы двигатель внутреннего сгорания начал свою работу, требуется механизм, который его запустит. Коленчатый вал начинает свое вращение благодаря электрическому стартеру. Ранее использовались «кривой стартер» или «пусковая рукоятка», но на современных авто они не применяются.
Современные системы Start-Stop запускают бензиновые моторы, воспламеняя искрой сжатую топливно-воздушную смесь – стартер не нужен. Когда-то в автомобилях использовался стартер-генератор, прокручивающий коленвал ремнем навесного оборудования.
Мы подробно рассказали, как работает автомобильный стартер. Все об устройстве – в видео и статье:
Нужен оригинальный б/у стартер? Закажите его в каталоге «АвтоСтронг».
Принцип работы классического стартера
Классический стартер – это электромотор, прокручивающий коленвал за венец маховика. На валу стартера установлена шестерня, которая не постоянно зацеплена с зубцами венца, а только в момент запуска мотора, когда она «выдвигается» вперед. Результат – вал стартера вращается и прикладывает к коленвалу крутящий момент. Запускаются поршни, подается топливо и воспламеняется топливо-воздушная смесь, после чего запускается двигатель.
После того, как ключ перестает быть в положении «старт», стартер не вращается (на него не подается напряжение), а шестерня расцепляется с венцом маховика благодаря возвратной пружине.
Устройство стартера
В статоре стартера установлены постоянные магниты. Ток подается на обмотку через щеточный узел. Щетками выступают графитовые стержни.
Также стартер не обходится без редуктора, который облегчает стартер и дает возможность использовать менее мощный электромотор. Редуктор увеличивает крутящий момент, который развивает электромотор, при этом уменьшая скорость вращения.
В современных авто не используются безредукторные стартеры, причина – в высоком энергопотреблении безредукторных стартеров с установленными в них электромагнитами.
На валу, установленном на выходе из редуктора, есть бендикс – шестерня с обгонной муфтой. Шестерня выдвигается и цепляется с венцом маховика, и вращение стартера передается на коленвал. После запуска мотора маховик вращается в разы быстрее, чем вращался стартер. Стартер не выходит из строя благодаря обгонной муфте – вращение маховика не передается на вал редуктора и стартер.
Выдвижение бендикса происходит благодаря втягивающему реле – электромагниту с втягивающей и удерживающей обмотками. Он установлен на стартере. Сердечник (шток) реле передвигается после подачи напряжения благодаря магнитному полю.
Шток втягивающего реле движется назад, замыкая при этом контакты реле – «пятаки». Через «пятаки» на стартер подается плюс от аккумулятора. После этого:
• начинает вращение ротор стартера;
• отключается втягивающая обмотка из-за отсутствия «минуса»;
• магнитное поле, появившееся из-за удерживающей обмотки, удерживает сердечники реле.
Основные неисправности стартера
Выход стартера из строя приводит к тому, что двигатель не запускается. Причем стартер может прокручиваться, а коленвал – нет. В таком случае:
Редукторный стартер выйдет из строя за несколько минут, если будет вращаться от маховика заведенного мотора. В случае, если хорошо прогретый мотор запускается плохо, проверьте втулки и подшипники стартера: иногда они расширяются из-за нагрева и подклинивают вал якоря.
Проверяем, исправен ли б/у стартер
Узнать, корректно ли работает стартер, можно, используя заряженную АКБ и двух проводов. Корпус стартера нужно соединить с «минусом», а второй провод – с «плюсом» АКБ. Не дотрагивайтесь им до корпуса стартера во избежание короткого замыкания!
Используйте плюсовый провод и дотрагивайтесь по очереди до:
• контакта втягивающего реле – бендикс должен выдвигаться вперед;
• силового контакта стартера – начнут вращаться вал стартера и бендикс;
• одновременно – сперва контакта реле, после – верхнего силового контакта стартера. Бендикс выдвинется и начнет вращение (вместе с валом).
Несмотря на бурное развитие полупроводниковых технологий, люминесцентные лампы (ЛЛ) используются широко. Один из основных узлов, обеспечивающих работу источников света этого типа, – стартер. В этой статье мы разберемся, что такое стартер для ламп, для чего он нужен и как работает.
Что такое стартер
Что это за устройство? Для чего стартер вообще нужен? Чтобы разобраться в этом вопросе, выясним, что такое люминесцентная лампа, как она работает и чем отличается от источников света других типов.
Схема включения люминесцентной лампы
Кратко рассмотрим принцип работы люминесцентной лампы. Конструктивно ЛЛ представляет собой стеклянную колбу в форме трубки, в концы которой запаяны два электрода. Трубка заполнена смесью инертных газов с примесью паров ртути. Изнутри она покрыта слоем люминофора – вещества, способного излучать видимый свет при облучении ультрафиолетом.
Конструкция люминесцентной лампы
На рисунке цифрами обозначены:
- 1 – электрод;
- 2 – металлическая ртуть;
- 3 – инертный газ;
- 4 – люминофор;
- 5 – стеклянная колба;
- 6 – двухштырьковый цоколь.
При подаче на электроды лампочки в колбе начинается тлеющий разряд, заставляющий атомы ртути излучать ультрафиолет. Последний воздействует на люминофор, заставляя его ярко светиться.
С первого взгляда все просто, на практике – сложнее. В холодной лампе практически вся ртуть сконденсирована в виде капелек, осевших на колбе. При этом сопротивление газовой среды между электродами настолько велико, что при подаче рабочего напряжения на лампу разряда не возникнет. Чтобы его создать, выполняют следующие условия:
- Предварительно подогревают электроды, чтобы увеличить их способность излучать электроны.
- Подают повышенное напряжение на электроды, достаточное для пробоя газового промежутка.
Эти задачи исполняет стартер с электромагнитным дросселем. Они являются обязательными элементами любого люминесцентного светильника. Взглянем на классическую схему подключения люминесцентной лампы со стартером и дросселем.
Схема светильника с ЛЛ
При включении светильника контакты стартера замыкаются. Начинается подогрев спиралей электродов, которые оказываются подключенными последовательно с дросселем к сети. Как только спирали разогреваются, стартер размыкает цепь. На электродах лампы за счет самоиндукции в дросселе появляется импульс высокого (800 – 1 000 В) напряжения, зажигающего лампу.
В трубке начинается разряд, который переводит ртуть в парообразное состояние. Это снижает сопротивление газового промежутка. Теперь ЛЛ функционирует при более низком напряжении – рабочем.
Устройство и принцип работы
Влияние стартера на люминесцентную лампу мы выяснили, осталось разобраться в принципе его работы. Откуда устройство знает, сколько времени греть спирали? Как определяет, что лампа зажглась и в нем больше не нуждается? Взглянем на конструкцию стартера.
По сути, это малогабаритная газоразрядная лампочка. Подали на нее определенное напряжение – в колбе начался тлеющий разряд, лампочка засветилась. Но эта лампочка имеет одну конструктивную особенность. Один из ее электродов выполнен в виде подвижной биметаллической пластины.
Устройство стартера для люминесцентной лампы
На схеме цифрами обозначены:
- 1 – электрод из биметалла;
- 2 – неподвижный электрод;
- 3 – стеклянная колба, заполненная неоном;
- 4 – выводы электродов;
- 5 – конденсатор;
- 6 – защитный кожух (корпус);
- 7 – цоколь.
Чтобы понять принцип действия стартера, вернемся к схеме подключения ЛЛ, приведенной выше. Итак, включаем светильник в сеть. На электродах лампы и стартере появляется сетевое напряжение. Его недостаточно для пробоя газового промежутка ЛЛ, и она не зажигается.
Для неоновой лампочки стартера этого напряжения достаточно для запуска. В ее колбе возникает тлеющий разряд, который начинает нагревать электроды. Выполненный из биметалла изгибается и замыкается со вторым, неподвижным. Лампочка стартера тухнет, а ток через его замкнутые контакты начинает течь через спирали ЛЛ, подогревая ее катоды.
Через некоторое время биметаллическая пластина остывает естественным образом и разгибается. Контакт между электродами стартера разрывается, ток в цепи прекращается. Дроссель за счет самоиндукции выдает импульс высокого напряжения, которое прикладывается к катодам люминесцентной лампы. Высоковольтный импульс зажигает в колбе ЛЛ разряд. На ее катодах устанавливается рабочее напряжение – 130-140 В.
Этого напряжения недостаточно для возникновения разряда в лампочке стартера, поскольку ее напряжение зажигания – 180-200 В (для стартеров на 220 В). Таким образом, если ЛЛ запустилась, стартер в дальнейшей ее работе не участвует. Если пуск был неудачным, стартер повторяет процесс розжига.
Для чего нужен конденсатор в схеме
На рисунке выше под номером 5 обозначен конденсатор. О нем мы не сказали. Что это за конденсатор и для чего он нужен? Этот элемент, присутствующий в любом газоразрядном стартере, выполняет функции искрогасящего. Обычно это бумажный или керамический высоковольтный прибор емкостью до 0,05 мкФ.
Искрогасящий конденсатор в стартере
В момент размыкания электродов неоновой лампы на них, как и на катодах ЛЛ, возникает высоковольтный импульс. Это напряжение вызывает электрическую дугу, которая «тянется» за размыкающимися контактами. В результате контакты горят и могут даже залипнуть, «привариться» друг к другу. Результат – резкое сокращение времени службы стартера, а при залипании контактов – выход из строя. Конденсатор в момент размыкания электродов берет первый удар на себя – он сглаживает фронт высоковольтного импульса, давая время контактам разомкнуться.
Есть еще одна важная функция искрогасящего конденсатора. В момент размыкания электроды пускового устройства представляют собой натуральный искровой разрядник Попова, излучающий электромагнитные волны практически во всех диапазонах. В результате во время пуска люминесцентной лампы в громкоговорителях радиоприемников и звукоусилительной аппаратуры слышен треск, а на экранах телевизоров и мониторов наблюдается рябь. Конденсатор избавляет от всех этих неприятностей.
Не следует путать конденсатор, установленный в пусковом устройстве, с конденсатором, подключаемым параллельно светильнику. Они выполняют разные задачи.
Как проверить работоспособность
Проверить исправность стартера для люминесцентной лампы просто. Его нужно включить в сеть через обычную лампу накаливания мощностью 20-60 Вт.
Схема проверки пускового устройства для ЛЛ
Если лампа накаливания периодически мигает, то стартер исправен. В противном случае пусковое устройство придется заменить.
Мощность лампы накаливания нужно выбирать из диапазона мощностей люминесцентных ламп, на работу с которыми рассчитано пусковое устройство.
Какие бывают стартеры для ламп
Как работает стартер, мы разобрались. Осталось выяснить, какими они бывают и чем отличаются друг от друга. Прежде всего, необходимо знать, что кроме того пускового устройства, работу которого мы разобрали, существует еще один вид стартеров – электронные. Они выполняют те же задачи, но собраны на электронных компонентах – диодах, тиристорах, транзисторах, конденсаторах и т. п.
Электронный стартер
В чем отличие такого решения от классического с газоразрядной лампочкой? Вот основные преимущества электронной схемы:
- Больший срок службы. Электронное пусковое устройство не имеет механических контактов, которые подгорают, и биметаллических пластин, имеющих свойство «уставать». В результате срок службы электронного устройства в несколько раз выше обычного газоразрядного.
- Отсутствие помех. Бесконтактная конструкция излучает минимум электромагнитных помех, а значит, практически не влияет на работу чувствительной аппаратуры.
- Увеличивает ресурс ЛЛ. Электронное пусковое устройство прогревает спирали оптимальным током и строго заданное время. В результате лампа легче «стартует», спирали ее электродов не разрушаются от перегрева или холодного пуска.
- Отключение старой лампы. Если ЛЛ выработала ресурс и запускается с трудом (как вариант – запускается и тут же гаснет), то стартер отключает ее от сети.
- Защита от перегрузки. Если ток через спирали превышает допустимый, стартер отключает светильник. Это позволяет избежать перегрева дросселя и возгорания при неисправности светильника.
- Широкий диапазон рабочих температур. Электронный вариант способен работать в жестких температурных условиях – от -30 до +85 °С. Это позволяет использовать его в уличных светильниках и на объектах с тяжелыми температурными условиями.
Стоимость намного выше (до 10-20 раз) газоразрядного стартера. Так что смысл в замене газоразрядного пускового устройства на электронное не всегда есть.
Теперь об общих отличиях всех стартеров независимо от их конструкции. Пусковые устройства для люминесцентных ламп различают по двум основным характеристикам.
По рабочему напряжению. Как мы выяснили, напряжение зажигания стартера должно быть ниже питающего светильник, но выше рабочего напряжения лампы. В противном случае лампа не запустится (напряжение сети ниже) или стартер не отключится после пуска ЛЛ (рабочее напряжение лампы выше).
Выпускаются стартеры на два рабочих напряжения – 220 и 110 В (обычно указываются в диапазоне 110-130 и 220-240 В). Первые используются с лампами на 220 В, вторые – с лампами на 110 В. Лампы на 110 В могут работать в сети 110 или 220 В. Во втором случае они включаются парой, причем для каждой лампы требуется свой стартер на 110 В.
Полезно! Согласно ГОСТУ ГОСТ 8799-90 (переиздание 2004 г.) стартеры выпускаются на напряжение 127, а не на 110 В.
По мощности. Имеется в виду мощность ЛЛ, с которой будет работать устройство. Если мощность лампы выйдет из указанного на пусковом устройстве диапазона, то пуск ЛЛ будет ненадежным или не произойдет вовсе. Кроме того, чрезмерно мощная лампа сожжет контакты самого стартера. Обычно диапазон допустимых мощностей ламп указывается на корпусе стартера. К примеру, устройства, изображенные на фото выше, могут работать с ЛЛ мощностью от 4 до 22 Вт.
Есть и менее важные отличия – материал корпуса, влагозащита, устойчивость корпуса к УФ (актуально для уличных светильников), производитель и пр.
Расшифровка маркировки
Единого правила маркировки стартеров для люминесцентных ламп нет. Вариантов обозначений много. Согласно ГОСТ 8799-90 (переиздание 2004 г.) «Межгосударственный стандарт. Стартеры для трубчатых люминесцентных ламп» отечественные пусковые устройства маркируются следующим образом: [ХХ][С]-[YYY]-[Z], где:
- [ХХ] – мощность лампы, для которой предназначен стартер, причем:
- 20, 80 – предельные значения мощностей ламп, для которых предназначен стартер, нижний предел мощности составляет 4 Вт;
- 65, 70, 85, 90, 125 – значения мощности лампы, для которой предназначен стартер.
Для примера на фото ниже изображены пусковые устройства, предназначенные для ламп мощностью 4-80 Вт и для рабочего напряжения 220 В.
Стартеры 80С-220-1 (слева) и 80С-220-2 ГОСТ 8799-90
Теперь о зарубежной маркировке. Компания OSRAM обычно маркирует свои стартеры буквами ST и трехзначным буквенным кодом.
Таблица маркировки наиболее популярных пусковых устройств для ЛЛ компании OSRAM
* для электронной модели.
Фирма Philips маркирует свои пусковые устройства символом S и цифровым кодом. К примеру, модификация S2 рассчитана на работу с лампами мощностью 4-22 Вт при напряжении 110 или 220 В. S10 предназначена для ламп мощностью 4-65 Вт при напряжении 220 В. Есть и более мощные приборы этой компании. К примеру, стартер S12 может работать с лампами мощностью 115-140 Вт при напряжении 220 В.
Пусковое устройство S12 компании Philips
Фирма Sylvania маркирует свои изделия символами FS с числовым кодом. Чем ниже число, тем большей мощности лампы могут подключаться.
- FS-11 – 4… 62 Вт;
- FS-22 – 4… 22 Вт.
Важно! При желании можно найти и другие маркировки. К примеру, COP или PBS.
Стартер все той же Sylvania с маркировкой PBS к содержанию ↑Как подобрать стартер — практические примеры
Рассмотрим, как выбрать «правильный» стартер для люминесцентной лампы. Главный критерий – рабочее напряжение лампы, с которой будет контактировать пусковое устройство, и ее мощность.
Напряжение. Обычно производители не указывают рабочее напряжение на самой лампе, поэтому придется проявить смекалку. Смотрим наш светильник, если необходимо – снимаем защитное стекло и вычисляем рабочее напряжение источника света, ориентируясь на табличку ниже. Именно на такое напряжение и выбираем стартер.
Электростартер – это вспомогательный электрический прибор, предназначенный для запуска двигателя внутреннего сгорания. Он представляет собой двигатель постоянного тока, питающийся от аккумуляторной батареи подзаряжаемой генератором. При подаче питания стартер создает вращательное движение коленвала двигателя внутреннего сгорания, создав тем самым необходимые условия для розжига топлива и дальнейшей стабильной работы цилиндров.
Как работает электростартер
Для запуска двигателя внутреннего сгорания требуется создание оптимальных условий для розжига топливной смеси. Для этого важно раскрутить коленчатый вал до минимально необходимых оборотов, требуемых для воспламенения топлива в цилиндрах. Чтобы раскрутить коленчатый вал применяется сторонний источник механической энергии, в качестве которого и выступает стартер.
По сути он является электрическим двигателем постоянного тока с коллекторно-щеточным узлом. Стартер воздействует на двигатель только в период его запуска. После стабилизации работы он отключается. Специально для этого в устройстве предусматривается механизм управления.
За механическое управление электрического стартера отвечает втягивающее реле. Оно выполняет две функции. В первую очередь реле замыкает электрическую цепь, которая обеспечивает питание электродвигателя. Также оно вводит в зацепление шестерни, передающие вращательное движение на коленвал. Фактически оно выполняет такую же функцию, как коробка передач между колесами и двигателем.
Принцип работы электрического стартера в автотранспорте
При повороте ключа зажигания водителем, выполняется замыкание цепи втягивающего реле. Напряжение от аккумулятора поступает на обмотку реле, в результате чего образовывается сильное магнитное поле. Оно воздействует на якорь, тот сдвигается и реле соответственно втягивается. Зацепленная вилка смещает бендикс (обгонная муфта) по роторному валу. Как следствие шестеренка состыковывается с зубьями маховика.
После срабатывания втягивающее реле прекращает питание цепи. С обратной стороны на нем установлено 2 провода. Один идет для подключения питающего кабеля, а второй передает напряжение на электрический мотор.
Как только происходит срабатывание реле, то якорь втягивается и замыкает пятаки, являющиеся разрывными элементами цепи питания мотора. В результате на двигатель подается напряжение, и якорь двигателя начинает вращаться. В тоже время шестерня бендикса находится в зацеплении, поэтому передаточное усилие заставляет коленчатый вал вращается, двигая тем самым поршня в цилиндрах.
После запуска мотора, коленвал начинает обгонять по скорости вращение стартера. Тогда в устройстве срабатывает обгонная муфта, которая и прекращает контакт с валом. Это позволяет предотвратить механические повреждения обеих систем. В противном случае при продолжении подачи питания два механизма просто противодействовали бы друг другу.
Как только двигатель автомобиля переходит в штатный режим работы и водитель отпускает ключ замка зажигания, то пропадает питание стартера. От этого втягивающее реле срабатывает обратно. Отсутствие магнитного поля приводит к тому, что пружина возвращает якорь в штатное положение, пятаки размыкаются и бендикс спускается на место.
Электростартер, работающий по данной схеме, сейчас считается устаревшей конструкцией, главным недостатком которой выступает значительный вес и размер. Для реализации такой конструкции требовалось использование мощного электродвигателя, способного выдавать высокие тяговые усилия. При этом электромотор должен вращаться медленно. Такие стартеры плохо подходят для современных автомобилей, спецтехники, генераторов и прочих устройств, где требуется их установка.
Электростартер с редуктором
Более современные стартеры оснащаются редуктором. Благодаря этому возможно использование высокооборотистого, но мелкого мотора. Редуктор понижает обороты, переводя их количество в качество. Он увеличивает силу стартера, позволяя создать достаточный крутящий момент для раскручивания коленчатого вала. Такая система не просто компактная, но и экономичная. Она позволяет завести ДВС большее количество раз на одном заряде аккумулятора.
Современные стартеры могут оснащаться различными типами редукторов, но в подавляющем большинстве случаев применяются устройства с так называемой планетарной передачей. Ее достоинством является компактность и надежность. Характерной чертой планетарного редуктора выступает наличие дополнительного вала для установки бендикса. Это исключает прямую связь якоря с бендиксом. Они способны взаимодействовать между собой только через редуктор.
Классическая схема планетарного редуктора:
Основные неисправности электростартеров
Электростартер выступает ремонтопригодным механизмом, в случае неисправности который можно восстановить практически до первоначального рабочего состояния. Поскольку он состоит из вращающихся деталей, для него выпускаются ремкомплекты, в состав которых входят мелкие детали, нуждающиеся в периодической замене. Большинство остальных комплектующих, склонных к поломкам, можно найти в свободной продаже. Однако такие части электростартера как корпус в продаже в новом виде не встречаются. Их можно приобрести для ремонта в б/у состоянии. Отсутствие данных комплектующих обусловлено исключением их износа. Если они и нуждаются в замене, то только по причине нештатной ситуации, к примеру, механического повреждения сильным ударом, что бывает при аварии.
Чаще всего электростартера выходят из строя по причине:
- Износ подшипников.
- Подгорание пятаков.
- Стирание зубьев шестерни.
- Заклинивание якоря.
- Износ и/или заклинивание обгонной муфты.
Перечисленные неисправности относятся к механической части стартера. Большинство из них решаются заменой поврежденной детали. Исключением являются только заклинивание частей механизмов. В таком случае требуется их очистка и смазка. Также простым обслуживанием решается проблема подгорания пятака. Она устраняется механической чисткой.
Более сложными в диагностировании и решении выступают проблемы электрической части. Электростартер может быть неисправен по причине:
- Замыкания обмотки.
- Обрыва обмотки.
Кроме этого неисправность может вызвать износ щеток контактных пластин коллектора. Это определяется по их размеру. По мере износа они стираются и становятся меньше, поэтому со временем перестают доставать до контактных пластин. Конструкция большинства стартеров предусматривает простой механизм их замены, поскольку данная проблема является самой частой.
Неисправности обмотки стартера могут устраняться только специалистом. С помощью специального оборудования возможна перемотка якоря, что обходится дешевле, чем его замена на новый агрегат.
Оптимальный режим работы стартера и диагностирование поломки
Чтобы минимизировать частоту поломок стартера и увеличить его ресурс, требуется придерживаться некоторых правил. В первую очередь при запуске двигателя нельзя передерживать электростартер включенным. В противном случае тот может сгореть от перегрева. Именно это и выступает основной причиной выхода якоря из строя. Обычно на стартерах имеется табличка, на которой указывается рекомендуемая максимальная длина работы и частота перезапусков.
В большинстве случаев если двигатель не запускается больше 5 сек с момента начала работы стартера, то это говорит об неисправности последнего. Исключением может быть только сильный мороз, при котором топливо в двигателе плохо воспламеняется. Если дело именно в этом, то не стоит крутить стартер подолгу, чтобы он не сгорел. В таком случае у дизельных моторов нужно лучше прогреть свечи, а в бензиновых применить специализированную стартовую аэрозольную жидкость для пуска холодных двигателей.
Плохой запуск ДВС может быть связан не только с плохой работой стартера, но и множеством других причин:
- Недостаточный заряд аккумулятора.
- Поломка двигателя.
- Отсутствие подачи топлива.
- Засорение системы выхлопа.
Однако по определенным признакам можно без диагностики определить, что неисправен именно стартер. Говорить о его поломки могут:
- Задержка в работе после поворота ключа зажигания.
- Характерный треск.
- Слышен звук запуска электродвигателя, не сопровождаемый вращением коленвала ДВС.
- Полное отсутствие реакции на поворот ключа зажигания.
- Стартер не отключается после запуска ДВС.
В целом уход за электростартером подразумевает соблюдение 2-х основных правил:
- Делать перерывы между безуспешными пусками мотора не менее 30 сек.
- Не применять электростартер для движения авто.
Запуск стартера при включенной передаче автомобиля приводит к его движению. Этим часто пользуются при неисправности мотора или отсутствии топлива, чтобы продвигаться вперед. Такой способ движения быстро истощает аккумуляторную батарею, а кроме этого перегревает стартер. Таким способом можно вполне безопасно проехать несколько метров, но не более.
Хотя рекомендуемая пауза между поворотами ключа в замке зажигания составляет 30 сек, но в жару этот период лучше увеличивать. Короткая пауза не проблема если стартер запустил мотор со второй попытки, но при множественных повторениях подряд это повлечет сгорание якоря.
Читайте также: