МЕНЮ
  • Салон
  • Советы
  • Топливо
  • Трансмиссия
  • Тюнинг
  • Управление
  • Контакты

Принцип работы лимитера bmw

Обновлено: 10.05.2025

1) Введение.
Здесь представлена некоторая общая накопленная информация касательно основных информационных систем дорестайлинговых BMW E60, которую пришлось изучить разбираясь в проблемах установки BUSINESS NAV.

Интерфейс MOST (Media Oriented System Transport).
Все информационные системы автомобиля (NAV, Аудио, TV модуль, DVD/CD чейнджер, Телефон, HUD и пр.) посылают свои сигналы используя оптический интерфейс MOST (два отпических канала вход-выход для каждого устройства). Интерфейс можно представить в виде "кольца", в которое включены все системы.

Audio & Communication Computers (M-ASK или CCC):
Позади встроенного CD проигрывателя в центральной консоли находится аудио-коммуникационный компьютер. Различают две версии этого компьютера. Самый простой называется "M-ASK" (он имеет только один CD проигрыватель и "маленький" дисплей). Более продвинутая версия с большим экраном для навигации и допольнительным DVD дисководом - это "CCC". Компьютер подключен к интерфейсу MOST и отвечает не только за все информационные и развлекательные возможности машины, но и является соединительным звеном между MOST и остальными контрольными системами с другими интерфейсами. Дилеры BMW используют специальные оптические разъемы MOST в бардачке для загруки программных обновлений в различные блоки автомобиля.

CAS: Car Access Module (модуль, ответственный за открывание/закрывание дверей и сервисные данные пробега).

TCU: Telematic Control Unit - Модуль контроля Телематики.

2) Телематика.
Телематика — это сочетание телекоммуникационных и информационных технологий, которые используются для приема и передачи данных через каналы связи.
Автомобильные телематические системы, такие как BMW Assist, BMW Online и BMW TeleServices, помогают водителю в различных ситуациях, доставляя информацию прямо в автомобиль.

2.1) Экстренные вызовы.
При получении сигнала CRASH от SGM (Модуля безопасности) или при нажатии кнопки SOS модуль TCU делает звонок на специальный номер (BMW Assist) и передает:
• местоположение (используется GPS);
• время и направление движения еслимашина все еще движется.

Если используемые для передачи обычные системы автомобиля повреждены, то задействуются запасные:
• Телефонная антенна для экстренных вызовов, расположенная под полкой заднего окна вместо антенны на крыше.
• Дополнительный динамик, находящийся в обшивке под рулевой колонкой и напрямую подсоединенный к TCU вместо штатной аудиосистемы.
• Дополнительная батарея TCU.
• Дополнительный передатчик формата AMPS (USA), в случае отсутствия сигнала CDMA.
• Если специальный номер (BMW Assist) недоступен в течение 2-х минут, то TCU переключает вызов на местный экстренный номер (например, 911).

2.2) Передача сервисных данных.
Эта функция работает только при определенных условиях:
• Для USA: автомобиль с мобильным телефоном Motorola V60.
• Для Europe: автомобиль с Navigation Pro + Pro телефон.

3) Контрольные системы

Блоки TCU и ULF расположены под обшивкой багажного отделения в районе заднего левого колеса.

3.1) TCU - Модуль контроля Телематики.
Все разновидности TCU сделаны фирмой Motorola (на платформе Everest) и являются сложными устройствами, оборудованными сотовыми передатчиками (в некоторых модулях есть даже встроенная телефонная SIM-карта). В версии для USA модуль является автономным и использует частоты CDMA/AMPS 800/1900Mhz, но может работать параллельно и с подключенным телефоном (причем взаимодействие может осуществляться не только по проводам, но и посредством Bluetooth). Версия TCU для Euro использует частоты GSM 900/1800Mhz и работает только через Bluetooth с особым телефоном, находящимся в районе подлокотника. В держателе телефона есть специальное место для SIM-карты. В обоих случаях сотовый сигнал передается по коаксиальному кабелю на антенну на крыше. Но в случае с американским блоком TCU необходимы две антенны - одна для TCU, вторая для телефонного блока в подлокотнике.

Блок TCU выполняет следующие действия:
• Послыл экстренных вызовов.
• Посыл сервисных данных.
• Возможность приглушения звука путем отправки специального сигнала в CCC/MASK во время телефонного вызова.
• Распознавание голоса.
• Обработка команд, поступающих от Idrive, рулевого колеса или голосом.
• Передача телефонной книги из телефона в Idrive.
• Контроль за зарядкой телефона в подлокотнике.

3.2) ULF - Универсальная беспроводная система.
Модуль ULF является упрощенной версией TCU без передатчика и выполняет следующие действия:
• Возможность приглушения звука путем отправки специального сигнала в CCC/MASK во время телефонного вызова.
• Обработка команд, поступающих от Idrive, рулевого колеса или голосом.
• Передача телефонной книги из телефона в Idrive.
• Контроль за зарядкой телефона в подлокотнике.

4) Антенны.
Блоками TCU и ULF используются различные антенны.

4.1) Антенна на крыше включает
в USA:
• GPS антенну, используемую для Навигации и BMW Assist.
• Две антенны 800/1900 Mhz.
• 2 антенны радио Sirius.

в Europe
• GPS антенна только в версии с Pro Nav.
• GSM антенна 900/1800Mhz.

4.2) Телефонная антенна для экстренных вызовов.
Расположена под задней полкой и осуществляет передачу сигнала в случае отказа основных антенн. Всегда есть в машинах для USA и в версии Pro Nav для Europe.

5) Микрофоны.
• Микрофон со стороны водителя.
• Микрофон со стороны пассажира (только для CCC с SVS).

6) Антенный компенсатор.
Опциональный модуль для усиления антенного сигнала. Доступны две версии - для Europe (900/1800Mhz) и USA/Canada (800/1900Mhz).

7) Проводка.
Все блоки TCU/ULF посылают сигналы в CCC/MASK с помощью оптического интерфейса MOST. Какие-либо изменения и дополнения в оптических кабелях чрезвычайно трудоемки. К счастью,

если в комплектации E60 присутствует TCU или Premium HiFi, кабеля уже проведены в багажник и подсоединение, например, SIRIUS Radio возможно без проблем.

Большую часть информации взял от, по всей видимости, такого же дотошного человека fmusbmw.

Первые образцы этого симпатичного малолитражного автомобиля сошли с конвейера завода BMW, расположенного неподалеку от бывшего аэропорта Berlin-Johannisthal, 22 марта. Несмотря на то что Dixi во многом копировал уже существующие автомобили и собирался из разработанных для них компонентов и запчастей, в нем уже отчетливо проявились стилистические особенности, характеризующие BMW и по сей день. С самого начала оптимальное сочетание экономичности двигателя и уникальных динамических характеристик имело для BMW первостепенное значение и являлись неотъемлемой частью бренда DNA. К этому времени компания BMW была известна как производитель очень экономичной высокоэффективной продукции — авиационных двигателей и мотоциклов.

Прежде чем на радиаторной решетке Dixi появился сине-белый логотип, автомобиль был приведен к современным техническим стандартам и получил новый цельнометаллический кузов, который стал его отличительной чертой. В результате самая современная в то время модель BMW 3/15 сразу же победила в International Alpine Rally в 1929 г., успешно преодолев длинную трассу пятидневного Альпийского ралли.

Прототип технологии VANOS в 1938 г

В последующие годы инженеры BMW неуклонно шли по пути развития новых технологий и концепций, чтобы повысить экономичность двигателя и улучшить динамические характеристики и тем самым опередить конкурентов. Например, уже в годы специалисты BMW изучали возможность управления регулируемым кулачковым валом, а первый патент на эту технологию был получен в 1938/39 гг.

В нескольких прототипах авиационного двигателя BMW 802 уже применялась технология, которая затем была усовершенствована и по сей день используется в виде системы регулирования фаз газораспределения VANOS, обеспечивающей большую экономичность всех бензиновых двигателей BMW. На авиационных двигателях BMW мощностью 2 500 лошадиных сил впускные и выпускные клапаны управлялись кулачковыми дисками, которые устанавливались в разное положение во время работы двигателя.

В 1940 г. компания BMW представила еще одно мировое достижение в области основных технологий Efficient Dynamics — облегченную конструкцию. Гоночное купе BMW 328 Kamm — безусловно, один из самых ярких примеров исключительных достижений BMW 328 в автоспорте. Трубный каркас автомобиля был сделан из сверхлегкого сплава и весил всего 32 кг. Вместе с наружной обшивкой, сделанной из алюминия, и шестицилиндровым двигателем собственная масса автомобиля составляла всего 760 кг. Превосходная аэродинамическая форма, разработанная Вунибальдом Каммом (Wunibald Kamm), одним из первопроходцев в создании корпуса автомобиля обтекаемой формы, снизила коэффициент сопротивления воздуха примерно до 0,27. Эти инновации, а также двухлитровый двигатель мощностью 136 лошадиных сил обеспечивали автомобилю максимальную скорость 230 км/ч.

Компания BMW вернулась к спортивной концепции после войны и применила эти идеи в модели BMW 700 RS, появившейся в 1961 г. Исключительная легкость конструкциеи этого нового гоночного автомобиля с сине-белой эмблемой достигалась за счет все того же трубного каркаса в сочетании с алюминиевой наружной обшивкой.

Вместе со всем снаряжением маленький гоночный автомобиль весил всего 630 кг, что не создавало никаких проблем для двигателя, специально разработанного для этой выдающейся спортивной модели. Разгон RS до 160 км/ч обеспечивал двухцилиндровый двигатель мощностью 70 л. с. и объемом 0,7 литров, развивающий 100 л. с. мощности на литр, что даже сегодня можно считать уникальным показателем. BMW 700 RS, пилотируемый великим немецким гонщиком Хансом Штуком (Hans Stuck), одержал целый ряд побед во всех видах ралли по пересеченной местности.

1968: шестицилиндровые двигатели BMW снова задают стандарт на годы вперед

В 1968 г. концерну удалось продолжить славную традицию годов и начать выпуск больших шестицилиндровых двигателей. Тогда же состоялся дебют моделей BMW 2500 и 2800, которые вернули компанию на рынок просторных седанов и купе.

Обе модели имели одинаковые двигатели, установленные под углом 30° и оснащенные коленчатым валом, который был закреплен не менее чем семью подшипниками, включал двенадцать противовесов для устранения вибрации и был дополнительно усилен верхним распределительным валом. Сочетание этих особенностей естественным образом объясняло характерную для турбинных двигателей плавность работы шестицилиндровых двигателей BMW.

Одной из технических инноваций этих двух двигателей, идентичных по своим конструктивных характеристикам, была трехсферная вихревая камера сгорания, которая взаимодействовала с поршнями соответствующей конструкции. Именно эта конфигурация гарантировала гораздо более интенсивный процесс сжигания, который в данном случае обеспечивал исключительную мощность при значительной экономии топлива: двигатель объемом 2,5 литра выдавал максимальную мощность 150 л. с., а двигатель объемом 2,8 литра — еще более впечатляющие 170 л. с. Эти показатели обеспечили вхождение BMW 2800 в элитную группу автомобилей, развивающих скорость 200 км/ч. Автомобиль BMW 2500 достигал максимальной скорости 190 км/ч и практически не имел конкурентов. Неудивительно, что шестицилиндровые двигатели BMW долгие годы оставались эталоном современной технологии двигателей.

В 1971 г. был выпущен гоночный автомобиль BMW 3.0 CSL, реализовавшим тогда спортивную составляющую концепции Efficient Dynamics:и внесший существенный вклад в развитие автоспорта. И снова рациональная облегченная конструкция способствовала повышению динамичности, что достигалось за счет улучшенной аэродинамики, позволяющей оптимизировать характеристики управляемости автомобиля. Так, компания BMW использовала специально разработанные увеличивающие прижимающую силу спойлеры и кожух, полностью закрывающий днище кузова. Все эти нововведения позволили легким, мощным и быстрым купе BMW быть лучшими долгие годы и выиграть практически все Европейские автомобильные первенства с 1973 по 1979 г.

Электромобиль BMW — символ Олимпийских игр 1972 года

В начале годов специалисты-разработчики BMW уделяли пристальное внимание не только выдающимся достижениям в автоспорте. Так, например, Олимпийские игры 1972 г. стали отправным пунктом интенсивных исследований в области технологии электропривода. Символом Мюнхенских игр стала ограниченная серия оранжевых автомобилей BMW 1602 Saloon, оснащенных работающими от батареи электромоторами. А в последующие три десятилетия концерн BMW стал одним из мировых лидеров по разработке и производству электромобилей.

Всего через год компания BMW представила еще одну новинку, воплотившую самые уникальные технологии: модель BMW 2002 turbo стала первым серийным автомобилем в Европе, оснащенным двигателем с турбонаддувом. Компания BMW вышла на лидирующие позиции в развитии технологии турбонаддува и в то же время положила начало успешному использованию этой технологии как в серийном производстве, так и в ограниченных сериях спортивных автомобилей.

Следующий шаг в области развития экономичной технологии был сделан BMW в 1978 г. Спортивный суперкар BMW M1 с четырехклапанной технологией, пришедшей из автоспорта, стал новым эталоном в области оптимизации движения заряда в цилиндре. Концерн BMW начал успешно использовать эту технологию в автоспорте в конце , а через 10 лет сделал ее производственным стандартом с оптимизированной технологией движения заряда в цилиндре, которая впоследствии была использована в других моделях , таких как M635CSi, M5 и M3.

В 1979 г. первый блок электронного управления DME (Digital Motor Electronics), установленный на BMW 732i, установил новые европейские стандарты управляющего устройства, которое позволяет развивать большую мощность при меньшем расходе топлива. Это усовершенствование было дополнено автоматической отсечкой подачи топлива, сокращающей до нуля потребление топлива в режиме холостого хода.

Все эти инновации стали новой вехой развития рынка, что позволило концерну BMW стать первопроходцем в области автомобильной электроники.

В процессе повышения экономичности автомобиля компания BMW в первую очередь ориентировалась на водителя. Именно поэтому в 1981 г. автомобили BMW 5 серии были оснащены первыми в мире индикаторами расхода топлива, что стало важным достижением в области электроники. Новое устройство позволяло водителю следить за расходом топлива, наглядно демонстрируя возможности более экономичных режимов работы двигателя. И сегодня индикатор расхода топлива играет важную роль в развитии стратегии Efficient Dynamics концерна BMW.

BMW 524td: веха в развитии дизельной технологии

Решение BMW выйти на высококонкурентный рынок дизельных автомобилей было поистине революционным в истории компании, а выпуск нового поколения двигателей стал важным технологическим прорывом.

Модель BMW 524td, выпущенная в июне 1983 г., была оснащена дизельным двигателем, в котором преимущества дизельной технологии сочетались с отличительными чертами BMW, такими как превосходные динамические характеристики и тщательная проработка деталей. Дизельный двигатель с турбонаддувом BMW был разработан на основе имеющихся рядных шестицилиндровых двигателей объемом от 2,0 до 2,7 литров.

Благодаря технологии турбонаддува и большому поперечному сечению потока на впускном и выпускном клапанах двигателя объемом 2,4 литра инженеры BMW смогли увеличить мощность до внушительных 115 л. с. Одновременно было проведено усовершенствование вихревой камеры сгорания в соответствии с еще более высокими стандартами, что позволило существенно уменьшить расход топлива и снизить шум работы двигателя. Согласно стандарту DIN современный дизельный двигатель с турбонаддувом BMW имел расход топлива всего 7,1 л на 100 км, несмотря на скорость автомобиля 180 км/ч и ускорение с места до 100 км/ч за 12,9 с, тем самым были заданы новые стандарты динамических характеристик для дизельных автомобилей.

Поистине уникальная концепция:

Еще одной новой концепцией, представленной BMW на рынке бензиновых автомобилей, стала , которая была представлена осенью 1981 г. в автомобиле BMW 528e, продававшемся на рынке США. Весной 1983 г. за ней последовала модель BMW 525e в Германии, а затем и модель BMW 325e, выпущенная в 1985 г. в Европе.

В то время такой показатель расхода топлива большого шестицилиндрового двигателя (практически с таким же расходом топлива в реальных условиях движения) был признан сенсационным. Концепция большого двигателя с относительно низкой мощностью была тогда довольно необычной для Европы и остается исключительным явлением и по сей день.

В начале компания BMW также начала разработку водородного автомобиля, став лидером в области водородных технологий, и совместно с Германским научно-испытательным центром по авиационным и космическим проблемам в 1984 году выпустила несколько экспериментальных образцов. Одним из этих автомобилей был BMW 745i Hydrogen.

Концерн BMW постоянно поддерживал эти разработки, создавая экспериментальные версии BMW 7 серии с водородным двигателем во всех новых поколениях автомобиля и каждый раз совершенствуя эти технологии. В процессе разработки BMW было достигнуто оптимальное сочетание исключительной безопасности для окружающей среды и спортивных характеристик водородного двигателя.

Дальнейшее уменьшение аэродинамического сопротивления стало одной из приоритетных задач при разработке двух спортивных автомобилей BMW в конце 1980 годов. Настоящим прорывом в области инновационных технологий стал BMW Z1, выпущенный в 1988 г. и отличавшийся не только очень маленькой массой благодаря кузову из специального синтетического материала, но и удивительно низким коэффициентом аэродинамического сопротивления — 0,36. Такой прогресс в области аэродинамики был достигнут, в том числе за счет кожуха, полностью закрывающего днище кузова, с расположенным сзади диффузором, в то время как водитель и пассажир наслаждались оптимальными условиями езды благодаря сокращенным до минимума воздушным потокам.

Выпущенное годом позже купе BMW 850i также устанавливало новые стандарты аэродинамики. Несмотря на большие воздухозаборники двенадцатицилиндрового двигателя это элегантное купе имело коэффициент аэродинамического сопротивления всего 0,29. И вновь такие показатели были достигнуты именно благодаря аэродинамической оптимизации многих компонентов автомобиля, даже таких как внешние зеркала.

В 1991 г. компания BMW снова обратилась к концепции электромобиля, продемонстрировав новейшие разработки в BMW E1. Этот первый полностью электрифицированный автомобиль, собиравшийся до недавнего времени по всему миру, был полноценным представителем семейства BMW, вмещающим четырех пассажиров и багаж.

Облегчение конструкции достигалось за счет изготовления кузова из прессованного алюминиевого профиля с наружной обшивкой из пластика и алюминия. Основная цель — создание настоящего автомобиля BMW, доставляющего исключительное удовольствие от вождения, — была достигнута компанией с таким впечатляющим успехом.

Однако не следует забывать о том, что разработка концерном BMW альтернативных систем привода была не менее инновационной и динамичной, чем разработка обычных двигателей.

В 1992 г. компания BMW первой в мире реализовала в спортивном автомобиле M3 полностью регулируемое управление фазами газораспределения — систему BMW VANOS, одновременно повышающую мощность и крутящий момент, а также обеспечивающую экономию топлива и управление уровнем выбросов. С 1992 г. система VANOS устанавливалась в качестве дополнительной опции на других шестицилиндровых двигателях BMW, а в 1995 г. ей на смену пришла система VANOS с двумя регулируемыми фазами газораспределения, которая с 1998 г. начала использоваться также в двигателях V8.

1995 год: высокая динамичность благодаря применению рациональной облегченной конструкции

В 1995 г. на рынок вышла модель BMW 5 серии нового поколения, которая стала первым в мире серийным автомобилем с шасси и подвеской, полностью сделанными из легкого сплава, что позволило снизить общую массу примерно на 30 %.

Полностью выполненный из алюминия двигатель также был на 30 кг легче обычного, снижая собственную массу автомобиля BMW 523i с 1525 кг до 1495 кг.

В том же году концерн BMW выпустил модели 316g и 518g, первые в Европе автомобили на природном газе, запущенные в серийное производство. Использование природного газа позволяет сократить выбросы CO2 примерно на 20 %, а углеводородов (HC), приводящих к образованию фотохимического смога, — на 80 %. Разработка новых двигателей способствовала развитию серийных водородных двигателей, поскольку эти рабочие среды имеют сходные свойства, важные для автомобиля.

В общей сложности до 2000 года концерн BMW произвел 842 автомобиля разных моделей, работающих на природном газе.

К началу 2001 г. компания BMW усовершенствовала технологию VANOS, превратив ее уникальную систему полного регулирования высоты подъема впускных клапанов VALVETRONIC, позволяющую регулировать мощность двигателя без дроссельной заслонки. В результате увеличена мощность четырехцилиндрового двигателя автомобиля BMW 316ti при меньшем расходе топлива, особенно при частичной нагрузке, а, значит, уменьшен расход топлива по сравнению с предыдущей моделью на 12 процентов.

Одно из больших преимуществ этой технологии — возможность ее использования во всех странах мира, поскольку она не предъявляет особых требований к качеству топлива.

В последующие годы компания BMW перенесла систему управления клапанами VALVETRONIC на другие бензиновые двигатели, в том числе использовала ее в полном объеме в четырехцилиндровом двигателе модели MINI, выпущенной в 2006 г.

BMW EfficientDynamics закрепляет преимущество

Современные разработки компании BMW успешно удовлетворяют требования к экономичности, сочетающейся с превосходными динамическими характеристиками, за счет концепции BMW EfficientDynamics. Во всех новых моделях в разных сочетаниях представлены такие технологии, как система регенерации энергии при торможении, функция автоматической остановки и запуска двигателя, индикатор переключения скоростей, вспомогательное оборудование, работающее только по требованию, куда входит съемный компрессор системы кондиционирования, рациональная облегченная конструкция и система активной аэродинамики (Active Aerodynamics), представляющая собой точное управление системой вентиляции воздуха автомобиля. Строго в соответствии с принципом BMW EfficientDynamics каждая новая модель превосходит предыдущую с точки зрения сокращения расхода топлива и динамических характеристик.

В масштабах Евросоюза бренды BMW и MINI также достигают значительно лучших характеристик экономии топлива и выброса CO2, чем в среднем у европейских автопроизводителей. С 1995 до конца 2008 года BMW Group удалось сократить расход топлива на своих автомобилях, продаваемых в Европе, более чем на 25 %, тем самым перевыполнив обязательства, взятые Ассоциацией Европейских Автопроизводителей (ACEA) в отношении своих членов.

Одной из интеллектуальных систем технологий BMW EfficientDynamics является система рекуперации энергии торможения. Позволяя заряжать аккумулятор, когда автомобиль тормозит, замедляет ход или движется по инерции, данная система снижает расход топлива автомобиля

Одной из интеллектуальных систем технологий BMW EfficientDynamics является система рекуперации энергии торможения. Позволяя заряжать аккумулятор, когда автомобиль тормозит, замедляет ход или движется по инерции, данная система снижает расход топлива автомобиля почти на 3% по сравнению с неоснащенными аналогами. Причем, при ускорении используется вся мощность двигателя, что позволяет улучшить динамические характеристики автомобиля.

В современные автомобили устанавливается огромное количество различной электроники, использование которой необходимо для комфорта и безопасности водителя. Соответственно, машины тратят большое количество электроэнергии для поддержания работоспособности этих систем. В обычных автомобилях электроэнергия вырабатывается генератором переменного тока, который преобразует крутящий момент двигателя в электрическую энергию. При этом генератор постоянно связан приводным ремнем с двигателем.

Однако в автомобилях BMW используется система рекуперации энергии торможения (Brake Energy Regeneration) — уникальная технология производства энергии, которая на обычных автомобиля при работе тормозов тратится впустую. Эта технология BMW позволяет не только сохранить выработанную энергию, но и затем использовать ее. Принцип регенерации энергии торможения применяется на всех моделях BMW с бензиновыми и дизельными двигателями, а также гибридными силовыми агрегатами, на которых используется технология BMW EfficientDynamics.

763_news_pic1.jpg

Благодаря системе рекуперации энергии торможения, с одной стороны, расход топлива снижается, с другой — автомобиль становится более динамичным. Интеллектуальная система не даст полностью разрядиться батареи: она постоянно отслеживает уровень заряда аккумулятора и при необходимости сможет продолжить зарядку даже во время ускорения.

Возьмем в качестве примера гибридный автомобиль BMW ActiveHybrid X6, который, как и другие современные модели BMW, оснащается усовершенствованной системой рекуперации энергии торможения. Сердце гибридного BMW ActiveHybrid X6 состоит из бензинового двигателя V8 мощностью 407 л.с. и двух электромоторов, развивающих по 91 л.с. и 86 л.с. Именно эти электродвигатели при торможении или движении автомобиля на холостом ходу выполняют функцию генераторов, вырабатывающих энергию для зарядки высоковольтного аккумулятора. В зависимости от скорости это делает либо один, либо сразу два электромотора. Причем, мощность, которая вырабатывается ими в режиме генератора, примерно в 25 раз выше (почти 50 кВт), чем у системы рекуперации энергии торможения, использовавшейся ранее.

763_news_pic2.jpg

В гибридной модели BMW ActiveHybrid 7 серии, которая оснащается бензиновым турбодвигателем V8 объемом 4,4 л и трехфазным синхронным электромотором, который потребляет энергию литий-ионной батареи и выполняет функцию генератора при рекуперации энергии торможения. При движении накатом или торможении электроэнергия вырабатывается и сохраняется. При ускорении накопленная энергия подается из литий-ионной батареи в бортовую сеть, тем самым освобождая двигатель внутреннего сгорания от задачи преобразования энергии топлива в электрический ток. Благодаря этому двигатель может тратить больше мощности на ускорение, а электроэнергия генерируется без дополнительного потребления топлива при торможении.

Динамическая обработка представляет собой процесс изменения динамического диапазона сигнала – разницы между самым громким и самым тихим участком аудиосигнала.

Динамический диапазон

RMS (root mean square) – среднеквадратическое(средневзвешенное) значение.

RMS современных треков достигает уровня в -3 дБ. Это, на мой взгляд, чересчур, но сейчас не об этом.

Динамическая обработка в большей степени применяется для упрощения процесса изменения громкости различных участков сигнала. Такую обработку также можно выполнить, используя автоматизацию громкости. Однако в некоторых случаях это занимает слишком много времени. Поэтому не является целесообразным.

Автоматизация громкости

Все процессоры динамической обработки, в той или иной мере, применяются для изменения уровня сигнала на определённых участках аудиосигнала.

Основными устройствами динамической обработки звука являются:

Рассмотрим подробнее каждый прибор.

Компрессор

Это самый часто используемый прибор динамической обработки. Он предназначен в основном для сужения динамического диапазона сигнала. Однако его применение этим не ограничивается. Часто компрессор применяется для выделения атаки сигнала, сайдчейн компрессии, склеивания инструментов в группах, а также для создания необычных эффектов.

Классический компрессор имеет следующие параметры:

Threshold – порог срабатывания (дБ). Если обрабатываемый сигнал превысит этот порог, то компрессор включится, и будет обрабатывать сигнал в соответствии с настройками.

Release – время восстановления (мс). Указывает компрессору, как быстро необходимо перейти в режим ожидания (выключится). Этот параметр отображает плавность выключения компрессора (по аналогии с параметром восстановления огибающей).

Make Up (Gain) – компенсация громкости на выходе компрессора (дБ).

После компрессии уровень сигнала снижается (в вышеприведённом примере на 2 дБ) в соответствии с настройками компрессора. Параметр Make Up позволяет скомпенсировать потерянную громкость.

Нужно отметить, что компрессор сжимает сигнал превышающий порог срабатывания (уменьшая его), при этом самые тихие участки (не превышающие порог) остаются без изменений. После компенсации громкости максимальный уровень возвращается на своё прежнее значение, при этом повышается уровень и на всех остальных участках сигнала (тихие участки становятся громче). Такая процедура сужает динамический диапазон сигнала. Это позволяет сделать аудиосигнал более читаемым в миксе.

Компрессоры различаются по алгоритму работы и функциональности. Также существуют многополосные компрессоры, позволяющие отдельно компрессировать различные частотные диапазоны (полосы) сигнала. В таких компрессорах для частотного разделения сигнала используется кроссовер.

iZotope Ozone 7 Dynamics

Многополосный компрессор iZotope Ozone 7 Dynamics

О том, как настаивать и использовать компрессор читайте в статьях:

Транзиент шейпер

Этот прибор представляет собой урезанную версию компрессора, предназначенную для работы с временными параметрами сигнала (Attack и Release). Классический транзиент шейпер позволяет увеличивать уровень атаки и восстановления сигнала в соответствии с выбранной кривой.

Ярким представителем этого класса устройств является плагин Transient Shaper 2 от компании Schaack Audio Technologies.

Transient Shaper 2

Transient Shaper 2

Чаще всего транзиент шейпер используется для усиления атаки.

Лимитер и максимайзер

Лимитер представляет собой компрессор со степенью компрессии ∞:1. Задачей лимитера является ограничение сигнала превышающего установленный порог. Этот прибор имеет те же параметры, что и компрессор (Threshold, Attack, Release и Gain).

Fruity Limiter

Максимайзер – это лимитер с автоматической компенсацией громкости. Это устройство позволяет повысить уровень сигнала на мастере, при этом избегая клиппирования.

Waves L3 UltraMaximazer

Это прибор, который позволяет избавиться от различных шумов. Гейт (gate – с англ. ворота) пропускает сигнал, который превышает порог Threshold и не пропускает сигнал ниже этого порога.

Гейт часто используется при обработке вокала или других инструментов записанных вживую.

Основными параметрами гейта, являются:

Threshold – порог ограничения (дБ). Если сигнал опускается ниже этого порога, то гейт не пропускает этот сигнал (сигнал подавляется). Все что выше порога остаётся без изменений.

Ratio – коэффициент подавления (относительная величина). Показывает насколько сильно сигнал будет подавлен.

Attack – время срабатывания гейт (мс). Насколько быстро (плавно) будет подавлен сигнал.

Release – время восстановления (мс). Насколько быстро (плавно) будет восстановлен сигнал или как скоро полностью выключится гейт после того, как уровень сигнала превысит порог ограничения.

Одним из лучших гейтов на сегодняшний день является FabFilter Pro-G.

FabFilter Pro-G

Экспандер

Это прибор, выполняющий противоположные компрессору функции. Он позволяет увеличить динамический диапазон сигнала (разницу между самым громким и самым тихим участком).

Существует два вида экспандеров – понижающий и повышающий.

Первый понижает уровень сигнала ниже установленного порога, а второй повышает уровень сигнала выше заданного порога.

Основные параметры понижающего экспандера:

Threshold – порог срабатывания (дБ). Если уровень сигнала будет ниже порога срабатывания, то экспандер включится и ослабит сигнал, не превышающий этот порог в соответствии с настройками.

Ratio – коэффициент ослабления (относительная величина). Показывает, во сколько раз ослабится сигнал, не превышающий порог срабатывания.

Attack и Release – время атаки и время восстановления (мс) (аналогично компрессору).

Основные параметры повышающего экспандера:

Threshold – порог срабатывания (дБ). Если уровень сигнала будет выше порога срабатывания, то экспандер включится и усилит сигнал, превышающий этот порог в соответствии с настройками.

Ratio – коэффициент ослабления (относительная величина). Показывает, во сколько раз усилится сигнал, превышающий порог срабатывания.

Attack и Release – время атаки и время восстановления (мс)(аналогично компрессору).

В качестве повышающего экспандера может быть использован компрессор Waves С1 comp с коэффициентом компрессии от 0,5:1 до 0,99:1.

Экспандер

Деэссер и депоппер

Деэссер – это прибор, который позволяет автоматически устранять шипящие звуки в вокальных партиях в соответствии с настройками.

Для того, чтобы не исправлять шипящие в вокальной партии с помощью автоматизации часто прибегают к помощи деэссера. Однако необходимо отметить, что автоматизация всё же является более приемлемым вариантом (хоть и занимает больше времени).

Депоппер – это прибор, который призван подавлять бубнящие звуки в вокале.

По сути деэссер и депоппер работают по одному и тому же принципу.

Одним из самых популярных деэссеров является FabFilter Pro-DS.

FabFilter-Pro-DS

Ещё одним вариантом устранения огрехов вокалиста (шипящие и бубнящие) является использование динамической эквализации.

Как я уже говорил, все приборы динамической обработки призваны автоматизировать и ускорить процесс обработки сигнала (выравнивание динамики, выделение атаки, устранение шумов и т.п.).

При сведении композиции динамическая обработка является необходимым этапом, даже если она выполнена без использования вышеописанных устройств.

Читайте также:

      
  • Как зафиксировать коленвал опель корса
  •   
  • Мерседес w202 замена замка зажигания
  •   
  • Не работает люк ауди а4 б5
  •   
  • Как снять подлокотник ауди а8
  •   
  • Точки подключения сигнализации фольксваген крафтер
  • Контакты
  • Политика конфиденциальности