Зачем на высоковольтных проводах стеклянные диски
Вы, наверное, замечали, что провода ЛЭП закреплены на опорах на гирляндах из фарфоровых или керамических тарелок. Эти тарелки называется изоляторами. Они несут как изолирующую, так и монтажную роль механического крепления. Изоляторы воздушных линий электропередач бывают разными, в зависимости от расположения, места применения и напряжения линии, которую они держат. В этой статье мы рассмотрим виды электрических изоляторов и их назначение.
Характеристики изоляторов
Электрический изолятор – это изделие, предназначенное для крепления провода, кабеля или шины на несущей конструкции линии электропередач и предотвращения её пробоя на землю. Они бывают разных видов и изготавливаются из диэлектрических материалов – фарфора, стекла и полимеров.
Так как электрическое предназначение изоляторов – обеспечить изоляцию проводника от несущей конструкции, то основными характеристиками являются:
- Сухоразрядное напряжение – напряжение, при котором наступает искровой разряд по поверхности в сухом её состоянии при нормальных условиях окружающей среды.
- Мокроразрядное напряжение – то же самое, но под дождем, если его струи попадают на изолятор под углом в 45 градусов. Сила дождя при этом равна 5 мм/мин, удельное объемное сопротивление воды — 9500-10500 Ом*см (при 20°С). Так как вода проводит электрический ток – мокроразрядное напряжение всегда ниже сухоразрядного.
- Пробивное напряжение – напряжение, при котором наступает пробой тела изолятора между стержнем и шапкой (для подвесных изделий). Стержень и шапка при этом являются электродами.
Конструкция
Конструктивно все электрические изоляторы различаются способами крепления к несущей конструкции и крепления кабеля. Главной задачей этого изделия является предотвращение электрических разрядов, для этого они выполняются в виде тарелок или стержней с ребрами. Эти ребра нужны для того, чтобы разряд развивался под углом к силовым линиям поля. На рисунке ниже вы видите примеры типовых изделий разных форм и конструкций:
Различие по материалу исполнения
Чтобы рассмотреть классификацию видов и типов изоляторов нужно сначала разобраться, как их различают. Итак, в первую очередь они классифицируются по материалу изготовления:
- Фарфоровые.
- Стеклянные.
- Полимерные.
Фарфоровые можно назвать классикой, такие применялись раньше даже при наружной проводке в домах. Обычно они белого цвета, но могут быть и других цветов. Такие можно увидеть на разных электроустановках. Достоинством является то, что они выдерживают большие нагрузки на сжатие, обладают хорошими диэлектрическими свойствами.
Однако они бьются и ломаются. Отсюда возникает необходимость регулярной проверки их целостности, а часто для этого приходится отключать электроустановку и вытирать с них масло, пыль и другие загрязнения. Также проблемой является их большой вес.
Стеклянные, хоть и боятся ударов, но для контроля их целостности достаточно визуального осмотра, что можно провести и без отключения напряжения. В настоящее время в воздушных линиях электропередач, в качестве подвесных изоляторах они вытесняют керамику, в том числе и потому что меньше весят, а также в производстве дешевле.
Полимерные используются в помещении, на улице редко, в качестве исключения. Можно иногда увидеть опорные изоляторы из полимеров на ВЛ 10 кВ или других напряжений средней величины, но редко, или на неответственных линиях. Это обусловлено тем, что с течением времени и под действием УФ-излучений они стареют, внутренняя структура распадается и ухудшаются их электрические и механические характеристики.
Однако для оборудования, которое доступно для регулярного обслуживания и ремонта они применяются часто. Например, это могут быть опорные изоляторы шин в трансформаторных подстанциях и распределителях.
Типы по конструкции и назначению
По конструкции выделяют три основных разновидности изоляторов ВЛ:
- штыревые;
- подвесные линейные;
- опорные и проходные.
Штыревые относятся к линейным изоляторам. Используются в ЛЭП до 35 кВ. В том числе на линиях 0,4 кВ. Этот тип исполнения цельный, на нем есть канавка для закрепления провода и отверстия для установки на траверсы, крюки, штыри.
Интересно: на ВЛ от 6 до 10 кВ используют одноэлементные изоляторы, а на 20-35 – из двух элементов.
Подвесные используются на высоковольтных воздушных линиях напряжением 35 кВ и больше. Они бывают двух типов поддерживающими (стержневыми) и натяжными.
Натяжные тарельчатые изоляторы работают на растяжение и удерживают линию на опоре, монтируются под углом. Конструктивно они выполнены в виде фарфоровой или стеклянной тарелки. В нижней части обычно выступает стержень с расширяющейся шляпкой. Сверху расположена металлическая крышка с отверстием специальной формы, такой чтобы в ней можно было закрепить нижний стержень. Таким образом происходит унификация и вы можете набрать в гирлянду столько изоляторов, сколько нужно для достижения нужных номинальных напряжений пробоя. Такая гирлянда получается гибкой, она удерживает линии электропередач на опоре.
На промежуточных опорах устанавливают подвесные стержневые изоляторы. Они выполнены в виде опорного стержня, на его концах металлические части для крепления к опоре и проводам. Они устанавливаются вертикально и провод ложится на них – это и есть основное отличие от предыдущих. Также они отличаются тем, что натяжные изоляторы выдерживают больший вес, поэтому могут использоваться на опорах, расположенных дальше друг от друга.
Интересно: на ответственных участках и для повышения надежности монтажа ЛЭП могут использоваться сдвоенные гирлянды натяжных изоляторов.
Опорные и проходные изоляторы уже являются станционными, а не линейными. Этот вид так называется потому что используется внутри электростанций и трансформаторных подстанций. Изготовляются из полимеров или фарфора. Опорные используют для крепления токопроводящих шин к заземленным конструкциям, например, корпусу трансформаторов или внутри вводных и распределительных электрощитов.
Маркировка изоляторов всех разновидностей подобная, обычно она содержит сведения о типе изделия и номинального напряжения линии, например:
Для того чтобы провести кабель или шину через стену используются проходные изоляторы. Эта разновидность изделий с полым телом, в котором расположена токоведущая часть. Для повышения изолирующих свойств может иметь дополнительно масляный барьер или маслобумажную прокладку. Такой тип изоляторов позволяет прокладывать линию до 110 кВ. Бывают и другого типа – без токопровода внутри, просто диэлектрический полый цилиндр с отверстием, который надевается на кабель.
На это мы и заканчиваем нашу статью. Теперь вы знаете, какие бывают изоляторы для воздушных линий электропередач и где применяется каждый вариант исполнения!
Изоляция линий электропередачи
Упрощенно любая линия электропередачи состоит всего из двух компонентов:
системы тоководов, обеспечивающих протекание электрических потоков;
диэлектрической среды, окружающей эти тоководы для исключения прохождения электроэнергии в ненужном направлении. Эту среду называют простым термином — изоляция.
По способу применяемых изоляционных материалов линии электропередач разделяют на:
Эти конструкции используют для изоляции тоководов диэлектрические свойства воздуха окружающей их атмосферы. При этом учитывается то, что его удельное сопротивление меняется в зависимости от погоды, температуры, влажности и других параметров. Чтобы исключить эти факторы выбирается оптимальное расстояние между проводами для каждого вида напряжения. С увеличением его значения возрастает безопасное удаление проводов друг от друга.
Поскольку потенциал каждого токовода может стекать на землю, то провода фаз также удаляются от поверхности земли. Однако, на практике их поднимают значительно выше потому, что под ними могут проходить или работать люди, передвигаться транспортные средства, размещаться хозяйственные постройки. Все это учитывается конструкцией опоры, на которой закрепляются провода.
Изоляция воздушных линий электропередачи
Кроме выбора воздушной дистанции между проводами и землей необходимо закрепить тоководы на мачтах так, чтобы не нарушить их электрическое сопротивление. Ведь материалы, используемые для опор (дерево и бетон при влажной погоде, а металлические конструкции при любых обстоятельствах), являются хорошими проводниками электрического тока.
Для закрепления открытых проводов на мачтах опор используются специальные конструкции, которые называют изоляторами . Их изготавливают из прочного диэлектрического материала. Чаще всего выбирают специальные сорта фарфора, стекла или реже — пластических масс.
Конструкция отдельного вида фарфоровых изоляторов показана на картинке.
Изолятор, показанный слева, выполнен из цельного куска фарфора. А правый — из двух составных частей.
По способу крепления к мачте изоляторы подразделяют на:
штыревые конструкции, которые крепят на металлическом штыре, установленном на траверсе в вертикальном положении;
подвесные устройства, подвешиваемые на мачте;
натяжные модели, закрепляемые в горизонтальной плоскости для противодействия силам натяжения.
Все они изготавливаются на работу при определенном классе напряжения на линии. В тот же время они воспринимают значительные механические усилия в вертикальном и горизонтальном направлениях, создаваемые прикрепленными к ним проводами при любых погодных условиях.
Шквальные порывы ветра, даже в сочетании со снежными наростами и наледью не должны нарушить механическую прочность изоляторов и проводов, а продолжительный дождь и даже ливень — не нарушить их электрическое сопротивление. Ибо, в противном случае, возникнет аварийный режим, ликвидация которого потребует огромных затрат.
На картинке ниже приведен пример закрепления открытых проводов однофазной линии 220 вольт на траверсе мачты опоры при подключении уличного осветительного прибора с помощью фарфоровых штыревых изоляторов.
Этот способ широко используется при освещении дорог, тротуаров, участков территории. Материал такого изолятора выдерживает механические усилия от:
натяжения проводов, действующие в горизонтальной плоскости по оси ЛЭП;
веса подвешенной на них конструкции, работающие на сжатие изолятора.
Такие же конструкции применяются на линиях 0,4 кВ.
На воздушных ЛЭП с напряжением до 35 кВ включительно сейчас идет замена открытых металлических проводов самонесущими изолированными конструкциями.
При их использовании применяются не фарфоровые или стеклянные изоляторы, а система крепления на тросах и растяжках, показанная на картинке.
На опорах, где соединяются открытые провода и самонесущие конструкции, используется оба вида крепления.
С увеличением напряжения, приложенного к воздушной ЛЭП, возрастают габариты изоляторов, их диэлектрические свойства. На ВЛ-10 кВ работают более мощные изоляторы.
Для восприятия горизонтальных усилий натяжения проводов в местах поворота линий, например, для обхода водоемов, применяются натяжные изоляторы, которые могут состоять из гирлянд.
На фотографии показано комбинированное использование опорных и натяжных изоляторов на усиленной поворотной опоре ВЛ-10 кВ.
Такие же конструкции устанавливают на опорах с разъединителями. Опорные изоляторы обеспечивают работу подвижных ножей и стационарно закрепленных контактов разъединителя, а натяжные — воспринимают тянущие усилия проводов.
Фотография документально подтверждает, что на ВЛ-25 кВ конструкция всех изоляторов усложнилась. Они увеличили расстояние между тоководами ЛЭП и материалом опоры.
Это хорошо заметно на ВЛ-110 кВ, где гирлянда изоляторов стала длиннее и используется уже их подвесная конструкция.
Концы воздушных линий соединяются с трансформаторными вводами, расположенными на подстанциях.
Места подключения проводов ЛЭП к оборудованию высоковольтного открытого распределительного устройства 110-кВ защищаются более сложными конструкциями опорных изоляторов, выдерживающих значительные электрические и механические нагрузки. Они удаляют тоководы от опор еще на большее расстояние.
Это же видно на фотографии воздушной опоры, изготовленной из металла для передачи высоковольтной энергии 330 кВ. На фото показано, что каждая фаза имеет расщепление тоководов, провода которого закрепляются на траверсе еще более усиленной гирляндой из стеклянных натяжных изоляторов.
Опорные изоляторы на подстанции 330 кВ отдаляют провода и шины от оборудования на еще большую высоту.
Кабельные линии электропередачи
В этих конструкциях токопроводящие жилы фаз отделяются друг от друга слоем твердого диэлектрика и защищаются от воздействия окружающей среды прочной, но эластичной оболочкой. Иногда вместо твердых веществ может использоваться жидкое кабельное масло, изготавливаемое из нефтепродуктов или газообразные вещества. Но такие диэлектрики находят практическое применение очень редко.
Кабельные линии по стоимости производства обходятся дороже воздушных ЛЭП. Поэтому их прокладывают в черте города, внутри жилых застроек, производственных участков, в местах пересечения с водными преградами, когда нельзя установить воздушные опоры.
Для прокладки кабелей создают кабельные лотки, каналы или обыкновенные заглубленные в земле траншеи, которые ограничивают доступ к действующим, подключенным под напряжение, цепям.
Изоляция кабельных линий электропередачи
Конструкция силового кабеля для ЛЭП зависит от величины передаваемой по нему мощности и приложенного напряжения.
Токопроводящие жилы кабеля обычно изготавливают из меди или алюминиевых сплавов, а тип применяемых диэлектрических материалов между ними зависит от величины приложенного напряжения.
В устройствах до 1000 вольт чаще всего применяются слои из полиэтиленовых составов или конструкции с бумажными наполнителями и жгутами, пропитанными кабельным маслом различной консистенции.
Примерное расположение слоев изоляции для нетипового четырехжильного кабеля показано на картинке.
Здесь металл каждой токопроводящей жилы покрыт изоляционным слоем, который соприкасается с бумажными жгутами и наполнителями, помещенными в поясную изоляцию. Внешняя защитная оболочка полностью герметизирует всю конструкцию.
Когда выполняют пропитку бумаги минеральными маслами с различными добавками для увеличения вязкости слоя, то одновременно повышаются диэлектрические характеристики. Такие пропитанные вязким маслом кабели с поясной изоляцией могут работать в высоковольтных схемах до 10 кВ включительно.
Технический прием выполнения освинцованных жил повышает эксплуатационные свойства диэлектрического слоя. Для этого каждую жилу выполняют в виде отдельного коаксиального кабеля с вязкой пропитой, размещенной внутри свинцовой оболочки.
Пространство между такими жилами заполняется джутовым наполнителем и помещается внутрь бронированного слоя из стальных оцинкованных проволок, окруженных наружным герметичным защитным слоем.
Подобные кабели с освинцованными металлическими жилами работают в высоковольтных схемах до 35 кВ включительно.
Для передачи по кабелю электроэнергии с более высокими напряжениями до 110 кВ и выше используют другие конструкции изоляционного слоя. Им может быть менее вязкое кабельное масло, инертные газы (чаще всего — азот). Давление масла в таких слоях может быть низким (до 1кг/см 2 ), средним (до 3?5 кг/см 2 ) или высоким (до 10?14 кг/см 2 ). Такие кабели работают в высоковольтных цепях до 500 кВ включительно.
Проверки изоляции линий электропередачи
Во время эксплуатации электрооборудования оценка состояния диэлектрических слоев производится:
Постоянный анализ качества изоляции в автоматическом режиме осуществляют специальные устройства контроля. Они настроены таким образом, что замеряют очень малую в нормальном режиме величину токов утечек. Когда возникает нарушение диэлектрического слоя, то эти токи возрастают, а момент их перехода через критическое значение фиксируется релейной токовой схемой с выдачей команды на сигнализацию для оповещения оперативного персонала.
Периодический контроль состояния изоляции электрооборудования, включая линии электропередач, возложен на специально сформированные электрические лаборатории, осуществляющие высоковольтные проверки в виде измерений и испытаний специализированными передвижными или стационарными установками.
Технический персонал таких лабораторий в энергосистеме выделен в отдельные подразделения, называемые службой изоляции. Она под руководством начальника занимается плановыми испытаниями действующего энергетического оборудования и линий электропередач и обязана перед каждым вводом любых устройств, на которых проводились профилактические работы с разборкой схемы, представлять письменное заключение о готовности вводимого участка к выдерживанию изоляцией высоковольтной нагрузки.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Изоляторы для электротехнических установок
Токоведущие части электрических установок и отдельных аппаратов должны быть надежно изолированы одни от других и от земли. Для выполнения этих функций и крепления токоведущих частей используют различные изоляторы , которые подразделяются на станционные , аппаратные и линейные .
Станционные и аппаратные изоляторы применяют для крепления и изоляции шин в распределительных устройствах электрических станций и подстанций или соответственно токоведущих частей аппаратов. Эти изоляторы, в свою очередь, подразделяются на опорные и проходные . Последние устанавливают при проходе шин через стены и перекрытия внутри помещений, а также при выводе их из зданий или применяют для вывода токоведущих частей из корпусов аппаратов.
Линейные изоляторы служат для крепления проводов воздушных электрических линий и шин открытых распределительных устройств.
Конструктивно и по назначению изоляторы подразделяются на штыревые, подвесные, опорные и проходные.
Штыревые изоляторы состоят из одного или двух фарфоровых элементов и армируются на металлических штырях, закрепляемых в траверсах опор. Все штыревые изоляторы обеспечивают жесткое крепление проводов на опорах.
Линейные подвесные изоляторы обеспечивают нежесткую связь проводов с опорами ЛЭП. Тарельчатые подвесные изоляторы соединяются в гирлянды. Кроме тарельчатых, находят применение стержневые линейные изоляторы, позволяющие повысить электрическую прочность благодаря тому, что они не подвержены пробою.
Опорные изоляторы служат для поддержания шин и контактных деталей РУ и электрических аппаратов.
Опорно-штыревые изоляторы состоят из одного, двух или трех фарфоровых элементов, жестко соединенных друг с другом и закрепленных на чугунном штыре. Применяются в качестве изоляционных опор в ОРУ, в связи с чем имеют выступающие крылья для защиты от атмосферных осадков.
Опорно-стержневые изоляторы тоже предназначены для работы в наружных установках. Такой изолятор представляет собой сплошной фарфоровый стержень с выступающими крыльями, на торцевых частях которого закреплены чугунные колпаки для соединения изоляторов в колонки и для крепления их на аппаратах и в РУ.
Проходные изоляторы применяются для вывода проводников ВН из баков трансформаторов, масляных и воздушных выключателей, а также для изоляции проводов, проходящих через стены зданий. Они состоят из фарфорового элемента, через внутреннюю полость которого пропущен токоведущий металлический стержень или группа шин.
Разновидностью проходных изоляторов являются вводы . Токоведущей частью ввода служит медная труба, основная внутренняя изоляция — керамическая, жидкая или бумажно-масляная, из бакелита или других твердых органических материалов.
Изоляторы должны удовлетворять следующим требованиям : обеспечивать достаточную электрическую прочность, определяемую напряженностью электрического поля (кВ/м), при которой материал изолятора теряет свойства диэлектрика, обладать достаточной механической прочностью, дающей возможность противостоять динамическим усилиям, которые возникают между отдельными токоведущими частями при коротком замыкании в цепи, обеспечивать неизменность своих свойств под влиянием окружающей среды (дождь, снег и т. п.), обладать достаточной теплостойкостью, то есть не изменять своих электрических свойств при изменении температуры в определенных пределах, иметь поверхность, устойчивую против воздействия электрических разрядов.
К электрическим характеристикам изоляторов относятся : номинальное и пробивное напряжения (минимальное напряжение, при котором происходит пробой изолятора), разрядные и выдерживаемые напряжения промышленной частоты в сухом состоянии (сухо-разрядное, при котором происходит перекрытие по поверхности изолятора без потери изоляционных качеств) и под дождем (мокро-разрядное, по смоченной поверхности изолятора), импульсные 50 %-ные разрядные напряжения обеих полярностей.
К основным механическим характеристикам изоляторов относятся: минимальная (номинальная) разрушающая нагрузка (в ньютонах), приложенная к головке изолятора в направлении, перпендикулярном оси, а также размеры и масса.
Линейные изоляторы предназначены для изоляции и крепления проводов на воздушных линиях и в распределительных устройствах электрических станций и подстанций. Изготавливаются они из фарфора или закаленного стекла. По конструкции изоляторы разделяют на штыревые и подвесные.
Штыревые изоляторы применяются на воздуш ных линиях напряжением до 1 кВ и на ВЛ 6-35 кВ (35 кВ - редко и только для проводов малых сечений). На номинальное напряжение 6-10 кВ и ниже изоляторы изготавливают одноэлементными, а на 20-35 кВ - двухэлементными.
Подвесной изолятор тарельчатого типа наиболее распространен на воздушных линиях напряжением 35 кВ и выше. Подвесные изоляторы состоят из фарфоровой или стеклянной изолирующей части и металлических деталей – шапки и стержня, соединяемых с изолирующей частью посредством цементной связки.
Для воздушных линий в районах с загрязненной атмосферой разработаны конструкции изоляторов грязестойкого исполнения с повышенными разрядными характеристиками и увеличенной длиной пути утечки.
Подвесные изоляторы собирают в гирлянды , которые бывают поддерживающими и натяжными. Первые монтируют на промежуточных опорах, вторые – на анкерных. Число изоляторов в гирлянде зависит от напряжения линии. Например, в поддерживающих гирляндах воздушных линий с металлическими и железобетонными опорами 35 кВ должно быть 3 изолятора, 110 кВ – 6 – 8, 220 кВ – 10 - 14 и т. д..
Штыревые изоляторы крепятся на опорах при помощи крюков или штырей. Если требуется повышенная надежность, то на анкерные опоры устанавливают не один, а два и даже три штыревых изолятора.
Станционные и аппаратные изоляторы , как и линейные, в большинстве случаев изготовляют из фарфора, который наиболее полно отвечает предъявляемым требованиям. Ряд деталей аппаратов, выполняющих функции изоляции, особенно находящихся внутри кожухов и в некоторых случаях залитых изоляционным маслом, изготавливают из бакелита, гетинакса и текстолита.
Для крепления изолятора к основанию и шин или токоведущих частей аппаратов к изолятору используют металлическую арматуру, то есть металлические части, закрепленные на фарфоре. Арматуру закрепляют на фарфоре чаще всего при помощи различного рода цементирующих замазок с коэффициентом объемного теплового ресширения, близким к коэффициенту фарфора. В целях улучшения качества изоляторов их фарфоровый корпус с внешней стороны покрывают глазурью.
В зависимости от рода установки используют изоляторы для внутренней или наружной установки . Изоляторы для наружной установки имеют более развитую поверхность, благодаря которой увеличивается микроразрядное напряжение, что обеспечивает надежную работу под дождем, а также в загрязненном состоянии.
Изоляторы на разные номинальные напряжения отличаются активной высотой фарфора, а на разные разрушающие механические усилия - диаметром.
Опорные изоляторы можно разделить на опорно-стержневые и опорно-штыревые . Опорные-стержневые изоляторы имеют сплошной или полный фарфоровый стержень с выступающими ребрами.
Арматура изоляторов , рассчитанных на значительную механическую нагрузку, состоит из овальных или квадратных фланцев с отверстиями для болтов снизу и металлических головок с нарезными отверстиями для крепления проводника сверху.
Изоляторы, рассчитанные на меньшую механическую нагрузку, не имеют фланцев и головок. У них предусмотрены металлические фасонные вкладыши с резьбовыми отверстиями, укрепленные в углублениях фарфорового стержня. Эти изоляторы благодаря внутренней заделке арматуры имеют меньшие размеры и массу.
Изоляторы для внутренней установки на напряжение до 35 кВ серии ОФ имеют коническое фарфоровое тело с одним или двумя небольшими ребрами. Опорно-стержневые изоляторы для наружной установки серии ОНС отличаются от рассмотренных более развитыми ребрами. Их изготавливают для напряжений 10 - 110 кВ.
Опорно-штыревые изоляторы серии ОНШ предназначены для наружной установки. Они имеют фарфоровое тело с далеко выступающими ребрами (крыльями) для защиты от дождя. Изолятор укрепляют на основании при помощи чугунного штыря с фланцем. Сверху предусмотрен чугунный колпак с нарезными отверстиями для крепления токоведущих частей.
Проходные изоляторы для внутренней установки на напряжение до 35 кВ имеют полый фарфоровый корпус с небольшими ребрами. Для крепления изолятора в перекрытии (стене) на средней его части предусмотрен фланец, а на торцах для крепления проводника - металлические колпаки. Проходные изоляторы с номинальным током до 2000 А снабжены стержнями прямоугольного сечения.
Фланцы и колпаки у изоляторов с большим номинальным током (обычно более 1000 А) изготавливают из немагнитных материалов - чугуна специальных марок, силумина - для избежания дополнительных потерь из-за индуктированных токов.
Проходные изоляторы, одна часть которых работает на открытом воздухе, а другая - в закрытом помещении или в масле, как, например, проходные изоляторы трансформаторов и масляных выключателей , делают несимметричными. Часть фарфорового корпуса, работающая на воздухе, имеет более развитые ребра.
Что такое изоляторы
Нужны изоляторы для изолированного крепления проводов линий электропередачи или проводов контактных сетей или шин и проводов в распределительных устройствах.
В основном используются для не изолированных проводов типа АС в ЛЭП и электротехнических шин ШМТ. Могут использоваться для крепления изолированных проводов СИП в ВЛИ.
Типы изоляторов по материалам
Для изготовления этих изделий используют довольно банальные, но от этого не менее функциональные и надёжные диэлектрические материалы: стекло, фарфор и полимеры. Последние из-за ряда особенностей композитного материала не используются на воздушных линиях электропередачи свыше 220 кВ.
Итак по материалу изоляторы ВЛ могут быть:
- Стеклянными;
- Фарфоровыми;
- Полимерными.
Изоляторы из стекла
Сразу отметим, что изоляторы из стекла стоят дороже аналогичных изделий из фарфора, но имеют перед ними ряд преимуществ.
Так как стеклянные изоляторы прозрачны и на них легко визуально обнаружить повреждения, в том числе внутренние, изолирующих тарелок. Это позволяет не проводить частых испытаний напряжением и упрощает обслуживание ЛЭП и строительство подстанции.
Фарфоровые изоляторы
К недостаткам относим повышенную хрупкость, которая усиливает требования по безопасной упаковке и транспортировке.
Полимерные изоляторы
И золяторы из композитов пока не используются в линиях электропередачи свыше 220 кВ. Это связано со всеми недостатками присущими полимерам.
Они изгибаются при продольных нагрузках;
- Боятся ультрафиолета;
- Стареют со временем;
- От температуры теряют механическую прочность;
- Скрытые дефекты полимерных изоляторов трудно обнаружить.
Типы изоляторов по назначению
Кроме деления изоляторов по материалу изготовления, есть типы изоляторов по назначению. Это изоляторы:
- Штыревые;
- Подвесные;
- Опорные;
- Проходные;
- Стержневые.
Изоляторы штыревые (ИШ)
С помощью штыревых изоляторов неизолированные провода АС и изолированные провода СИП-3 крепят к траверсам опор.
Подвесные изоляторы (ПС, ПСД, ПСВ)
Данные изоляторы подвешивают на опоры ВЛЭП для крепления методом подвеса проводов и кабелей. Чаще изготавливают из закалённого стекла.
Изоляторы опорные (ИО, ИОР, СА, ОНШП)
Данные изоляторы используют в распределительных установках и другом электрооборудовании для закрепления токопроводящих элементов. Работают на участках от 6 до 35 кВ.
Проходные изоляторы (ИП, ИПУ)
При необходимости провести провод или шину через стену, например, на вводе в подстанцию, используют проходные изоляторы.
Стержневые изоляторы (ИС, ИОС)
Опорно–стержневые (ИОС) и стержневые (ИС) изоляторы используются на электрических станциях и подстанциях напряжений больше 1000 Вольт. Изготавливаются из фарфора или стекла. Монтируется вертикально, имеет характерные винтовые ребра. Фото выше в опорных изоляторах.
Изоляторы для частного дома
Существуют отдельные типы изоляторов используемых в электрике частного дома. Например,
Керамические изоляторы для электрического ввода в дом, монтируются на крюках или траверсах.
Заключение
Типы изоляторов воздушных линий электропередачи насчитывают десятки наименований. Выбирать изоляторы нужно по напряжению линии, и месту использования, включая климатические условия и загрязнение среды.
Читайте также: