Снятие осциллограммы с дпкв и дпрв
Осциллограф может применяться для диагностики двигателя, датчиков электронной системы управления, генератора, стартера, аккумулятора и других систем и устройств автомобиля. При комплексной автомобильной диагностике осциллограф дополняет проверку сканером, но в некоторых случаях может дать более подробную информацию о неисправностях в электрических и электронных системах.
При использовании осциллографа необходимо знать места подключения его щупов к диагностируемому элементу, а также форму осциллограммы для номинального режима работы этого элемента. Впрочем, методика использования осциллографа, как правило, подробно описана в инструкциях, прилагаемых к прибору.
Диагностирование датчиков осциллографом
Датчик положения коленчатого вала (ДПКВ)
Этот датчик служит для синхронизации времени подачи искры и срабатывания форсунок по такту сжатия в цилиндрах. В общем случае датчик сообщает блоку управления (ЭБУ) о положении поршня первого цилиндра в верхней мертвой точке при такте сжатия. Для различных марок автомобилей ДПКВ может располагаться рядом с задающим диском у шкива коленчатого вала или маховика.
Сигнал датчика положения коленчатого вала в номинальном рабочем режиме имеет синусоидальную форму с разрывом. Форма сигнала имеет равномерную одинаковую амплитуду. Если на осциллограмме присутствуют отклонения, значит, задающий диск имеет не равномерность вращения или люфт, т. е. плохо закреплен или поврежден.
Методика диагностирования ДПКВ осциллографом заключается в следующих действиях:
Датчик положения распределительного вала (ДПРВ)
Датчик положения распределительного вала (или датчик фаз) служит для синхронизации времени впрыска топлива форсунками с временем открытия впускных клапанов. Осциллограмма сигнала с этого датчика имеет прямоугольную форму с амплитудой 12,3…12,7 В.
Больше информации о работе датчиков можно получить, если снимать одновременно сигналы ДПКВ и ДПРВ для определения фазы впрыска и смещения распределительных валов относительно друг друга.
На рисунке 2 показан номинальный сигнал датчиков положения коленчатого и распределительного вала.
На графике нижний фронт сигнала ДПРВ совпадает с разрывом зубьев на задающем диске, что говорит о правильной фазе впрыска.
Датчик массового расхода воздуха (ДМРВ)
Датчик массового расхода воздуха сообщает электронному блоку (ЭБУ) о количестве воздуха, поступившего в цилиндры двигателя для определения оптимального количества топлива, впрыскиваемого форсунками, т. е. времени открытого состояния форсунки при впрыске.
Основной параметр для диагностики датчика - это его нулевое напряжение, которое у исправного датчика при включенном зажигании должно быть равным 0,996 В. При углубленной диагностике ДМРВ, необходимо измерить время релаксации - период, в течение которого датчик выходит в нулевое положение.
На рисунке 3 показана осциллограмма исправного датчика массового расхода воздуха. Нулевое напряжение на датчике в этом случае равно 0,996 В, а скорость выхода на рабочий диапазон 0,5 мс.
На рисунке 4 представлена осциллограмма неисправного ДМРВ. Время перехода 20 мс, а напряжение при нулевом объеме воздуха - 1,130 В. Автомобиль с таким датчиком будет расходовать много топлива, и терять мощность.
Немаловажно проверить пик выхода датчика на максимальный уровень напряжения. Для этого нужно снять сигнал с ДМРВ на работающем двигателе при резко нажатой педали газа.
Чем ближе значение сигнала к 5 В, тем датчик имеет большую отдачу и двигатель будет эластичнее в работе (рис. 5).
Датчик положения дроссельной заслонки (ДПДЗ)
Датчик положения дроссельной заслонки легче всего проверить сканером. Но при плавающей неисправности, когда автомобиль движется рывками, лучше проверить сигнал датчика осциллографом.
Для этого сигнальный провод щупа подключают к выходу ДПДЗ и снимают сигнал, открывая дроссель, т. е. нажимая на педаль акселератора.
График осциллограммы должен иметь форму плавной кривой, на которой не должно быть резких перепадов, ступенек, скачков и т. п.
На рисунке 6 приведены осциллограммы сигналов с исправного и неисправного датчика положения дроссельной заслонки.
Проверка массы двигателя осциллографом
Диагностика катушек зажигания с помощью осциллографа
Проверка системы зажигания возможна только по анализу сигнала вторичной или первичной цепи. Самодиагностика двигателя автомобиля способна только косвенно определить дефекты в высоковольтной части, в частности - может выдать ошибку по пропускам зажигания.
Коды неисправностей пропусков дают общую картину работы цилиндра. Они могут возникнуть как от неисправной катушки, свечи, высоковольтного провода, форсунки, низкой компрессии, подсоса воздуха. Для точного определения неисправной катушки зажигания требуется проверка осциллографом.
На рисунке 8 приведен пример характерного высоковольтного сигнала в системе зажигания при правильной работе всех элементов. По отклонениям от номинального графика осциллограммы можно судить о работоспособности всей высоковольтной цепи системы зажигания.
Любой неисправный элемент цепи - катушка, высоковольтный провод, свеча изменят характер графика осциллограммы, как показано на рисунках 9. 12.
Диагностика осциллографом топливных форсунок
Форсунка бензинового двигателя состоит из запорного клапана, который управляется электромагнитом (электромагнитной катушкой). Перемещение этого клапана в процессе работы форсунки можно проверить осциллографом.
Диагностика форсунок с помощью осциллографа требуется при скрупулезном поиске неисправности в затруднительных случаях диагностирования.
В большинстве случаев достаточно сделать анализ эффективности работы цилиндров двигателя.
С помощью осциллографа можно оценить время нахождения форсунок в отрытом состоянии, а также некоторые другие параметры, которые важны при тщательном поиске неисправностей при неправильной работе системы питания.
Более подробный анализ работы форсунок приводится в инструкции по использованию осциллографа.
Датчик положения коленчатого вала (ДПКВ) самый главный в системе впрыска, по нему осуществляется синхронизация работы электронного блока управления двигателем. Сигнал вазовского дпкв представляет собой серию повторяющихся электрических импульсов напряжения, генерируемых датчиком при вращении коленчатого вала.
Задающий диск представляет собой зубчатое колесо 60-2, т.е. 58 равноудаленных зубцов и два отсутствующих для синхронизации. При вращении задающего диска вместе с коленчатым валом впадины изменяют магнитный поток в магнитопроводе датчика, наводя импульсы напряжения переменного тока в его обмотке.
Осциллограмма индуктивного ДПКВ имеет следующий вид:
Здесь стоит обратить внимание на амплитуду сигнала и форму импульсов. Если витки в обмотке датчика будут короткозамкнуты, то амплитуда сигнала будет снижена. Также по осциллограмме легко вычислить биение задающего диска и повреждение зубцов.
На некоторых иномарках в качестве ДПКВ используется датчик Холла, вырабатывающий прямоугольные импульсы.
Вот типичный пример осциллограммы такого датчика (Hyundai Sonata):
А вот так синхронно работают датчики положения коленчатого и распределительного валов двигателей Nissan. По нарастающим фронтам сигналов можно определить смещение валов относительно друг друга.
А это осциллограмма типичной неисправности датчика Холла (Audi 100). Нарастающий фронт "срезан", сигнал такого датчика блок управления не распознает.
На старых Опелях и Daewoo Nexia в качестве датчика синхронизации используется индукционная катушка с задающим диском.
Осциллограмма такого датчика имеет такой вид:
Датчик положения распредвала
ДПРВ используется в системе управления двигателем для определения положения распределительного вала, что необходимо для синхронизации впрыска топлива. Датчик генерирует один импульс за полный цикл работы двигателя (720 градусов поворота коленчатого вала).
Импульс датчика положения распредвала указывает на верхнюю мертвую точку первого цилиндра.
Датчик массового расхода воздуха (ДМРВ) применяются во многих системах управления двигателем (в частности ВАЗ) для измерения значения мгновенного расхода воздуха. Выходной сигнал ДМРВ Bosch HFM5 представляет собой напряжение постоянного тока, изменяющееся в диапазоне от 1 до 5 В, величина которого зависит от массы воздуха, проходящего через датчик. При нулевом расходе исправный датчик должен иметь выходное напряжение около 1В. Эталоном считается значение 0,996В.
По осциллограмме можно отследить 2 важных момента:
1. Скорость реакции ДМРВ можно оценить по времени переходного процесса выходного сигнала при подаче питания на датчик.
2. Выходное напряжение датчика при нулевом расходе воздуха (двигатель остановлен).
Осциллограмма исправного ДМРВ при подаче питания имеет следующий вид.
Время переходного процесса равно 0,5 мс. Выходное напряжение при нулевой подаче воздуха равно 0,996 В.
А это осциллограмма выходного напряжения при включении питания неисправного ДМРВ.
При значительном загрязнении чувствительного элемента датчика, скорость реакции на изменение воздушного потока снижается и форма осциллограммы становится более "сглаженной".
Исправный датчик при быстром открытии дроссельной заслонки должен выдавать кратковременно в первом импульсе более 4 В.
ДМРВ Bosch
Лямбда-зонд
По анализу осциллограммы выходного сигнала лямбда-зонда на различных режимах работы двигателя можно оценить как исправность самого датчика, так и исправность всей системы управления двигателем.
Осциллограмма напряжения исправного циркониевого лямбда имеет следующий вид:
Датчик положения дроссельной заслонки (ДПДЗ) служит для отслеживания угла открытия дроссельной заслонки и представляет собой потенциометр. Опорное напряжение датчика равно 5 В. Сигнал исправного ДПДЗ представляет собой напряжение постоянного тока в диапазоне от 0,5 до 4,5 В. При повороте дроссельной заслонки, сигнал должен меняться плавно, без скачков и провалов.
Пример осциллограммы двух датчиков положения дроссельной заслонки VW Passat с двигателем RP показана на рисунке ниже.
Один из датчиков работает в диапазоне от 0 до 25% открытия дроссельной заслонки, а второй от 25 до 100%.
Датчик абсолютного давления (ДАД)
На основании данных с этого датчика о разряжении и температуре во впускном коллекторе, блок управления рассчитывает количество воздуха, поступающего в цилиндры двигателя. Принцип действия основан на преобразовании значения давления в соответствующую величину выходного напряжения. Применяемые в современных системах управления двигателем датчики чрезвычайно надежны. Проверить работу датчика абсолютного давления можно осциллографом, подключившись к его сигнальному выходу.
Осциллограмма с датчика при открытии дроссельной заслонки имеет такой вид:
Датчик детонации (ДД)
Наиболее распространенный широкополосный датчик детонации пьезоэлектрического типа с генерирует сигнал напряжения переменного тока с частотой и амплитудой зависящей от степени "шума", который издает та часть двигателя, на которую он установлен. При возникновении детонации амплитуда вибраций повышается, что приводит к увеличению напряжения выходного сигнала ДД. При этом контроллер корректирует угол опережения зажигания для гашения детонации.
Проверить датчик детонации можно на столе, подключившись щупами осциллографа к его выводам. При легком постукивании металлическим предметом на осциллограмме отобразятся такие импульсы:
Датчик скорости автомобиля
Как правило такие датчики имеют в своей основе элемент Холла. Однако встречаются и индуктивные датчики.
Типичный пример осциллограммы индуктивного датчика скорости автомобиля Ауди 100 имеет такой вид:
Индуктивный датчик АБС
Хоть этот датчик не относится к системе впрыска, но раз уж попалась на глаза, выкладываю осциллограмму.
Такой вид имеет сигнал с индуктивного датчика системы АБС.
Обратите внимание на амплитуду сигнала. В данном конкретном случае осциллограмма снята при простом прокручивании колеса рукой. Однако если датчик имеет короткозамкнутые витки, то его амплитуда будет значительно меньше. Сигнал такого датчика блок управления АБС не "увидит".скачать dle 10.6фильмы бесплатно
Этот материал адресован, прежде всего, начинающим диагностам, постигающим премудрости работы с мотортестером.
Почему речь пойдет об автомобилях отечественного производства?
На это есть две причины:
- Эти машины более доступны основной массе ремонтников и хорошо изучены ими.
- Учиться на относительно редкой и дорогой иномарке — не самый лучший вариант.
Я преследую цель не просто показать, как произвести то или иное измерение, а внушить мысль, что мотортестер — не что иное, как универсальный измерительный инструмент. Поняв на примере отечественных машин принципы его работы, можно использовать его при диагностике любых автомобилей.
Предполагается, что фирменную инструкцию к прибору Вы уже прочли. Прежде, чем начать разговор о методиках работы с прибором, позволю себе небольшое отступление. А именно для того, чтобы поговорить о весьма важном, на мой взгляд, аспекте работы — выборе типа синхронизации.
Что такое синхронизация?
Рассмотрим их по порядку
1. Внешняя синхронизация. В этом случае источником синхроимпульса является датчик первого цилиндра, надеваемый на высоковольтный провод. Привязка происходит по моменту искрообразования в первом цилиндре. Естественно, датчик можно установить на любой цилиндр, и привязка пойдет по нему, но тогда надо совершенно четко понимать, что отсчет начнется от момента искрообразования в этом цилиндре, и анализировать полученную осциллограмму соответствующим образом.
2. DIS. Тип синхронизации, очень похожий на предыдущий. Источник синхроимпульса — тот же самый датчик первого цилиндра. Но есть особенность. Как известно, в системах зажигания типа DIS искра в цилиндре за один рабочий цикл возникает дважды: на такте сжатия и на такте выпуска (так называемая холостая искра). Чтобы временная привязка происходила корректно, программа игнорирует каждый второй импульс с датчика.
Два рассмотренных типа синхронизации я бы условно отнес к первой группе, вследствие их сходства и использования одного и того же датчика. Во вторую группу можно выделить два следующих типа.
6. Синхронизация по импульсу. Источником служит сигнал какого-либо измерительного канала. Например, можно подключить осциллографический щуп к датчику положения распределительного вала и привязаться к нему. Сигнал этого датчика представляет собой прямоугольные импульсы. Программа позволяет осуществлять временную привязку как к переднему, так и к заднему фронту импульса. Это можно выбрать при настройке режима синхронизации. Также можно выбрать и уровень, на котором будет производиться захват импульса, с помощью полозка, расположенного справа от поля осциллограмм. Частным случаем синхронизации по импульсу является синхронизация по датчику положения коленчатого вала (ДПКВ).
7. Синхронизация по ДПКВ. Программа дает нам замечательную возможность осуществить временную привязку аналогично тому, как это делает ЭБУ. Для этого нужно подключить осциллографический щуп к ДПКВ. Причем по умолчанию выбран задающий диск типа 60-2, применяемый как на отечественных двигателях, так и на многих двигателях иномарок. Но в настройках синхронизации можно установить любую формулу задающего диска.
8. И еще один тип синхронизации по каналу — ВМТ (верхняя мертвая точка). В качестве источника синхроимпульса используется датчик давления, который заворачивается вместо одной из свечей. Снимаемая с него осциллограмма имеет максимум, соответствующий ВМТ цилиндра.
К выбору типа синхронизации нужно подходить с долей творчества. Следует также уяснить, что тот сигнал, который мы хотим посмотреть, одновременно может служить и сигналом синхронизации.
Возвращаясь к примеру с датчиком положения распределительного вала. Мы можем наблюдать осциллограмму сигнала датчика, используя этот же сигнал как источник синхронизации. Обратите внимание на то, что при синхронизации по каналу необходимо, чтобы этот канал был включен.
Параметры режимов синхронизации можно задавать вручную по своему усмотрению. Жестко заданы лишь параметры внутренней, внешней и автоматической синхронизаций.
А теперь подробнее остановимся на применении комплекса в диагностике двигателей. Рассмотрим несколько примеров использования его возможностей при работе с двигателем ВАЗ.
Вторичное напряжение
Состояние высоковольтной части системы зажигания, как известно, очень сильно влияет на качество работы двигателя. Проверить состояние ее компонентов можно по осциллограмме вторичного напряжения. Для этого измерительные датчики подключаются к двигателю в последовательности, изложенной в фирменной инструкции.
Приведу пример. На фото изображено подключение мотортестера в случае системы DIS и выбран соответствующий тип синхронизации:
Результаты измерений:
Сразу бросается в глаза уменьшенное время горения искры в 1 и 4 цилиндрах и отсутствие затухающих колебаний после того, как искра погасла. Это типичные признаки короткозамкнутых витков в катушке 1-4. Катушка 2-3 исправна. Модуль нуждается в замене.
ДПКВ (датчик положения коленчатого вала)
Это самый главный датчик в системе впрыска, по нему осуществляется синхронизация работы ЭБУ. Подключать к нему мотортестер приходится достаточно часто, поэтому я рекомендую для удобства изготовить из разъема и старого датчика простейший переходник.
Поднимем обороты двигателя до 3000. Осциллограмма и напряжение изменились:
Этот пример не является показательным при диагностике отечественных двигателей, но в случае иномарок бывает очень полезным. На некоторых старых иномарках задающим датчиком может оказаться датчик Холла, вырабатывающий прямоугольные импульсы. Двигатель ВАЗ использует датчик Холла в качестве датчика положения распределительного вала (ДПРВ). Рассмотрим его подробнее, одновременно воображая, что перед нами старый Опель.
ДПРВ (датчик расположения распределительного вала)
И оно представляет собой прямоугольные импульсы амплитудой 12.3 вольта.
Прямоугольные импульсы, амплитуда 12.7, на вершинах всплески напряжения от закрывающихся форсунок. Обратим внимание на едва заметные вертикальные линии по заднему фронту импульсов. Это программа отмечает моменты синхронизации. Они особенно интересны при внешней синхронизации, но не будем забегать вперед.
Проведем еще одно интересное наблюдение. Подключим одновременно ДПКВ и ДПРВ, выберем синхронизацию от ДПКВ и полюбуемся получившейся картинкой:
Интересно, правда? Видно, что коленвал вращается в два раза быстрее распредвала, и видно, что пропуск зубьев на задающем диске попадает в створ отрицательного импульса ДПРВ.
ДМРВ (датчик массового расхода воздуха)
Как ни странно прозвучит, этот датчик тоже можно проверить мотортестером. Для удобства работы можно тоже изготовить переходник.
Одна из методик сводится к снятию в режиме самописца осциллограммы сигнала датчика при перегазовке. Вторая методика менее известна и, пожалуй, менее достоверна, но для опыта следует знать и о ней.
Видно, что всплеск напряжения в момент включения достигает 3.11 вольт, и переходный процесс очень короткий и занимает порядка нескольких миллисекунд. А теперь взглянем на осциллограмму неисправного датчика:
Всплеск 2.9, переходный процесс растянут на десятки миллисекунд, и напряжение в установившемся режиме 1.02 вольта. Ну, еще и какие-то шумы в самом начале. Добавлю, что это еще не самый экстремальный вариант. Попадаются неисправные датчики, у которых переходный процесс представляет собой затухающее колебание.
ДПДЗ (датчик положения дроссельной заслонки)
Проверку этого датчика можно произвести в режиме самописца, открывая дроссельную заслонку. Напряжение на выходе должно нарастать плавно, без скачков и шумов. Если же при движении заслонки осциллограмма имеет провалы и шумы, такой датчик подлежит замене.
Датчик температуры проверять мотортестером нерационально. Это делается сканером либо простым мультиметром.
Форсунки
MotoDoc II предоставляет прекрасную возможность наблюдать напряжение и ток форсунок. Он имеет в своем составе соответствующий шнур для соединения со жгутом форсунок двигателя ВАЗ. В качестве синхронизации можно выбрать либо внешнюю, либо синхронизацию по ДПКВ.
Теоретически можно вообще подключиться к ДПРВ и привязаться к нему. Это я говорю для понимания возможностей применения прибора. Однако привязка к ДПРВ не несет практического смысла. Самым простым способом было бы выбрать внешнюю синхронизацию, но, руководствуясь целью придать осциллограмме максимум информативности, я снял напряжение форсунок, воспользовавшись синхронизацией по ДПКВ:
Рассмотрим ее внимательнее. Во-первых, установив измерительные линейки программы соответствующим образом, можно померить время впрыска. Во-вторых, нужно обратить внимание на выбросы напряжения в момент закрытия форсунок. Они возникают потому, что обмотка форсунки представляет собой индуктивность.
В нашем примере все выбросы примерно одного уровня — около 53 вольт. Если же обмотка форсунки имеет короткозамкнутые витки, то скачок напряжения будет намного ниже. Во всяком случае, будет отличаться от остальных. Ну, и в-третьих, растянем картинку до такой степени, чтобы было видно форму спадающего напряжения после всплеска:
Горб на осциллограмме возникает из-за движения клапана форсунки. Он обязательно должен быть. Отсутствие горба говорит о заклинившем или подвисающем клапане.
Так же интересна и осциллограмма тока форсунок:
Наличие тока говорит как минимум об отсутствии внутреннего обрыва обмотки форсунки. Внимание! Выбросы тока на заднем фронте обусловлены конструкцией аппаратной части прибора и смысловой нагрузки не несут.
А вот посмотреть форму осциллограммы поближе смысл есть:
Видно, что ток нарастает плавно, как и в любой индуктивной катушке. Но есть впадина, обусловленная опять-таки движением клапана форсунки. И по наличию или отсутствию этой впадины тоже можно сделать вывод о подвижности клапана.
Анализ осциллограммы давления в цилиндре
Это, пожалуй, самый важный момент, и на нем следует остановиться подробнее.
В нашей коллекции есть одноименная СТАТЬЯ. Рекомендую к изучению.
Итак, выкручиваем свечу, устанавливаем вместо нее датчик давления, подключаем его к прибору и выполняем коррекцию нуля. В качестве временной привязки разумнее всего выбрать внешнюю синхронизацию от высоковольтного провода этого же цилиндра, установленного на разрядник. Чуть позже мы так и сделаем, а пока привяжемся к датчику положения коленвала. На экране возникнет такая картинка:
Она интересна чисто с теоретической точки зрения. Видно, как соотносятся ВМТ цилиндра и сигнал с ДПКВ. Если рассмотреть растянутую осциллограмму, то можно разглядеть девятнадцатый зуб, который соответствует верхней мертвой точке первого цилиндра:
На практике обычно выбирают режим внешней синхронизации и анализируют полученную осциллограмму. Рассмотрим ее:
Нарастание давления в начале осциллограммы соответствует движению поршня вверх. Максимум давления соответствует ВМТ цилиндра. Программа подсказывает нам, что значение давления на пике было 5,40 атмосферы.
Далее, на картинке указана та часть, которая соответствует выпуску отработанных газов. С помощью измерительной линейки можно убедиться, что противодавление выпускного тракта на подопытном автомобиле не превышает 0.1 атм, что опять-таки является нормой.
Еще один важный момент — фазы ГРМ. Анализ осциллограммы позволяет сделать однозначный вывод о правильности установки фаз. Снимите и сохраните в качестве образца осциллограммы давления в цилиндре тех двигателей, с которыми вам чаще всего приходится работать, и вы всегда сможете сравнить исследуемую осциллограмму с эталонной. Внимательно изучите их, поищите закономерности.
Это очень обогатит Ваш опыт
Еще одна интересная осциллограмма — давление в цилиндре на повышенных оборотах:
Следующий момент. Так как привязка происходит по моменту искрообразования в исследуемом цилиндре, который отмечается на картинке серой вертикальной линией, то очень просто, наложив линейки соответствующим образом, увидеть угол опережения зажигания.
Анализ работы клапанов
Исходным измерением является опять-таки осциллограмма давления в цилиндре, снятая в режиме внешней синхронизации. Если проанализировать зависимость давления в ВМТ от оборотов, предоставляемую программой, то можно сделать выводы о состоянии клапанов. Методика была разработана Михаилом Сорокиным из Таганрога и выглядит следующим образом:
Я надеюсь, что мотортестер MotoDoc II станет Вашим незаменимым помощником в нелегкой и творческой работе автодиагноста.
ЧАСТЬ I. ДАТЧИКИ ИНЖЕКТОРНЫХ И КАРБЮРАТОРНЫХ АВТОМОБИЛЕЙ
ДПДЗ (Датчик Положения Дроссельной Заслонки)
Датчик положения дроссельной заслонки(ДПДЗ) в СУД служит для определения степени и скорости открытия дроссельной заслонки. Выходное напряжение ДПДЗ изменяется в зависимости от нажатия педали акселератора и равно 0,3 – 4,8В. В состоянии покоя это напряжение составляет 0,3 – 0,6В, это соответствует 0% открытия дроссельной заслонки.
Эталон. Датчик ОК
Неисправные датчики. Осциллограммы открытия дросселя
Открытие неисправного датчика
Осциллограммы закрытия неисправного датчика
Состояние покоя неисправного датчика
ДПКВ (Датчик Положения Коленчатого Вала)
ДПКВ в ЭСУД служит для определения положения и частоты вращения коленвала для осуществления общей синхронизации системы впрыска. Шкив коленвала имеет 58 зубцов. Точкой отсчета являются два пропущенных зубца на шкиве коленвала. На осциллограмме это место выглядит как резкий скачок напряжения вниз, а потом вверх. При исправном ДПКВ его минимальное напряжение должно быть не менее 6В, максимальное достигает до 250В.
ДМРВ (Датчик Массового Расхода Воздуха, MAF-Sensor)
ДМРВ является датчиком термоанемометрического типа. Устанавливается между воздушным фильтром и дроссельным патрубком. Сигнал ДМРВ представляет собой напряжение постоянного тока, изменяющееся в диапазоне от 1 до 5 В, величина которого зависит от количества воздуха, проходящего через датчик.
У исправного нового датчика максимальное напряжение должно достигать 4,3 – 4,7В в момент резкого открытия дроссельной заслонки .
ДК (Датчик Кислорода, он же Lambda Zond)
Датчик кислорода служит для правильного определения соотношения воздух-топливо поступающего в цилиндры. В зависимости от напряжения кислородного датчика, ЭБУ корректирует параметры топливо-воздушной смеси по заложенной в нем программе управления. Если ЭБУ определяет топливо – воздушную смесь(ТВС) как бедную, что соответствует низкому выходному напряжению, то он увеличивает время открытого состояния форсунок, если ТВС богатая – высокое выходное напряжение – уменьшает время. При исправном датчике кислорода и СУД диапазон выходного напряжения равен 0,05 – 0,9В.
ДФ (Датчик ФАЗ)
Датчик фаз устанавливается на двигателе ВАЗ-2112 в верхней части головки блока цилиндров за шкивом впускного распредвала. На двигателях 2111(Евро‑2) на заглушке справой стороны. В основу работы датчика заложен эффект Холла. На шкиве впускного распредвала расположен задающий диск с прорезью. Прохождение прорези через зону действия датчика фаз соответствует открытию впускного клапана первого цилиндра. Контроллер посылает на датчик фаз опорное напряжение 12В. Напряжение на выходе датчика фаз циклически меняется от значения близкого к 0 (при прохождении прорези задающего диска впускного распредвала через датчик) до напряжения близкого напряжению АКБ (при прохождении через датчик кромки задающего диска). Таким образом при работе двигателя датчик фаз выдает на контроллер импульсный сигнал синхронизирующий впрыск топлива с открытием впускных клапанов. Сигналы у двигателя 2112 и 2111(Евро‑2) совершенно одинаковые.
ДД (Датчик Детонации, Knock Sensor)
Сигнал ЭБУ МП‑7.0
ДТОЖ (Датчик температуры охлаждающей жидкости)
ДС (Датчик скорости, Speed Sensor)
Датчик скорости служит для получении информации о скорости движения автомобиля для приборной панели и СУД, в которой используется для определения режимов движения автомобиля – ХХ и ПХХ.
В основе его работы заложен эффект Холла. Сигнал, получаемый ЭБУ с датчика скорости, импульсный и зависит от скорости движения автомобил я.
Датчик Холла
Датчик Холла в распределителе зажигания служит для своевременной подачи управляющих импульсов в коммутатор. С выхода датчика снимается напряжение, если в его зазоре находится стальной экран. Если экрана в зазоре нет, то напряжение на выходе датчика близко к нулю.
Читайте также: