Принцип работы турбины камаз
Мощность, развиваемая двигателем внутреннего сгорания, зависит от количества топлива и воздуха, поступающего в двигатель. Мощность двигателя возможно повысить за счет увеличения объема этих составляющих.
Но увеличение подачи топлива бессмысленно, если не увеличивается поступление воздуха, необходимого для его сгорания. Поэтому воздух, поступающий в цилиндры двигателя, приходится сжимать. Система принудительной подачи воздуха может работать, используя энергию отработанных газов или с применением механического привода.
Турбокомпрессор или турбонагнетатель — устройство, предназначенное для нагнетания воздуха в двигатель с помощью энергии выхлопных газов. Основные части турбокомпрессора — турбина и центробежный насос, которые связывает между собой общая жесткая ось. Эти элементы вращаются со скоростью — около 100.000 об/мин, приводя в действие компрессор.
УСТРОЙСТВО ТУРБОКОМПРЕССОРА
схема турбокомпрессора
Устройство турбокомпрессора (рис.1):
1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.
Турбинное колесо вращается в корпусе, имеющем специальную форму. Оно выполняет функцию передачи энергии отработавших газов компрессору. Турбинное колесо и корпус турбины изготавливают из жаропрочных материалов (керамика, сплавы).
Компрессорное колесо засасывает воздух, сжимает его и затем нагнетает его в цилиндры двигателя. Оно также находится в специальном корпусе.
Компрессорное и турбинное колеса установлены на валу ротора. Вращение вала происходит в подшипниках скольжения. Используются подшипники плавающего типа, то есть зазор имеют со стороны корпуса и вала. Моторное масло для смазки подшипников поступает через каналы в корпусе подшипников. Для герметизации на валу устанавливаются уплотнительные кольца.
Для лучшего охлаждения турбонагнетателей в некоторых бензиновых двигателях применяется дополнительное жидкостное охлаждение.
Для охлаждения сжимаемого воздуха предназначен интеркулер — радиатор жидкостного или воздушного типа. За счет охлаждения увеличивается плотность и соответственно давление воздуха.
В управлении системой турбонаддува основным элементом является регулятор давления. Это перепускной клапан, который ограничивает поток отработавших газов, перенаправляя часть его мимо турбинного колеса, обеспечивая нормальное давление наддува.
ПРИНЦИП РАБОТЫ
1. Турбокомпрессор широко используется ввиду простоты конструкции и хороших эксплуатационных параметров. Турбонаддув позволяет увеличить мощность двигателя на 20-35%. Двигатель, вырабатывая повышенные крутящие моменты на средних и высоких оборотах, увеличивает скорость и экономичность автомобиля.
2. Турбокомпрессор в большинстве случаев не может быть причиной неисправностей двигателя, так как его работа зависит от работоспособности газораспределительной, воздушной и топливной систем.
3. Двигатель с турбокомпрессором имеет меньший выброс вредных газов в атмосферу, так как вырабатываются дополнительные выхлопные газы в двигатель. У сгораемого топлива становится меньше отходов.
4. Происходит экономия топлива на 5-20%. В небольших двигателях энергия сжигаемого топлива используется эффективней, увеличивается КПД.
5. На высокогорных дорогах такие двигатели работают более стабильно и с меньшими потерями мощности, чем их атмосферные аналоги.
6. Турбокомпрессор сам по себе является глушителем шума в системе выпуска.
Как работает турбина — видео:
Турбина КАМАЗ ЕВРО 2
Турбокомпрессор камаз — все о нём
Модели турбокомпрессоров, применяемые на двигателях КАМАЗ.
В системах наддува дизельных двигателей КАМАЗ применяют одноступенчатые турбокомпрессоры, состоящие из центробежного компрессора и радиальной центробежной турбины. Так как работа двигателя и турбокомпрессора согласована, то можно устанавливать определенный тип турбокомпрессора только на тот двигатель, для которого он предназначен.
На двигатель КАМАЗ 7403.10 устанавливаются два турбокомпрессора ТКР 7Н-1. В качестве запасных частей этот двигатель разрешено комплектовать турбокомпрессорами: ТКР-7Н1-СТ производства ООО “Сервис-Турбо”, ТКР 7Н-1К производства НПО “Турботехника”, ТКР-7ТВ-03 производства ООО “Турбо-Веста”.
На двигатели КАМАЗ 740.11-240, 740.13-260, 740.14-300 устанавливаются два турбокомпрессора: ТКР 7С-9 или К27-115.
Описание системы газотурбинного наддува и охлаждения наддувочного воздуха.
На всех автомобилях КАМАЗ, кроме комплектаций с двигателями моделей 7403.10, 740.11-240, 740.13-260, 740.14-300, применяется система охлаждения надувочного воздуха (ОНВ).
Система газотурбинного наддува и ОНВ обеспечивает за счет использования части энергии отработавших газов подачу предварительно сжатого и охлажденного воздуха в цилиндры двигателя. Это позволяет увеличить плотность заряда воздуха, поступающего в цилиндры, и в том же рабочем объеме сжечь большее количество топлива, т.е. повысить литровую мощность двигателя.
Рисунок 1 — Схема системы газотурбинного наддува и ОНВ.
1 — теплообменник ОНВ: 2 — радиатор системы охлаждения; 3 — вентилятор; 4 — двигатель; 5,6- турбокомпрессоры
Воздух в центробежный компрессор турбокомпрессора поступает из воздухоочистителя, сжимается и подается под давлением в теплообменник ОНВ, и затем охлажденный воздух поступает в двигатель.
Турбокомпрессоры устанавливаются на выпускных патрубках по одному на каждый ряд цилиндров. Выпускные коллекторы и патрубки изготовлены из высокопрочного чугуна. Уплотнение газовых стыков между установочными фланцами турбины турбокомпрессоров, выпускных патрубков и коллекторов осуществляется прокладками из жаростойкой стали. Газовый стык между выпускным коллектором и головкой цилиндра уплотняется прокладкой из асбостального листа, окантованного лентой из жаростойкой стали. Прокладки являются деталями одноразового использования и при переборках системы подлежат замене.
Выпускные коллекторы крепятся к головкам цилиндров болтами. Для компенсации угловых перемещений, возникающих при нагреве, под головки болтов крепления выпускного коллектора устанавливаются специальные сферические шайбы.
Впускные коллекторы и патрубки выполняются литыми из алюминиевого сплава и соединяются между собой при помощи болтов. Стыки между коллекторами и патрубками уплотняются паронитовыми прокладками.
Рисунок 2 — Схема системы газотурбинного наддува (без ОНВ)
1 — турбокомпрессоры; 2 — патрубок выпускной левый; 3 — патрубок впускной левый; 4 — коллектор выпускной левый; 5 — коллектор впускной левый; 6 — патрубок объединительный; 7 — коллектор впускной правый; 8 — коллектор выпускной правый; 9 — патрубок выпускной правый; 10 — патрубок впускной правый.
Смазка подшипников турбокомпрессоров осуществляется из системы смазки двигателя через фторопластовые трубки с металлической оплеткой. Слив масла из турбокомпрессоров осуществляется по стальным трубкам сильфонной конструкции в картер двигателя.
На рисунке 2 представлена система газотурбинного наддува без ОНВ. Принцип работы такой системы тот же, что и у представленной выше, за исключением того, что сжатый воздух, подаваемый в цилиндры двигателя, не охлаждается.
Конструкция турбокомпрессоров, применяемых на двигателях КАМАЗ.
Рисунок 3 — Турбокомпрессор ТКР 7Н-1
1 — подшипник; 2 — экран; 3 — корпус компрессора; 4 — диффузор; 5 — уплотнительное кольцо; 6 — гайка; 7 — маслоотражатель; 8 — колесо компрессора; 9 — маслосбрасывающий экран; 10 — крышка; 11 — корпус подшипников; 12 — фиксатор; 13 — переходник; 14 — прокладка; 15 — экран турбины; 16 — колесо турбины с валом; 17 — корпус турбины; 18 — уплотнительное кольцо.
В конструкции турбокомпрессора ТКР 7Н-1 (рисунок 3) применяется изобарный однозаходный корпус турбины из высокопрочного чугуна и в качестве подшипника — бронзовая моновтулка качающегося типа.
Ротор турбокомпрессора состоит из колеса турбины с валом 16, колеса компрессора 8 и маслоотражателя 7, закрепленных на валу гайкой 6. Ротор вращается в подшипнике 1, удерживающемся от осевого и радиального перемещений фиксатором 12, который с переходником 13 является одновременно и маслоподводящим каналом.
Ротор и колесо компрессора динамически балансируются с высокой точностью на специальных балансировочных станках.
В корпусе подшипника 11 устанавливаются стальные крышки 10 и маслосбрасывающий экран 9, который вместе с упругими разрезными кольцами 5 предотвращает течь масла из полости корпуса подшипника.
Для уменьшения теплопередачи от корпуса турбины к корпусу подшипника между ними установлен чугунный экран 15 и окантованная асбостальная прокладка 14.
Корпус компрессора и корпус турбины крепятся к корпусу подшипников при помощи болтов и планок. Болты крепления корпусов компрессоров М6 необходимо затягивать крутящим моментом 4,9…7,8 Н-м (0,5…0,8 кгс-м), а болты крепления корпусов турбин М8 — 23,5…29,4 Н-м (2,4…3,0 кгс-м).
В конструкции турбокомпрессора ТКР 7С-6 (ТКР7С-9) (рисунок 4) применяется двухзаходный корпус турбины 7 из высокопрочного чугуна.
Ротор турбокомпрессора состоит из колеса турбины 9 с валом 10, колеса компрессора 1, маслоотражателя 16 и втулки 15, закрепленных на валу гайкой 19.
Ротор вращается в подшипниках 5, представляющих собой плавающие вращающиеся втулки. Осевые перемещения ограничиваются упорным подшипником 4, установленным между корпусом подшипников 3 и крышкой 2. Подшипники выполняются из бронзы.
Рисунок 4 — Турбокомпрессор ТКР 7С-6:
1 — корпус компрессора; 2 — крышка; 3 — корпус подшипников; 4 — подшипник упорный; 5 — подшипник; 6 — кольцо стопорное; 7 — корпус турбины; 8 — кольцо уплотнительное; 9 — колесо турбины; 10 — вал ротора; 11 — экран турбины; 12, 17 — планки; 13, 18 — болты; 14 — маслосбрасывающий экран; 15 — втулка; 16 — маслоотражатель; 19 — гайка; 20 — колесо компрессора; 22 — диффузор; 24 — переходник; 25 — прокладка, 21, 23 — кольцо уплотнительное (резиновое).
Корпус подшипников турбокомпрессора, с целью уменьшения теплопередачи от турбины к компрессору, выполнен составным из чугунного корпуса и крышки из алюминиевого сплава. Для уменьшения теплопередачи между корпусом турбины и корпусом подшипников устанавливается экран турбины 11 из жаростойкой стали. В корпусе подшипников устанавливается маслосбрасывающий экран 14, который вместе с упругими уплотнительными кольцами 8 предотвращает утечку масла из полости корпуса.
Корпусы турбины и компрессора крепятся к корпусу подшипников с помощью болтов 13, 18 и планок 12, 17. Моменты затяжки болтов такие же, как у ТКР 7Н-1. Такая конструкция позволяет устанавливать корпусы под любым углом друг к другу, что в свою очередь облегчает установку ТКР на двигателе.
Турбокомпрессоры ТКР 7С-6 и ТКР 7С-9 отличаются между собой только корпусами турбин — они имеют различную пропускную способность.
Турбокомпрессоры S2B/7624TAE/0,76D9 правый и левый (обозначение левого турбокомпрессора 1274 970 0003, правого — 1274 970 0004) не имеют конструктивных отличий, отличаются только разворотом корпусов турбины и компрессора.
Корпус турбины крепится к корпусу подшипников при помощи болтов и планок, а корпус компрессора — при помощи стопорного кольца. Такая конструкция позволяет устанавливать корпусы под любым углом друг к другу, что в свою очередь обеспечивает взаимозаменяемость левого и правого турбокомпрессоров. При необходимости производить разворот корпуса компрессора только при ослаблении натяга стопорного кольца.
Турбокомпрессоры К27-115 правый и левый (обозначение правого турбокомпрессора 399 0023 115-01, левого — 399 0023 115-02) не имеют конструктивных отличий, отличаются только разворотом корпусов турбины и компрессора.
К27-115 имеет конструкцию, аналогичную ТКР 7С-9, и по установочным и присоединительным размерам он унифицирован с ТКР 7С-9.
Корпус турбины и корпус компрессора крепятся к корпусу подшипников при помощи болтов и планок. Такая конструкция позволяет устанавливать корпусы под любым углом друг к другу, что в свою очередь обеспечивает взаимозаменяемость левого и правого турбокомпрессоров.
Допустимые параметры турбокомпрессоров при эксплуатации приведены в таблице 1.
Турбокомпрессор на КамАЗ: прирост мощности с минимальными затратами
Развиваемая мощность — одна из основных характеристик двигателя, определяющая его пригодность для решения тех или иных задач. Двигатель внутреннего сгорания был создан больше века назад, и все эти годы конструкторы бьются над решением непростой задачи — увеличением мощности. На этом пути были созданы самые разные средства, но одним из самых простых и доступных из них был и остается турбокомпрессор.
Назначение турбокомпрессоров
В первую очередь — полнее. Это значит, что единица объема топлива отдает больше энергии, позволяя двигателю развить большую мощность. На практике использование турбокомпрессоров на различных двигателях КамАЗ дает прирост мощности от 20% до 40%. А вся соль наддува в том, что увеличение мощности происходит без внесения изменений в конструкцию двигателя.
Из-за более полного сгорания топлива значительно снижается токсичность выхлопных газов, уменьшается их дымность (в том числе из-за сокращения количества твердых продуктов сгорания — сажи) и в целом повышается экологическая безопасность двигателя.
Установка турбокомпрессора на двигатель повышает расход топлива, однако в целом расход топлива для получения единицы мощности в этом двигателе меньше, чем в обычном. Да, если считать в абсолютных числах, то двигатель с наддувом потребляет больше топлива, но он и мощнее — обычный дизель такой же мощности менее экономичен. Так что лучше и экономичнее использовать турбокомпрессор, чем получать ту же мощность от обычного двигателя.
Устройство, работа и характеристики турбокомпрессора
Турбокомпрессоры для КамАЗов устроены на удивление просто. В сущности, в турбокомпрессоре объединено два самостоятельных устройства — газовая турбина и центробежный компрессор.
Центробежный компрессор имеет такое же устройство — в корпусе-улитке находится компрессорное колесо с лопатками особой формы. Воздух поступает в компрессор через центральное отверстие и через диффузор выходит во впускной коллектор двигателя.
Колеса турбины и компрессора связаны валом через центральный корпус, и именно посредством вала крутящий момент от турбинного колеса передается компрессорному. Тем самым, энергия для работы турбокомпрессора извлекается из энергии отработанных газов.
Принцип работы турбокомпрессора очень прост. Отработанные газы поступают в турбину, где они, ударяясь о лопасти турбинного колеса, передают ему свою кинетическую энергию — во время работы колесо раскручивается до 75 000 оборотов в минуту! Турбинное колесо через вал передает крутящий момент компрессорному — оно, забирая атмосферный воздух, с силой отбрасывает его к стенкам корпуса, разгоняя до высоких скоростей. Этот воздух поступает в сужающийся диффузор, где сжимается и под большим давлением подается во впускной коллектор, а через него — в камеры сгорания.
Так как турбина постоянно работает под высокими тепловыми и механическими нагрузками, ее корпус изготавливается из особо прочных сплавов. А большая скорость вращения колес возможна только при хорошей смазке подшипников (в турбинах для КамАЗов используют подшипники скольжения) — для этой цели турбокомпрессор через маслопроводы подключается к системе смазки двигателя.
Нужно сказать, что в КамАЗах установлены двухрядные V-образные двигатели, для которых оказалось целесообразным применять два турбокомпрессора — по одной на каждый ряд. Применение двух маленьких турбокомпрессоров гораздо удобнее, экономически выгоднее и эффективнее, чем использование одного большого.
Интересно, что турбины на КамАЗы отличаются малыми размерами: диаметры крыльчаток не превышают 61 мм, а диаметры корпусов турбины и компрессора ненамного больше 220 мм. При этом один компрессор весит не более 7 кг. И использование таких небольших агрегатов позволяет резко поднять мощность двигателя!
Турбокомпрессор на КамАЗ: типы, производители, цены
Современный рынок предлагает достаточно широкий выбор турбокомпрессоров на автомобили КамАЗ, однако это не значит, что можно просто приобрести любой подходящий по цене агрегат — здесь все зависит от марки двигателя и, что очень важно, от его экологической нормы Евро.
В настоящее время на различных модификациях КамАЗ можно встретить двигатели четырех экологических классов — от "Евро 0" (только на старых моделях) до "Евро 3".
Класс "Евро 0" — это два двигателя:
- КамАЗ 740.10;
- КамАЗ 7403.
В продаже можно найти турбокомпрессоры только для различных модификаций двигателя КамАЗ 7403 — это хорошо зарекомендовавшие себя ТКР7Н-1. Но класс "Евро 0" постепенно вытесняется, поэтому совсем близко то время, когда таких турбокомпрессоров просто не будет.
Класс "Евро 1" — это два популярных двигателя:
- КамАЗ 740.11;
- КамАЗ 740.13.
Для этих двигателей представлено большое количество турбокомпрессоров, включая различные модификации ТКР7 и К27, а также зарубежные агрегаты CZ Strakonice (Чехия) и Schwitzer (Германия).
Класс "Евро 2" — один из самых распространенных, этому классу соответствует четыре двигателя:
- КамАЗ 740.31-240;
- КамАЗ 740.30-260;
- КамАЗ 740.50-360;
- КамАЗ 740.51-320.
Эти двигатели оснащаются уже озвученными выше турбокомпрессорами в модификациях "Евро 2".
Класс "Евро 3" — на сегодняшний день самый высокий класс двигателей КамАЗ, включает пять агрегатов:
- КамАЗ 740.60-360;
- КамАЗ 740.61-320;
- КамАЗ 740.62-280;
- КамАЗ 740.63-400;
- КамАЗ 740.37-400.
Турбокомпрессоров класса "Евро 3" пока не слишком много, они представлены моделями К27-ТИ и Schwitzer S2B.
Также на ряд моделей КамАЗов сейчас устанавливаются двигатели американской компании Cummins — для них предусмотрены свои модели турбокомпрессоров, отличающихся по конструкции и характеристикам от турбокомпрессоров двигателей КамАЗ.
Если говорить о производителях турбокомпрессоров для двигателей КамАЗ, то на сегодняшний день их не слишком много.
CZ Strakonice. Чешский завод из города Страконице, предлагающий популярные в нашей стране турбокомпрессоры — аналоги агрегатов К-27. При высоком качестве они несколько дороже отечественных турбокомпрессоров.
Borg Warner Turbosystems. Немецкий концерн, предлагающий качественные турбокомпрессоры под торговой маркой Schwitzer.
Неисправности турбокомпрессоров
Турбокомпрессор — агрегат очень простой и надежный и, казалось бы, ломаться в нем просто нечему. Однако это не так, существует множество типов неисправностей турбокомпрессоров, а все из-за тех колоссальных нагрузок, которые испытывает агрегат во время работы.
Одна из главных причин выхода из строя турбокомпрессоров — недостаточное поступление масла. Вал турбокомпрессора во время работы делает до 75 000 оборотов в минуту, и в случае недостатка масла подшипники, в которых вращается вал, могут выйти из строя за несколько минут. А незначительное смещение или биение вала могут привести к его разрушению, а также к серьезным поломкам колес турбины и компрессора, и полному выходу из строя всего агрегата.
Также довольно часто турбокомпрессор выходит из строя при попадании в него посторонних предметов. Причем ротору, вращающемуся с огромной скоростью, для поломки не нужно камня — достаточно попадания незначительного осколка поршневого кольца или клапана. А повреждение ротора компрессора возможно даже при попадании в него куска резины или ткани — в этом случае лопатки обычно не ломаются, а гнутся, в результате чего резко ухудшаются характеристики турбокомпрессора.
Сложность ремонта турбокомпрессоров заключается опять же в тех нагрузках, которым он подвергается. Здесь необходима очень высокая точность во время установки и обработки деталей, а отклонения даже в микроны повлекут за собой быстрый выход из строя отремонтированного агрегата. Для такой работы нужно применение специализированного высокоточного оборудования и инструмента, поэтому оправдан только ремонт дорогих турбокомпрессоров. А так как турбокомпрессоры на КамАЗ отличаются невысокой ценой, то за их ремонт никто не берется — проще и выгоднее купить новый агрегат.
Турбокомпрессор: сердце системы наддува воздуха
Для повышения мощности двигателей внутреннего сгорания широкое применение находят специальные агрегаты — турбокомпрессоры. О том, что такое турбокомпрессор, каких типов бывают эти агрегаты, как они устроены и на каких принципах основана их работа, а также об их обслуживании и ремонте читайте в статье.
Что такое турбокомпрессор?
Турбокомпрессор — основной компонент системы агрегатного наддува двигателей внутреннего сгорания, агрегат для повышения давления во впускном тракте двигателя за счет энергии отработавших газов.
Турбокомпрессор применяется для повышения мощности двигателя внутреннего сгорания без коренного вмешательства в его конструкцию. Данный агрегат повышает давление во впускном тракте двигателя, обеспечивая подачу в камеры сгорания увеличенного количества топливно-воздушной смеси. В этом случае сгорание происходит при более высокой температуре с образованием большего объема газов, что приводит к повышению давления на поршень и, как следствие, к росту крутящего момента и мощностных характеристик двигателя.
Применение турбокомпрессора позволяет увеличить мощность двигателя на 20-50% с минимальным увеличением его стоимости (а при более значительных доработках рост мощности может достигать 100-120%). Благодаря своей простоте, надежности и эффективности системы наддува на основе турбокомпрессоров находят самое широкое применение на всех типах транспортных средств с ДВС.
Типы и характеристики турбокомпрессоров
Сегодня существует большое разнообразие турбокомпрессоров, но их можно разделить на группы по назначению и применимости, типу используемой турбины и дополнительному функционалу.
По назначению турбокомпрессоры можно разделить на несколько типов:
- Для одноступенчатых систем наддува — один турбокомпрессор на двигатель, либо два и более агрегатов, работающих на несколько цилиндров;
- Для последовательных и последовательно-параллельных систем надува (различные варианты Twin Turbo) — два одинаковых или разных по характеристикам агрегата, работающих на общую группу цилиндров;
- Для двухступенчатых систем наддува — два турбокомпрессора с различными характеристиками, которые работают в паре (последовательно друг за другом) на одну группу цилиндров.
Наиболее широкое применение находят одноступенчатые системы наддува, построенные на основе одного турбокомпрессора. Однако такой системе может присутствовать два или четыре одинаковых агрегата — например, в V-образных двигателях используются отдельные турбокомпрессоры на каждый ряд цилиндров, в многоцилиндровых моторах (более 8) могут применяться четыре турбокомпрессора, каждый из которых работает на 2, 4 или более цилиндров. Меньшее распространение получили двухступенчатые системы наддува и различные вариации Twin-Turbo, в них используется два турбокомпрессора с различными характеристиками, которые могут работать только в паре.
По применимости турбокомпрессоры можно условно разделить на несколько групп:
- По типу двигателя — для бензиновых, дизельных и газовых силовых агрегатов;
- По объему и мощности двигателя — для силовых агрегатов малой, средней и большой мощности; для высокооборотистых двигателей, и т.д.
Турбокомпрессоры могут оснащаться турбиной одного из двух типов:
- Радиальной (радиально-осевой, центростремительной) — поток отработавших газов подается на периферию крыльчатки турбины, движется к ее центру и выводится в осевом направлении;
- Осевой — поток отработавших газов подается вдоль оси (к центру) крыльчатки турбины и выводится с ее периферии.
Сегодня применяются обе схемы, но на двигателях небольшого объема чаще можно встретить турбокомпрессоры с радиально-осевой турбиной, а на мощных силовых агрегатах предпочтение отдается осевым турбинам (хотя это и не является правилом). Независимо от типа турбины, все турбокомпрессоры оснащаются центробежным компрессором — в нем воздух подается к центру крыльчатки и отводится от ее периферии.
Современные турбокомпрессоры могут иметь различный функционал:
- Двойной вход — турбина имеет два входа, на каждый из них поступают отработавшие газы от одной группы цилиндров, такое решение снижает перепады давления в системе и улучшает стабильность наддува;
- Изменяемая геометрия — турбина имеет подвижные лопасти или скользящее кольцо, посредством которых можно изменять поток отработавших газов на рабочее колесо, это позволяет изменять характеристики турбокомпрессора в зависимости от режима работы двигателя.
Наконец, турбокомпрессоры отличаются основными эксплуатационными характеристиками и возможностями. Из основных характеристик этих агрегатов следует выделить:
- Степень повышения давления — отношение давления воздуха на выходе компрессора к давлению воздуха на входе, лежит в пределах 1,5-3;
- Подача компрессора (расход воздуха через компрессор) — масса воздуха, проходящая через компрессор за единицу времени (секунду), лежит в пределах 0,5-2 кг/с;
- Рабочий диапазон оборотов — лежит в пределах от нескольких сотен (для мощных тепловозных, промышленных и иных дизелей) до десятков тысяч (для современных форсированных двигателей) оборотов в секунду. Максимальная скорость ограничена прочностью рабочих колес турбины и компрессора, при слишком высокой скорости вращения за счет центробежных сил колесо может разрушиться. В современных турбокомпрессорах периферийные точки колес могут вращаться со скоростями 500-600 и более м/с, то есть — в 1,5-2 раза быстрее скорости звука, это и обуславливает возникновение характерного свиста турбины;
- Рабочая/максимальная температура отработавших газов на входе в турбину — лежит в пределах 650-700°С, в отдельных случаях достигает 1000°С;
- КПД турбины/компрессора — обычно составляет 0,7-0,8, в одном агрегате КПД турбины обычно меньше КПД компрессора.
Типовая схема системы агрегатного наддува воздуха ДВС
Также агрегаты отличаются размерами, типом монтажа, необходимостью применять вспомогательные компоненты и т.д.
Конструкция турбокомпрессора
В общем случае турбокомпрессор состоит из трех основных узлов:
- Турбина;
- Компрессор;
- Корпус подшипников (центральный корпус).
Турбина — агрегат, преобразующий кинетическую энергию отработавших газов в механическую энергию (в крутящий момент колеса), которая обеспечивает работу компрессора. Компрессор — агрегат для нагнетания воздуха. Корпус подшипников связывает оба агрегата в единую конструкцию, а расположенный в нем вал ротора обеспечивает передачу крутящего момента от колеса турбины на колесо компрессора.
Разрез турбокомпрессора
Турбина и компрессор имеют схожую конструкцию. Основой каждого из этих агрегатов выступает корпус-улитка, в периферийной и центральной части которого расположены патрубки для соединения с системой наддува. У компрессора впускной патрубок всегда находится в центре, выпускной (нагнетательный) — на периферии. Такое же расположение патрубков у осевых турбин, у радиально-осевых турбин расположение патрубков обратное (на периферии — впускной, в центре — выпускной).
Внутри корпуса располагается колесо с лопатками специальной формы. Оба колеса — турбинное и компрессорное — удерживаются общим валом, который проходит через корпус подшипников. Колеса — цельнолитые или составные, форма лопаток турбинного колеса обеспечивает максимально эффективное использование энергии отработавших газов, форма лопаток компрессорного колеса обеспечивает максимальный центробежный эффект. В современных турбинах высокого класса могут использоваться составные колеса с керамическими лопатками, которые имеют низкую массу и обладают лучшими характеристиками. Размер колес турбокомпрессоров автомобильных двигателей — 50-180 мм, мощных тепловозных, промышленных и иных дизелей — 220-500 и более мм.
Оба корпуса монтируются на корпус подшипников с помощью болтов через уплотнения. Здесь располагаются подшипники скольжения (реже — подшипники качения специальной конструкции) и уплотнительные кольца. Также в центральном корпусе выполняются масляные каналы для смазки подшипников и вала, а в некоторых турбокомпрессорах и полости водяной рубашки охлаждения. При монтаже агрегат соединяется с системами смазки и охлаждения двигателя.
В конструкции турбокомпрессора могут быть предусмотрены и различные вспомогательные компоненты, в том числе детали системы рециркуляции отработавших газов, масляные клапаны, элементы для улучшения смазки деталей и их охлаждения, регулировочные клапаны и т.д.
Детали турбокомпрессора изготавливаются из специальных марок стали, для колеса турбины применяются жаропрочные стали. Материалы тщательно подбираются по коэффициенту температурного расширения, что обеспечивает надежность конструкции на различных режимах работы.
Турбокомпрессор включается в систему наддува воздуха, в которую также входят впускной и выпускной коллекторы, а в более сложных системах — интеркулер (радиатор охлаждения наддувного воздуха), различные клапаны, датчики, заслонки и трубопроводы.
Принцип работы турбокомпрессора
Принцип работы турбокомпрессора
Функционирование турбокомпрессора сводится к простым принципам. Турбина агрегата внедряется в выпускную систему двигателя, компрессор — во впускной тракт. Во время работы мотора выхлопные газы поступают в турбину, ударяются о лопатки колеса, отдавая ему часть своей кинетической энергии и заставляя ее вращаться. Крутящий момент от турбины посредством вала напрямую передается на колеса компрессора. При вращении колесо компрессора отбрасывает воздух на периферию, повышая его давление — этот воздух подается во впускной коллектор.
Одиночный турбокомпрессор имеет ряд недостатков, основной из которых — турбозадержка или турбояма. Колеса агрегата имеют массу и некоторую инерцию, поэтому не могут мгновенно раскручиваться при повышении оборотов силового агрегата. Поэтому при резком нажатии на педаль газа турбированный двигатель разгоняется не сразу — возникает короткая пауза, провал мощности. Решением этой проблемы служат специальные системы управления турбиной, турбокомпрессоры с изменяемой геометрией, последовательно-параллельные и двухступенчатые системы наддува, и другие.
Вопросы обслуживания и ремонта турбокомпрессоров
Турбокомпрессор нуждается в минимальном техническом обслуживании. Главное — вовремя производить замену масла и масляного фильтра двигателя. Если мотор еще может какое-то время работать на старом масле, то для турбокомпрессора оно может стать смертельно опасным — даже незначительное ухудшение качества смазочного материала на высоких нагрузках может привести к заклиниванию и разрушению агрегата. Также рекомендуется периодически очищать детали турбины от нагара, что требует ее разбора, однако эту работу следует выполнять только с применением специального инструмента и оборудования.
Неисправный турбокомпрессор в большинстве случаев проще заменить, чем ремонтировать. Для замены необходимо использовать агрегат того же типа и модели, что был установлен на двигателе ранее. Монтаж турбокомпрессора с иными характеристиками может нарушить работу силового агрегата. Подбор, монтаж и настройку агрегата лучше доверять специалистам — это гарантирует правильное выполнение работ и нормальную работу двигателя. При правильной замене турбокомпрессора двигатель снова обретет высокую мощность и сможет решать самые сложные задачи.
Другие статьи
В любом поршневом двигателе внутреннего сгорания присутствует деталь, соединяющая поршень с верхней головкой шатуна — поршневой палец. Все о поршневых пальцах, их конструктивных особенностях и способах установки, а также о верном подборе и замене пальцев различных типов подробно рассказано в статье.
На прицепах и полуприцепах иностранного производство широко применяются компоненты ходовой части от немецкого концерна BPW. Для монтажа колес на ходовой используется специализированный крепеж — шпильки BPW. Все об этом крепеже, его существующих типах, параметрах и применяемости читайте в материале.
Для монтажа автомобильных стекол в кузовные элементы используются специальные детали, обеспечивающие уплотнение, фиксацию и демпфирование — уплотнители. Все об уплотнителях стекол, их типах, конструктивных особенностях и характеристиках, а также о подборе и замене этих элементов — читайте в статье.
В практике авторемонта и при выполнении слесарно-монтажных работ возникает необходимость работы с резьбовым крепежом, имеющим неудобное положение или наклон. В этих ситуациях на помощь приходят карданные переходники для ключей — об этих приспособлениях, их конструкции и применении читайте в статье.
Решение определенных задач грузового транспорта определяется развиваемой мощностью. Турбокомпрессор КамАЗ позволяет увеличить рабочие возможности автомобиля, оставаясь одним из самых эффективных способов, несмотря на старания ученых и конструкторов в продвижении потенциально новых идей. Рассмотрим характеристики и особенности этого приспособления.
Назначение
Особенности
Более активное и плотное сгорание топлива существенно уменьшает выброс токсичных отработанных газов. Также снижается количество дыма, благодаря уменьшению остаточных твердых продуктов (сажи). Проще говоря, увеличивается общая экологическая безопасность мотора.
1 – тепловой обменник; 2 – радиатор охлаждающей системы; 3 – вентилятор; 4 – мотор; 5 и 6 – турбокомпрессоры.
Устройство
Турбокомпрессоры КамАЗ имеют простую конструкцию. По сути, в этом приспособлении взаимодействуют два элемента (компрессор центробежного типа и газовая турбина). Первая комплектующая часть состоит из таких деталей
- остова в виде улитки;
- колеса с рабочими лопатками специфической конфигурации;
- отверстия, через которое воздух поступает, подаваясь посредством диффузора во впускной коллектор мотора.
Газовая турбина имеет аналогичное строение, только вместо воздуха, в нее подаются отработанные газы, которые выводятся в систему выхлопа.
Колеса обоих элементов соединяются при помощи центрального корпуса, а крутящая сила передается посредством валика. Следовательно, энергия для работы агрегата продуцируется из отработанных газов.
1 – подшипник; 2 – экранная часть; 3 – корпус; 4 – диффузор; 5 – кольцо уплотнения; 6 – гайка; 7 – отражатель масляный; 8 – компрессорное колесо; 9 – экран маслосброса; 10 – заслонка; 11 – остов подшипников; 12 – крепеж; 13 – переходник; 14 – прокладка; 15 – турбинный экран; 16 – колесо; 17 – корпус; 18 – уплотнитель.
Принцип работы
В турбокомпрессоре КамАЗ (Евро-1/2/3/4) отработанные газы подаются в турбину, взаимодействуют с лопастями колеса, передавая ему собственный кинетический потенциал, раскручивая его до 75 тысяч вращений в минуту. Турбинный элемент трансформирует крутящий момент на компрессорный аналог, который забирает атмосферный воздух, активно отбрасывая его к стенкам и разгоняя до высокой скорости. Далее, масса поступает в сужающуюся диффузорную часть, там сжимается, под давлением подаваясь во впускной коллектор, затем — в отсеки сгорания.
Поскольку турбина функционирует стабильно под высоким давлением и механическим воздействием, ее корпусная часть сделана из специальных усиленных сплавов. Для обеспечения большой скорости вращения колес требуется хорошая смазка подшипников. Это условие обеспечивается при помощи маслопроводов, которые подключены к системе смазки мотора.
Стоит уточнить, что в грузовиках КамАЗ монтируются двухрядные V-образные двигатели. Для них уместно применение пары турбинных компрессоров (на каждый ряд по одному элементу). Экономически выгоднее использование двух небольших моделей, чем одного большого агрегата. Турбины рассматриваемых приспособлений обладают относительно небольшими габаритами:
- диаметры крыльчаток — не более 61 мм;
- аналогичные размеры турбины и компрессора — 220 мм;
- масса одного элемента в сборе — около 7 кг.
Применение таких компактных агрегатов дает возможность резко увеличить параметр мотора.
Типы и классы
На современном рынке представлено четыре категории двигателей соответствия экологическим стандартам. В зависимости от этих параметров, подбирается тип и марка компрессора. Ниже в таблице указана эта информация.
Турбокомпрессоры дизелей КАМАЗ 740.11-240, 740.13-260, 740.14-300
Система газотурбинного наддува, за счет использования части энергии отработавших газов, обеспечивает подачу предварительно сжатого воздуха в цилиндры двигателя
Наддув позволяет увеличить плотность воздуха, поступающего в цилиндры, в том же рабочем объеме сжечь большее количество топлива и, как следствие, повысить литровую мощность двигателя.
Система газотурбинного наддува двигателя состоит из двух взаимозаменяемых турбокомпрессоров, выпускных и впускных коллекторов и патрубков (см. рисунок).
Турбокомпрессоры устанавливаются на выпускных патрубках по одному на каждый ряд цилиндров.
Выпускные коллекторы и патрубки изготовлены из высокопрочного чугуна ВЧ50.
Уплотнение газовых стыков между установочными фланцами турбины турбокомпрессоров, выпускных патрубков и коллекторов осуществляется прокладками из жаростойкой стали.
Прокладки являются деталями одноразового использования и при переборках системы подлежат замене.
Газовый стык между выпускным коллектором и головкой цилиндра уплотняется прокладкой из асбостального листа, окантованного металлической плакированной лентой
Выпускные коллекторы выполняются цельнолитыми, крепятся к головкам цилиндров болтами и контрятся замковыми шайбами.
Для компенсации угловых перемещений головки болта крепления выпускного коллектора, возникающих при нагреве, под головку болта устанавливается специальная сферическая шайба.
Впускные коллекторы и патрубки выполняются литыми из алюминиевого сплава АК9ч и соединяются между собой при помощи болтов. Стыки между коллекторами и патрубками уплотняются паронитовыми прокладками.
Для выравнивания давления между двумя рядами цилиндров впускные коллекторы соединяются объединительным патрубком.
Система турбонаддува двигателя должна быть герметична.
При нарушении герметичности выпускного тракта снижается частота вращения ротора турбокомпрессора, а следовательно уменьшается количества воздуха, нагнетаемого в цилиндры, что приводит к увеличению теплонапряженности деталей, снижению мощности и ресурса двигателя.
Негерметичность впускного тракта приводит также к вышеперечисленным недостаткам и "пылевому" износу цилиндропоршневой группы, следовательно, преждевременному выходу двигателя из строя.
Смазка подшипников турбокомпрессоров осуществляется от системы смазки двигателя через фторопластовые трубки с металлической оплеткой.
Слив масла из турбокомпрессоров осуществляется через стальные трубки в картер двигателя. Трубки слива между собой соединяются резиновым рукавом, который стягивается хомутами.
Воздух в центробежный компрессор поступает из воздухоочистителя, сжимается и подается под давлением во впускной патрубок двигателя.
Выпускной патрубок компрессора и впускной патрубок коллектора между собой соединяются теплостойким резиновым рукавом, который стягивается хомутами.
Турбокомпрессоры ТКР7С-9 иТКР7Н-1 являются модификациями базовых моделей турбокомпрессоров ТКР7С и ТКР7Н соответственно.
В тексте и рисунках приведены описания и изображения базовых моделей, которые являются общими для всех модификаций ТКР.
Турбокомпрессор ТКР7С-9 состоит из центростремительной турбины и центробежного компрессора, соединенных между собой подшипниковым узлом.
Турбина с двухзаходным корпусом 7 из высокопрочного чугуна ВЧ40 преобразовывает энергию выхлопных газов в кинетическую энергию вращения ротора турбокомпрессора, которая затем в компрессорной ступени превращается в работу сжатия воздуха.
Ротор турбокомпрессора ТКР7С состоит из колеса турбины 9 с валом 10, колеса компрессора 20, маслоотражателя 16 и втулки 15, закрепленных на валу гайкой 19.
Колесо турбины отливается из жаропрочного сплава по выплавляемым моделям и сваривается с валом из стали трением.
Колесо компрессора с загнутыми по направлению вращения назад лопатками выполняется из алюминиевого сплава и после механической обработки динамически балансируется до величины 0,4 г.мм.
Подшипниковые цапфы вала ротора закаливаются ТВЧ на глубину 1-1,5 мм до твердости 52-57 HRC3.
После механической обработки ротор динамически балансируется до величины 0,5 г.мм.
При значении радиального биения не более 0,03 мм на детали ротора наносятся метки в одной плоскости и ротор допускается на сборку турбокомпрессора.
При установке ротора на корпус подшипников необходимо совместить метки на деталях ротора.
Ротор вращается в подшипниках 5, представляющих собой плавающие вращающиеся втулки.
Осевые перемещения ротора ограничиваются упорным подшипником 4, защемленным между корпусом подшипников 3 и крышкой 2. Подшипники выполняются из бронзы БрО10С10.
Корпус подшипников турбокомпрессора с целью уменьшения теплопередачи от турбины к компрессору выполнен составным из чугунного корпуса ВЧ50 и крышки из алюминиевого сплава.
Для уменьшения теплопередачи между корпусом турбины и корпусом подшипников устанавливается экран 11 из жаростойкой стали.
В корпусе подшипников устанавливается маслосбрасывающий экран 14, который вместе с упругими разрезными кольцами 8 предотвращает утечку масла из полости корпуса.
Для устранения утечек воздуха в соединении "корпус компрессора - корпус подшипников" устанавливается резиновое уплотнительное кольцо 21.
Корпусы турбины и компрессора крепятся к корпусу подшипников с помощью болтов 12, 17 и планок 13, 18. Такая конструкция позволяет устанавливать их под любым углом друг к другу, что в свою очередь облегчает установку ТКР на двигатель.
Турбокомпрессор ТКР7Н
В отличие от турбокомпрессора ТКР7С, в конструкции турбокомпрессора ТКР7Н применяется изобарный однозаходный корпус турбины и в качестве подшипника бронзовая моновтулка качающегося типа.
Ротор турбокомпрессора состоит из колеса турбины с валом 16, колеса компрессора 8 и маслоотражателя 7, закрепленных на валу гайкой 6.
Ротор вращается в подшипнике 1, удерживающемся от осевого и радиального перемещений фиксатором 12, который с переходником 13 является одновременно и маслоподводящим каналом.
В корпусе подшипника 11 устанавливаются стальные крышки 10 и маслосбрасывающий экран 9, который вместе с упругими разрезными кольцами 5 предотвращает течь масла из полости корпуса подшипника.
Для уменьшения теплопередачи от корпуса турбины к корпусу подшипника между ними установлен чугунный экран 15 и две стальные прокладки 14 или чугунный экран 15 и окантованная асбостальная прокладка 14.
Ввиду того, что ротор турбокомпрессора балансируется с высокой точностью, полная разборка и обслуживание агрегата должны осуществляться на специализированных предприятиях, имеющих необходимое оборудование, инструменты и приборы.
На двигатель 740.11-240 устанавливается турбокомпрессор ТКР 7Н-1 или ТКР 7С-9
На двигатели 740.13-260 и 740.14-300 устанавливается турбокомпрессор S2B/7624TAE/1.00 D9
Технические характеристики турбокомпрессора ТКР7С-9
Диапазон подачи воздуха через компрессор, кг/сек: 0,05-0,2
Давление наддува (избыточное) при номинальной мощности двигателя, кПа (кгс/см 2 ), не менее: 80 (0,8)
Частота вращения ротора при номинальной мощности двигателя, об/мин: 90000-100000
Температура газов на входе в турбину, К (°С)
- - допускаемая в течение 1 час: 1023 (750)
- - допускаемая без ограничения во времени: 973 (700)
Давление (избыточное) смазочного масла на входе в турбокомпрессор, при температуре масла 80-95 °С, кПа (кгс/см 2 )
- - при номинальной частоте вращения коленчатого вала двигателя: 294-442 (3,0-4,5)
- - при минимальной частоте вращения коленчатого вала двигателя, не менее: 98 (1,0)
Технические характеристики турбокомпрессора ТКР7Н-1
Диапазон подачи воздуха через компрессор, кг/сек: 0,05-0,18
Давление наддува (избыточное) при номинальной мощности двигателя, кПа (кгс/см 2 ), не менее: 60 (0,6)
Частота вращения ротора при номинальной мощности двигателя, об/мин: 80000-90000
Температура газов на входе в турбину, К (°С)
- - допускаемая в течение 1 час: 973 (700)
- - допускаемая без ограничения во времени: 923 (650)
Давление (избыточное) смазочного масла на входе в турбокомпрессор, при температуре масла 80-95 °С, кПа (кгс/см 2 )
- - при номинальной частоте вращения коленчатого вала двигателя: 294-442 (3,0-4,5)
- - при минимальной частоте вращения коленчатого вала двигателя, не менее: 98 (1,0)
Технические характеристики турбокомпрессора S2B/7624T АЕ/1.00 D9
Диапазон подачи воздуха через компрессор, кг/сек: 0,05-0,22
Давление наддува (избыточное) при номинальной мощности двигателя, кПа (кгс/см 2 ), не менее: 110(1,1)
Частота вращения ротора при номинальной мощности двигателя, об/мин: 90000-100000
Температура газов на входе в турбину, К (°С)
- - допускаемая в течение 1 час: 1023 (750)
- - допускаемая без ограничения во времени: 973 (700)
Давление (избыточное) смазочного масла на входе в турбокомпрессор, при температуре масла 80-95 °С, кПа (кгс/см 2 )
- - при номинальной частоте вращения коленчатого вала двигателя: 294-442 (3,0-4,5)
- - при минимальной частоте вращения коленчатого вала двигателя, не менее: 98 (1,0)
Рекомендуемые режимы работы двигателя с турбонаддувом
Во избежание подсоса масла из турбокомпрессоров и попадания его в цилиндры двигателя, на проточные части компрессора и турбины, не рекомендуется длительная, более 10 минут, работа двигателя на режиме холостого хода с частотой вращения коленчатого вала менее 700 мин -1 .
Это приводит к закоксовыванию поршневых колец, загрязненности проточной части компрессора и нагарообразованию на проточной части турбины.
При вынужденной работе двигателя на оборотах холостого хода (прогрев, накачка воздуха в баллоны тормозной системы и т.п.) необходимо поддерживать частоту вращения коленчатого вала не менее 1000-1200 мин -1 .
Перед остановкой двигателя после его работы под нагрузкой, необходимо установить режим холостого хода длительностью не менее 3-х минут во избежание перегрева подшипника турбокомпрессора и закоксовывания ротора.
Резкая остановка двигателя после работы под нагрузкой запрещается.
Потеря мощности, дымление, высокий расход топлива, перегрев двигателя, высокая температура выхлопных газов, утечки масла из турбокомпрессора - это симптомы неполадок в работе систем, связанных с турбонаддувом.
Однако, всё это часто несправедливо относят к неисправности турбокомпрессора, так как дефекты других деталей двигателя приводят к аналогичным симптомам.
Так как турбокомпрессор самонастраивающийся агрегат двигателя, только механические неисправности или загромождение воздушных и газовых каналов из-за грязи и посторонних предметов ухудшают его работу.
Перед остановкой двигателя после его работы под нагрузкой, необходимо установить режим холостого хода длительностью не менее 3-х минут во избежание перегрева подшипника турбокомпрессора и закоксовывания ротора.
Резкая остановка двигателя после работы под нагрузкой запрещается.
Ремонт турбокомпрессора
При нарушении герметичности в соединении между установочным фланцем турбины и выпускным патрубком коллектора замените стальную прокладку.
При появлении посторонних шумов, а также при повышенном дымлении и снижении мощности двигателя, связанных с техническим состоянием турбокомпрессора, отсоедините от турбокомпрессора приемную трубу глушителя и проверьте легкость вращения ротора.
При тугом вращении, заклинивании или задевании ротора о корпусные детали снимите турбокомпрессор.
Снимайте турбокомпрессор в такой последовательности:
- - снимите воздухоочиститель (при снятии левого ТКР), соединительные патрубки, тройник;
- - отсоедините трубку подвода масла к ТКР;
- - ослабьте хомуты крепления соединительных патрубков корпуса компрессора;
- - расконтрите и выверните болты выпускного коллектора, сместите выпускной коллектор назад, разъедините магистраль слива масла, снимите выпускной коллектор с ТКР в сборе.
Примечание. Для удобства последующего монтажа перед разборкой ТКР на корпусах турбины и компрессора нанести метки спаренности с корпусом подшипников;
- - выверните шесть болтов крепления турбины и снимите корпус компрессора вместе с корпусом подшипников;
- - выверните восемь болтов крепления корпуса компрессора и снимите его;
- - промойте корпус компрессора и экран в дизельном топливе, удалите отложения;
- - промойте корпус подшипника со стороны компрессора и удалите с поверхностей лопаток и корпуса отложения.
Внимание! Во избежание повреждения поверхностей лопаток и нарушения балансировки ротора не допускается использовать для удаления отложений металлические предметы и исправлять погнутые лопатки;
- проверьте целостность лопаток колес и отсутствие на них погнутостей. При наличии поврежденных лопаток замените турбокомпрессор.
Внимание! Ввиду того, что ротор турбокомпрессора при сборке балансируется с высокой точностью, разборка ротора ТКР не допускается.
Полная разборка турбокомпрессора осуществляется на специализированных предприятиях, имеющих необходимое оборудование и приборы;
- - соберите турбокомпрессор в обратной последовательности. Установку корпусов компрессора и турбины относительно корпуса подшипников проводите по меткам;
- - затяните болты крепления корпуса компрессора с крутящим моментом 4,9-7,8 Н.м (0,5-0,8 кгс.м), болты крепления корпуса турбины с крутящим моментом 23,5-29,4 Н.м (2,4-3,0 кгс.м);
- - проверьте легкость вращения ротора и отсутствие задевания его о корпусные детали при крайних его осевых и радиальных положениях;
- - установите выпускной коллектор, затяните болты крепления с крутящим моментом 43,1-54,9 Н.м (4,4-5,6 кгс-м), законтрите болты.
Возможные неисправности турбонаддува и способы устранения
Уменьшение мощности двигателя, черный дым
- грязный воздушный фильтр
Очистите или замените воздушный фильтр
- загромождение подвода воздуха к компрессору ТКР
Удалите загромождение или замените дефектные детали
- утечка на трассе подвода воздуха в компрессор ТКР
Затяните болты хомутов, при необходимости замените рукава
- утечка на трассе отвода воздуха от компрессора ТКР во впускную систему
Затяните болты хомутов, при необходимости замените рукава и прокладки
- закоксовывание ротора турбины, узла уплотнения ТКР
Ремонт в специализированной мастерской или замена ТКР
- плохая вентиляция картера
Устраните сопротивление, при необходимости замените неисправные детали
Читайте также: