Показания спидометра это прямые или косвенные измерения
Метрологией называется наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.
Измерением называется нахождение значения физической величины опытным путем с помощью специальных технических средств. Результатом измерения является количественная характеристика физической величины в виде числа единиц измеряемой величины и погрешность, с которой получено данное число.
Виды измерений. В зависимости от способа получения числового значения измеряемой величины измерения делятся на прямые, косвенные и совокупные измерения.
Прямыми называются измерения, при которых искомое значение величины получают из опытных данных. При прямых измерениях экспериментальные операции производятся над самой измеряемой величиной. Числовое значение измеряемой величины получают в экспериментальном сравнении с мерой или по показаниям приборов. Например, измерение тока амперметром, напряжения вольтметром, температуры термометром, массы на весах.
Косвенными называют такие измерения, при которых числовое значение измеряемой величины определяется по известной функциональной зависимости через другие величины, которые можно прямо измерить. При косвенных измерениях числовое значение измеряемой величины получают с участием оператора на основе прямых измерений – решением одного уравнения. К косвенным измерениям прибегают в тех случаях, когда неудобно или невозможно осуществить автоматическое вычисление известной зависимости между одной или несколькими входными величинами и измеряемой величиной. Например, мощность в цепях постоянного тока определяет оператор, умножая напряжение на ток, измеренные прямым измерением с помощью амперметра и вольтметра.
Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения.
Абсолютная погрешность измерения равна разности между результатом измерения и истинным значением измеряемой величины : .
Относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения к истинному значению измеряемой величины. Обычно относительная погрешность выражается в процентах %.
25. Основные понятия и определения: информация, алгоритм, программа, команда, данные, технические устройства.
Информация — от латинского слова "information", что означает сведения, разъяснения, изложение.
Алгоритм — последовательность чётко определенных действий, выполнение которых ведёт к решению задачи. Алгоритм, записанный на языке машины, есть программа решения задачи.
Свойства алгоритмов: дискретность, понятность, результативность, определенность, массовость.
Программа — последовательность действий, инструкций, предписаний для некоторого вычислительного устройства; файл, содержащий эту последовательность действий.
Команда — это указание компьютерной программе действовать как некий интерпретатор для решения задачи. В более общем случае, команда — это указание некоему интерфейсу командной строки.
Данные - информация, представленная в формализованном виде, что обеспечивает возможность ее хранения, обработки и передачи.
Технические устройства (средства информатизации) – это совокупность систем, машин, приборов, механизмов, устройств и прочих видов оборудования, предназначенных для автоматизации различных технологических процессов информатики, причем таких, выходным продуктом которых является именно информация (сведения, знания) или данные, используемые для удовлетворения информационных потребностей в разных областях предметной деятельности общества.
Все технические средства информатизации в зависимости от выполняемых функций можно разделить на шесть групп : устройства ввода информации, устройства вывода информации, устройства обработки информации, устройства передачи и приема информации, устройства хранения информации, многофункциональные устройства.
Измерение называется прямым, если измеряемая величина сравнивается с мерой непосредственно или при помощи измерительных приборов, градуированных в тех единицах, в которых измеряется данная величина. Измерения длины стола с помощью масштабной линейки или измерения силы тока амперметром являются прямыми.
Измерение называется косвенным^ если непосредственно измеряется не сама величина, а другие величины, связанные с нею функционально. Числовое значение величины, подлежащей измерению, при косвенном измерении получается путем соответствующих расчетов на основании зависимостей, существующих между величинами и выраженных в математической форме. Косвенные измерения применяются в том случае, когда прямые измерения затруднительны или невозможны. Например, для определения плотности вещества производят прямые измерения массы и объема тела. Результаты этих прямых измерений используют для вычисления плотности с помощью известного соотношения между массой тела, его объемом и плотностью вещества, из которого состоит тело. Выполненное таким способом измерение плотности есть косвенное измерение.
что называется прямым и косвенным измерением?
Прямыми называют измерения
----------------------------------при которых искомое значение
величины находят непосредственно из опытных данных. Простейшие
примеры прямых измерений: измерение длины линейкой, температуры –
термометром, электрического напряжения – вольтметром и пр. Уравнение
прямого измерения: y = C x, где С – цена деления СИ. Прямые измерения
– основа более сложных видов измерений.
Косвенными называют измерения,
---------------------------------результат которых определяют на
основе прямых измерений величин, связанных с измеряемой величиной
известной зависимостью y = f1 ( x1, x2, K, xn ) , где x1, x2, K, xn – результаты
прямых измерений, y – измеряемая величина.
Примеры: объем прямоугольного параллелепипеда определяется по
результатам прямых измерений длины в трех взаимно перпендикулярных
направлениях; электрическое сопротивление – по результатам измерений
падения напряжения и силы тока и т. д.
Находить значения некоторых величин легче и проще путем косвенных
измерений, чем путем прямых. Иногда прямые измерения невозможно
осуществить. Нельзя, например, измерить плотность твердого тела,
определяемую обычно по результатам измерений объема и массы.
Косвенные измерения некоторых величин позволяют получить
значительно более точные результаты, чем прямые.
Измерение называется прямым, если измеряемая величина сравнивается с мерой непосредственно или при помощи измерительных приборов, градуированных в тех единицах, в которых измеряется данная величина. Измерения длины стола с помощью масштабной линейки или измерения силы тока амперметром являются прямыми.
Измерение называется косвенным^ если непосредственно измеряется не сама величина, а другие величины, связанные с нею функционально. Числовое значение величины, подлежащей измерению, при косвенном измерении получается путем соответствующих расчетов на основании зависимостей, существующих между величинами и выраженных в математической форме. Косвенные измерения применяются в том случае, когда прямые измерения затруднительны или невозможны. Например, для определения плотности вещества производят прямые измерения массы и объема тела. Результаты этих прямых измерений используют для вычисления плотности с помощью известного соотношения между массой тела, его объемом и плотностью вещества, из которого состоит тело. Выполненное таким способом измерение плотности есть косвенное измерение.
По способу получения результата измерения делятся на прямые и косвенные. Если значение физической величины находят непосредственным отсчетом по шкале прибора, то такие измерения называются прямыми (измерения давления барометром, температуры – термометром, времени – секундомером, длины – штангенциркулем или линейкой, силы тока – амперметром и т.п.). Эти измерения могут быть однократными и многократными. Многократное измерение – повторение экспериментельной операции, в результате которой получается одно из значений измеряемой величины , называемых результатами наблюдений. Совокупность результатов наблюдений подлежит совместной обработке для получения результата измерения.
Часто прямое измерение физической величины оказывается невозможным или слишком трудоемким. При косвенных измерениях результат определяется по формулам на основе результатов прямых измерений других величин (например, определение электрического cопротивления образца по измеренным силе тока и напряжению). Одну и ту же величину часто можно найти путем как прямых, так и косвенных измерений. Например, скорость автомобиля может быть определена по спидометру (прямое измерение) или найдена делением пройденного пути на время движения (косвенное измерение).
При косвенных измерениях погрешность искомой физической величины накапливается из погрешностей прямых измерений величин, входящих в расчетную формулу.
Ошибается — каждый. Признает ошибки — мудрый. Просит прощения — сильный. Восстанавливает отношения — любящий. © Автор неизвестен ==> читать все изречения.
Видом измерений названа часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин.
Измерение физической величины (измерение величины; измерение) – совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины ( РМГ 29 – 99).
Метод измерений – совокупность приемов использования принципов и средств измерений.
Прямые и косвенные измерения различают в зависимости от способа получения результата измерений.
Прямые измерения - искомое значение величины определяют непосредственно по устройству отображения измерительной информации применяемого средства измерений. Формально без учета погрешности измерения они могут быть описаны выражением Q = х, где Q – измеряемая величина, х – результат измерения.
Косвенные измерения – измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Формальная запись такого измерения Q = F (X, Y, Z ), где X, Y, Z – результаты прямых измерений.
Принципиальной особенностью косвенных измерений является необходимость обработки (преобразования) результатов вне прибора (на бумаге, с помощью калькулятора или компьютера) - (нахождение значения угла треугольника по измеренным длинам сторон)
Прямые и косвенные измерения характеризуют измерения некоторой конкретной одиночной физической величины. Измерение любого множества физических величин классифицируется в соответствии с однородностью (или неоднородностью) измеряемых величин.
При совокупных измерениях осуществляется измерение нескольких одноименных величин, например, длин L1, L2, L3 и т.д.
Совместные измерения - проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними. Подразумевают измерение нескольких не одноименных величин (X, Y, Z и т.д.) - нахождения температурного коэффициента линейного расширения.
Для отображения результатов, получаемых при измерениях, могут быть использованы разные оценочные шкалы. В соответствии с этим принято различать абсолютные и относительные измерения .
Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
Это крайне неудачное определение сопровождается примером (измерение силы F = mg основано на измерении основной величины — массы m и использовании физической постоянной g в точке измерения массы), который подтверждает нелепость предложенной трактовки. В примечании сказано, что понятие абсолютное измерение применяется как противоположное понятию относительное измерение и рассматривается как измерение величины в ее единицах.
Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную.
Пример — Измерение активности радионуклида в источнике по отношению к активности радионуклида в однотипном источнике, аттестованном в качестве эталонной меры активности.
По числу повторных измерений одной и той же величины различают однократные и многократные измерения , причем многократные измерения проводят или для страховки от грубых погрешностей или для последующей математической обработки результатов (расчет средних значений, статистическая оценка отклонений и др.). В зависимости от поставленной цели число повторных измерений может колебаться в пределах 10~100.
Однократное измерение – измерение, выполненное один раз.
Многократное измерение (измерения с многократными наблюдениями) – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений.
В результате измерения определяют числовое значение измеряемой величины, равное отношению измеряемой величины к единице измерения или эталону.
В зависимости от конкретных условий, применяемых измерительных средств и приемов их использования измерения могут производиться различными способами или методами. С точки зрения общих приемов получения результатов измерения различают измерения непосредственные , т. е. прямые и косвенные .
Прямые измерения
При прямых измерениях искомая величина определяется непосредственно показаниями прибора или измерительной шкалы инструмента.
К прямым измерениям относятся измерения длин линейками, штангенинструментом, микрометрами, широкодиапазонными инкрементными измерительными головками с цифровым отсчетом, высотомерами, измерения углов - угломерами и др.
Косвенные измерения
При косвенных измерениях искомая величина (размер или отклонение) определяется по результатам прямых измерений одной или нескольких величин, связанных с искомой величиной определенной функциональной зависимостью, т. е. после определения косвенных величин, влияющих на искомую, определяют искомую величину, используя математические методы вычислений или преобразований.
Примером косвенных измерений могут служить измерения диаметра вала по длине его окружности с помощью рулетки или обкатного ролика, измерения на координатно-измерительных машинах (КИМ) , и др.
На рисунке представлен пример косвенного измерения диаметра вала с помощью рулетки, при этом измеряется длина окружности и с помощью известной зависимости D = L/π определяется ее диаметр.
Прямые измерения более просты и сразу приводят к результату измерения, поэтому они имеют преимущественное распространение в машиностроении.
Однако в ряде случаев прямые измерения не могут быть осуществлены, например, при измерении штангенциркулем расстояния между осями отверстий, при измерениях на КИМ, при измерении валов большого диаметров и др.
Прямые измерения иногда уступают по точности косвенным измерениям, как это имеет место при измерении углов угломерами, погрешности которых в десятки раз превышают погрешности синусных линеек.
Косвенные измерения широко применяют при координатных измерениях, потому что результат измерения всегда получают расчетом по определенным при измерении координатам двух или нескольких точек.
Каждое измерение может производиться абсолютным или относительным методом .
Абсолютный метод измерения
При абсолютном методе весь измеряемый размер определяется непосредственно по показаниям прибора. В настоящее время большинство приборов и инструментов измеряют абсолютным методом – штангенинструмент, микрометры, широкодиапазонные индикаторы и преобразователи, высотомеры, КИМ, угловые энкодеры и др.
Относительный метод измерения
Относительный (сравнительный) метод измерения дает только отклонение размера от установочной меры или образца, по которым прибор был установлен на ноль. Определение размера в этом случае производится алгебраическим суммированием размера установочной меры и показаний прибора при измерении.
Приборы для относительных измерений требуют дополнительной затраты времени для предварительной настройки прибора по установочной мере, что существенно снижает производительность измерений при небольших партиях проверяемых деталей. Снижение производительности становится несущественным, если после настройки прибором производят большое число измерений.
Приборы для относительных измерений в ряде случаев позволяют получить более высокую точность, а при измерении больших партий деталей и более высокую производительность контроля, благодаря удобству отсчета отклонений размера по шкале прибора.
Относительный метод измерения применяется на контрольных приспособлениях и автоматах, в приборах активного контроля.
Кроме того, методы измерения делятся на комплексные и дифференцированные .
Комплексный метод измерения
Комплексный метод измерения заключается в сопоставлении действительного контура проверяемого объекта с его предельными контурами, определяемыми величинами и расположением полей допусков отдельных элементов этого объекта.
Комплексный метод измерения обеспечивает проверку накопленных погрешностей взаимосвязанных элементов объекта, ограниченных суммарным допуском. Этот метод измерения является наиболее надежным с точки зрения обеспечения взаимозаменяемости и обычно осуществляется проходными калибрами, сконструированными по принципу подобия.
Примером комплексного метода измерения может служить проверка резьбы гайки проходной резьбовой пробкой.
Дифференцированный метод измерения
Дифференцированный метод измерения сводится к независимой проверке каждого элемента отдельно. Этот метод не может непосредственно гарантировать взаимозаменяемости изделий.
Например, при дифференцированной проверке среднего диаметра, шага и половины угла профиля резьбы необходимо дополнительно подсчитать приведенный средний диаметр резьбы, включающий отклонения перечисленных выше элементов резьбы, и убедиться, что он находится в заданных пределах.
Комплексный метод измерения применяется преимущественно при проверке изделий, а дифференцированный метод - при проверке инструментов, настройке станков и при выявлении причин размерного брака изделий.
При проверке изделий предельными калибрами обычно сочетаются комплексные и дифференцированные методы измерений.
Каждый из перечисленных выше методов измерения может осуществляться контактным или бесконтактны м способом.
Контактный метод измерения
Контактный метод измерения осуществляется путем непосредственного соприкосновения измерительных поверхностей (наконечников) прибора или инструмента с поверхностью контролируемого объекта.
Бесконтактный метод измерения
Бесконтактный метод измерения характеризуется отсутствием измерительного контакта прибора с проверяемым объектом (например, при пневматическом методе измерения, при измерении на проекторах, микроскопах, лазерных приборах, лазерных итерферометрах и т.п.) .
В последнее время получил большое распространение бесконтактный метод измерения с помощью лазерного сканирования, в том числе 3D сканирования и лазерных триангуляционных измерениях.
Измерительные средства
Измерительные средства, применяемые в металлообрабатывающей промышленности, можно разделить на три основные группы:
- меры и калибры;
- универсальные инструменты и приборы, специальные средства измерений - контрольные приспособления, контрольные автоматы, приборы активного контроля;
- координатно-измерительные машины.
Мерами называются средства измерения, служащие для воспроизведения одного или нескольких известных значений данной величины.
Калибрами называются меры, служащие для проверки правильности размеров, форм и взаимного расположения частей изделия.
Калибры долгое время являлись одними из наиболее распространенных измерительных средств, но с повышением точности металлообработки, распространением станков с ЧПУ, появлением индикаторов, электронных приборов и инструментов с цифровым отсчетом и КИМ применение калибров существенно снизилось.
Универсальные инструменты и приборы служат для определения значений измеряемой величины.
Они различаются по конструктивным признакам, по целевому назначению, по степени механизации, пределам измерения, цене деления аналогового или цифрового отсчета и прочим показателям.
Классификация средств измерения
Универсальные измерительные инструменты и приборы классифицируются по конструктивным признакам на:
- механические инструменты, снабженные штриховой шкалой и нониусом - штангенинструменты и (штангенциркули, штангенглубиномеры, штангенрейсмасы и др.) и универсальные угломеры;
- электронные штангенинструменты с цифровым отсчетом (штангенциркули, штангенглубиномеры, штангенрейсмасы) ;
- микрометрические инструменты, основанные на применении микропар (микрометры, микрометрические нутромеры, глубиномеры и др.) ;
- электронные микрометрические инструменты с цифровым отсчетом (микрометры, нутромеры, глубиномеры и др.) ;
- механические индикаторы со шкалой и стрелкой;
- электронные индикаторы с цифровым отсчетом;
- оптические приборы (длиномеры, интерферометры, проекторы, микроскопы, лазерные приборы и др.) ;
- индуктивные приборы;
- широкодиапазонные приборы (емкостные, индуктивные и фотоэлектрические) ;
- пневмоиндуктивные приборы;
- высотомеры;
- координатно-измерительные машины (КИМ) .
Кроме того, существуют специальные приборы - контрольные приспособления, контрольные автоматы и приборы активного контроля, предназначенные для контроля одной или нескольких однотипных деталей после их обработки на станке или в процессе обработки.
По числу одновременно проверяемых размеров приборы разделяются на одномерные и многомерные.
По установившейся на производстве терминологии простейшие измерительные средства - калибры, линейки, штангенинструмент, микрометры, уровни - именуются измерительным инструментом.
Читайте также: