Минимальных затрат энергии на управление от водителя требует тормозной привод
Тормозное управление предназначено для эффективного замедления автомобиля вплоть до остановки, для удержания его в неподвижном состоянии, а также для поддержания постоянной скорости на длительном уклоне.
Торможение обеспечивается тормозными системами, состоящими из тормозных механизмов и приводов.
Тормозные системы классифицируются по следующим основным классификационным признакам:
- рабочая или основная; должна обеспечивать минимальный тормозной путь и максимально возможные замедления (для новых автомобилей — 5,5…7,0 м*с^-2 в зависимости от типа автомобиля);
- стояночная; должна удерживать неподвижный автомобиль на уклоне (для новых автомобилей — 12…25% в зависимости от типа автомобиля);
- запасная или резервная; должна обеспечивать торможение автомобиля при выходе из строя рабочей тормозной системы, обладая не менее 40 % эффективности по сравнению с последней;
- вспомогательная (для автобусов полной массой свыше 5 т и грузовых автомобилей — свыше 12 т); должна обеспечивать движение автомобиля под уклон 7 % и длиной 6 км со скоростью 30 км/ч.
Тормозные механизмы подразделяются:
по принципу действия (по характеру связи между движущимися и неподвижными частями):
- а) фрикционные (дисковые, барабанные: колодочные и ленточные);
- б) гидравлические (гидродинамические);
- в) электрические (индукционные, генераторные);
- г) компрессорные — противодавление в двигателе;
- д) аэродинамические (закрылки, парашюты);
- а) колесные;
- б) трансмиссионные;
- в) на кузове (закрылки, парашюты);
- г) у двигателя (противодавление в двигателе).
Тормозные приводы подразделяются:
по способу передачи энергии к тормозным механизмам;
- а) механические (стояночная тормозная система);
- б) гидравлические (обычно при полной массе ma < 8 т),
- в) пневматические;
- г) комбинированные (гидропневматические, пневмоэлектрические);
- а) водитель;
- б) водитель и усилитель (обычно при 8 т > ma > 4 т, для легковых автомобилей обычно при ma > 1,0 т);
- в) почти полностью усилитель (обычно при ma > 8 т).
Основные требования к тормозному управлению следующие:
• высокая эффективность, в том числе:
- а) минимальный тормозной путь при минимальном времени срабатывания рабочей и запасной тормозных систем;
- б) устойчивость при торможении, синхронность увеличения и уменьшения тормозного момента всех тормозных механизмов данной системы (обычно допускается разница наибольших значений не более 15%);
- в) стабильные и высокие значения коэффициента трения в тормозных механизмах во всем диапазоне возможных в эксплуатации температур и давлений;
• легкость и удобство управления;
• высокая надежность, безотказность работы в течение всего срока службы при любых условиях эксплуатации;
• хороший отвод теплоты от пар трения тормозных механизмов и защита их от увлажнения и загрязнения;
• минимальный шум при срабатывании;
• автоматическая остановка при разрыве сцепки автопоезда.
Кроме того, к тормозным системам, как и к остальным механизмам и системам автомобиля, предъявляют также общие требования:
- обеспечение минимальных размеров и массы
- высокая надежность (здесь она выделена отдельным пунктом, поскольку из механизмов и систем автомобиля рулевое управление и тормозные системы прежде всего влияют на безопасность движения)
- минимальное обслуживание
- технологичность
Рассмотрим, какими конструктивными мероприятиями обеспечивается выполнение требований к тормозным системам.
Требование высокой эффективности прежде всего относится к рабочей тормозной системе и обеспечивается в основном за счет механических тормозных механизмов, установленных во все колеса автомобиля (автопоезда). Применение регулятора тормозных сил повышает эффективность рабочей тормозной системы. В идеальном случае эффективность тормозных систем и, прежде всего, рабочей тормозной системы должна быть не только высокой, но и приблизительно одинаковой для всех типов автомобилей. На самом деле этого пока добиться не удается. Наибольшей эффективностью (наименьшим тормозным путем) обладают легковые автомобили, наименьшей эффективностью (наибольшим тормозным путем) — автопоезда. Правилом № 13 ЕЭК ООН пассажирские автомобили разделены на категории: M1, M2, M3, грузовые — на N1, N2, N3, прицепы и полуприцепы — на О1, O2, О3, O4, для которых установлены допустимые значения тормозного пути и замедления.
Устойчивость при торможении в основном обеспечивается высоким сопротивлением шин боковым смещениям и применением антиблокировочной системы.
Синхронность увеличения и уменьшения тормозного момента обеспечивается высоким качеством работы тормозного привода, а также одинаковым состоянием тормозных механизмов.
Стабильные значения коэффициента трения обеспечиваются подбором пар трения в тормозных механизмах при проектировании автомобиля.
Легкость и удобство управления определяются удобным расположением органа управления (педали, рукоятки) и величиной его полного хода, который не должен превышать примерно 200 мм для педали рабочей тормозной системы; н евысокими значениями усилия, необходимого для перемещения органа управления.
Обычно для служебных торможений усилие на педали рабочей тормозной системы не должно превышать 200 Н. Применение усилителя облегчает работу водителя при торможении. При аварийном торможении на сухом асфальте усилие на педали может достигать значений 600 Н и более.
Хороший отвод теплоты от пар трения тормозных механизмов рабочей тормозной системы не требуется при однократном аварийном торможении, но он необходим при частых и длительных подтормаживаниях. Обеспечивается применением различных каналов и оребрений, увеличивающих обдув воздухом пар трения. Современные механические тормозные механизмы рабочей тормозной системы выполнены открытыми, не защищенными от попадания влаги и грязи.
Минимальный шум при срабатывании механических тормозных механизмов обеспечивается подбором пар трения и повышенной жесткостью деталей, участвующих в создании тормозною момента.
Автоматическая остановка — срабатывание тормозной системы прицепа при разрыве сцепки обеспечивается установкой на прицепе (и полуприцепе) автономной тормозной системы, соединенной с тормозной системой тягача таким образом, что если это соединение нарушается, то это приводит к срабатыванию тормозной системы прицепа, обеспечивающему его остановку.
Тормозным приводом называют совокупность устройств, предназначенных для передачи энергии от ее источника к тормозным механизмам и управления этой энергией в процессе передачи с целью осуществления торможения требуемой эффективности.
Тормозной привод – элемент тормозной системы, предназначенный для дистанционного управления тормозными механизмами и (при использовании усилителя) уменьшения мускульного усилия на органах управления.
В задачи тормозного привода входит осуществление следующих функций:
- создание запаса энергии рабочего тела (для систем с пневмоприводом);
- подача энергии к исполнительным органам (тормозным камерам, тормозным цилиндрам);
- регулирует интенсивность торможения.
В зависимости от количества контуров, по которым передается энергия мускульной силы водителя или рабочего тела от управляющего к исполнительному органу, различают одноконтурные, двухконтурные и многоконтурные тормозные приводы.
Двухконтурные и многоконтурные тормозные приводы обычно используются для совмещения функций рабочей тормозной системы с аварийной тормозной системой, поскольку повреждение одного из контуров позволяет сохранять работоспособность общей системы управления торможением автомобиля, хоть и в ограниченном качестве.
Одноконтурные приводы в рабочих тормозных системах современных автомобилей практически не применяются, поскольку это не соответствует требованиям нормативов и стандартов в отношении безопасности движения.
Схемы образования независимых контуров тормозного привода могут быть различными:
- один контур обслуживает тормозные механизмы передних колес, другой – задних (простейшая схема);
- один контур обслуживает тормозные механизмы переднего левого и заднего правого колес, другой – переднего правого и заднего левого (диагональные контуры);
- один контур обслуживает тормозные механизмы всех передних и задних колес, другой – только передних колес;
- один контур обслуживает тормозные механизмы передних колес и заднее правое, другой контур – передние колеса и заднее левое (L-образный контур);
- оба контура обслуживают тормозные механизмы всех колес автомобиля. Такая схема является наиболее надежной, поскольку предусматривает полное сохранение тормозных качеств в случае отказа одного из контуров, но из-за высокой стоимости применяется в основном на дорогих легковых автомобилях.
По типу рабочего тела или виду используемой при торможении энергии тормозные приводы рабочих тормозных систем бывают механическими, гидравлическими, пневматическими, электрическими и комбинированными.
Механический тормозной привод
Механический привод состоит из системы тяг, рычагов, валиков или тросов, позволяющих дистанционно управлять тормозными механизмами автомобиля. Он прост в устройстве, но обладает существенными недостатками, к которым в первую очередь следует отнести:
- сложность дифференцирования тормозных усилий между колесами;
- потери энергии в шарнирах и сочленениях привода, что приводит к необходимости применения значительных усилий при управлении (КПД таких приводов не превышает 0,4…0,6);
- для уменьшения усилия на управляющем органе (педали или рычаге) приходится применять значительное передаточное число привода, что приводит к увеличению хода управляющего органа;
- появление люфтов при износе сопрягаемых деталей привода, что может привести к нестабильному или запоздалому срабатыванию;
- необходимость в частых регулировках и обслуживании;
- сложность защиты привода от воздействий внешней среды (механические повреждения, коррозия, обледенение и т. п.);
- усложнение конструкции привода и, как следствие, снижение его надежности при значительной базе автомобиля и сложной конфигурации кузова (несущей системы), а также при применении в многоосных автомобилях и автопоездах.
В настоящее время механический привод встречается только в конструкциях стояночной тормозной системы автомобилей. В этом случае используется неоспоримое преимущество механического привода – способность неограниченно долго сохранять заданное усилие.
Гидравлический тормозной привод
Гидравлический привод имеет более сложное устройство, чем механический, поскольку в его конструкции присутствуют сложные гидравлические узлы и приборы (гидроцилиндры, регуляторы и т. п.). Тем не менее, он выгодно отличается от механического привода удобством передачи энергии (тормозные трубки можно проложить где угодно и как угодно), а также возможностью использовать усилители для уменьшения усилия на управляющем органе тормозной системы.
По сравнению с пневматическим приводом гидравлический срабатывает значительно быстрее благодаря малой сжимаемости жидкости. При нормальной температуре жидкости КПД гидравлического привода составляет 0,85…0,9.
Основные недостатки гидропривода:
- возможность попадания воздуха в гидравлический привод и образования паровых пробок, что резко снижает эффективность его работы вплоть до отказа;
- снижение КПД при низких температурах из-за увеличения вязкости жидкости;
- вероятность закипания жидкости при длительном торможении (например, на затяжных спусках);
- применение в качестве рабочего тела жидкостей, способных нанести вред окружающей среде, растительному и животному миру, а также человеку.
В качестве усилителей гидравлических приводов обычно применяются устройства, использующие энергию вакуума из всасывающего трубопровода системы питания двигателя. Такие устройства обладают существенным недостатком – они не способны накапливать энергию, и при остановке двигателя эффективность работы тормозной системы резко падает.
В некоторых автомобилях для работы усилителей используют энергию сжатого воздуха, нагнетаемого специальными компрессорными установками, но такие приводы существенно усложняют конструкцию тормозной системы и применяются ограниченно.
Из-за отмеченных недостатков гидроприводы тормозных механизмов применяются только в легковых автомобилях и грузовиках малой и средней грузоподъемности.
На современных автомобилях в состав гидравлического привода тормозов могут входить различные электронные системы: антиблокировочная система тормозов (АБС), усилитель экстренного торможения, система распределения тормозных усилий, электронная блокировка дифференциала и т. п.
Пневматический тормозной привод
Пневматический привод намного сложнее и дороже механического и гидравлического приводов, но обладает существенными преимуществами:
- не нуждается в применении усилителей, поскольку энергии сжатого воздуха достаточно для срабатывания тормозных механизмов любой мощности;
- в качестве рабочего тела не используются токсичные и вредные жидкости и газы (преимущество перед гидравлическим приводом);
- не боится попадания в систему воздуха, как гидравлический привод;
- способен накапливать запас энергии сжатого воздуха для расходования ее в автономном режиме, при неработающем двигателе;
- трубопроводы для подвода сжатого воздуха можно проложить в соответствии с требуемой компоновкой тормозной системы (преимущество перед механическим приводом).
Подобно гидравлическому, пневматический тормозной привод может разделяться на отдельные автономные контуры.
Основными недостатками пневматического привода являются:
Благодаря способности снижать усилие на управляющих органах тормозных механизмов, а также возможности накапливать энергию для автономной работы, пневматические приводы тормозов получили широкое распространение на грузовых автомобилях и автобусах полной массой более 9 т.
Электрический привод тормозов
Электрический тормозной привод использует для работы энергию электрического тока и электромагнитного поля. Такой привод для эффективной работы требует наличия мощных и емких источников электрического тока.
Поскольку на автомобилях электрическая энергия вырабатывается в ограниченном количестве для обеспечения работы системы электрооборудования, электрический привод тормозов не получил распространения в автотранспортных средствах. Очень редко такой привод можно встретить в конструкции тормозных систем легковых прицепов.
Комбинированный тормозной привод
Комбинированный тормозной привод представляет собой комбинацию двух или даже нескольких типов привода. Так, например, на автомобилях может применяться электропневматический привод, пневмогидравлический привод и т. п. Комбинированные приводы тормозов практически не применяются на автотранспортных средствах из-за сложности конструкции.
Комбинированным (смешанным) называется привод, в работе которого используется сочетание двух или даже нескольких типов приводов, например, гидравлического с пневматическим, электрического с пневматическим или электрического, гидравлического и пневматического. Из-за сложности конструкции и, как следствие, относительной дороговизны, такие приводы применяются только в случае крайней необходимости, поэтому в массовом автомобильном производстве они встречаются не часто.
Особенности конструкций комбинированного привода тормозных механизмов рассмотрим на примере пневмогидравлического (или гидропневматического) и электропневматического приводов.
Пневмогидравлический тормозной привод
Пневмогидравлический (или гидропневматический) привод является наиболее распространенным типом комбинированных приводов, в работе которых используется два рабочих тела – сжатый воздух и жидкость. Комбинация положительных свойств гидравлического и пневматического привода позволяет в этом случае повысить общую эффективность тормозной системы автотранспортных средств.
Конструктивно пневмогидравлические приводы могут выполняться по различным схемам и иметь разную комбинацию использующихся устройств и приборов. Общее устройство пневмогидравлического привода рассмотрим на примере тормозной системы автомобиля Урал-4320, схема которого изображена на рис. 1.
Тормозной привод автомобиля Урал-4320 состоит из двух гидравлических контуров и одного пневматического контура. Первый гидравлический контур приводит в действие тормозные механизмы переднего и среднего мостов, второй – тормозные механизмы заднего моста.
Главной отличительной особенностью этого привода является наличие в нем пневмогидравлических аппаратов (рис. 2), которые иногда называют пневмоусилителями. Однако усилитель всегда устанавливается параллельно основному приводу (например, вакуумный усилитель в гидроприводе тормозов, гидравлический усилитель в рулевом управлении и т. п.), а пневмогидравлический аппарат в приводе тормозной системы рассматриваемого автомобиля установлен последовательно, являясь связующим звеном между гидравлической и пневматической частью тормозного привода. И если в случае с вакуумным усилителем (или усилителем руля) тормозная система (или рулевое управление) работать будет даже при отказе усилителя, хоть и менее эффективно, то в случае отказа пневмогидравлического аппарата тормозная система полностью теряет работоспособность.
В пневмогидравлическом аппарате происходит преобразование сравнительно невысокого давления воздуха (0,6…0,75 МПа) в относительно большое давление тормозной жидкости (10…15 МПа). Увеличение давления происходит вследствие значительной разности рабочих площадей поршней пневматической и гидравлической частей пневмогидравлического аппарата.
Пневмогидравлический аппарат состоит из двух пневматических цилиндров с промежуточной вставкой 4, внутри которой помещены пневматические поршни 3 и 6 на общем штоке 7 с возвратной пружиной, гидравлического цилиндра 11 с бачком 1 для тормозной жидкости, имеющего традиционную конструкцию.
Наличие двух пневматических поршней позволяет получить необходимое давление в гидравлической части привода при сравнительно небольших габаритах пневмогидравлического аппарата.
При нажатии на педаль тормоза воздух через тормозной кран поступает по трубопроводу под задний поршень 6. К другому поршню воздух поступает по каналу и радиальным отверстиям 10 в штоке 7. Под давлением воздуха шток с поршнями перемещается и через толкатель действует на поршень главного гидравлического цилиндра 11, который вытесняет тормозную жидкость в тормозную магистраль.
При растормаживании воздух из пневмоцилиндров через тормозной кран выходит в окружающую среду. Поршни главного гидравлического цилиндра и пневмоцилиндров под действием пружин возвращаются в исходное положение.
В случае разгерметизации гидравлического контура или увеличении зазора в тормозных механизмах ход штока 7 при нажатии на тормозную педаль увеличится, что приведет к механическому замыканию контактов выключателя 12. Загоревшаяся на щитке приборов лампочка будет сигнализировать о неисправности системы.
Наряду с пневмогидравлическим приводом в настоящее время получают распространение тормозные системы с электрогидравлическим и электропневматическим приводом, которые обладают еще большим быстродействием.
Электропневматический привод тормозов
Электропневматический привод приобретает все большее распространение на длиннобазовых автомобилях в автопоездах в связи с необходимостью уменьшения времени срабатывания тормозного привода и улучшения согласованности работы тормозной системы тягача с тормозной системой прицепного транспортного средства.
Наряду с очевидными функциональными преимуществами отсутствие в пневматической линии привода многих традиционных приборов вызывает проблему обеспечения кинематического слежения, а также распределения тормозных сил между мостами. Поэтому для выполнения ключевых задач при управлении рабочими тормозными системами в электрическую часть комбинированного привода вводятся электронные блоки.
Принципиальная схема электропневматического привода рабочей тормозной системы с электронным управлением представлена на рис. 3.
Тормозная педаль 1 устанавливается на оси, связанной с потенциометром. При нажатии на педаль электронные блоки управления (ЭБУ) подают питание на электрические клапаны модуляторов 3 и 8 автомобиля и прицепа, которые сообщают ресиверы с тормозными камерами 2 и 5 автомобиля и 9 прицепа. Давление в тормозных камерах устанавливается пропорционально перемещению тормозной педали, т. е. сигналу, поступающему в электронные блоки от потенциометра, связанного с педалью тормоза.
При неизменном положении тормозной педали 1 давление в тормозных камерах 2, 5, 9 остается постоянным, так как клапаны модулятора 3 и 8 в этом случае закрыты. Закрытие клапанов происходит по команде блоков управления при равенстве сигналов от потенциометра педали и датчиков 6, 10 давления в контурах пневмопривода.
Регулирование тормозных сил между мостами происходит также под управлением электронных блоков в зависимости от сигналов датчиков 7, 11 нагрузки на каждую ось. В случае выхода из строя электрической цепи автопоезд может быть остановлен с помощью ручного крана 4.
В качестве вспомогательной тормозной системы автомобиля могут использоваться тормоза-замедлители различной конструкции и принципа действия. Тормоз-замедлитель – устройство, предназначенное для снижения скорости транспортного средства без использования рабочей тормозной системы.
Применение тормозов-замедлителей позволяет предотвратить перегрузку рабочей тормозной системы и ее перегрев из-за длительной интенсивной работы при движении на продолжительном спуске. В такой ситуации водителю приходится постоянно притормаживать, поскольку автомобиль стремится разогнаться под уклон, и его надо удерживать тормозами.
Продолжительная нагрузка на фрикционную тормозную систему приводит к ее перегреву и преждевременному износу. На практике при продолжительных спусках водителям приходится периодически останавливать автомобиль и выжидать, пока остынут тормозные механизмы. А если автомобиль часто эксплуатируется в гористой местности, то затраты на ремонт и обслуживание тормозов резко возрастают. По этим причинам в качестве вспомогательной тормозной системы используются тормоза-замедлители.
В качестве тормозов-замедлителей на автотранспортных средствах обычно используются гидравлические, электрические, компрессорные и аэродинамические тормозные механизмы.
Аэродинамические тормоза-замедлители иногда используются на скоростных и гоночных автомобилях. Они выполняются в виде специальных щитов, закрылков и парашютов, увеличивающих силу сопротивления воздуха, и используются для экстренного торможения автомобилей движущихся с большой скоростью. Использование обычных тормозных систем на таких автомобилях не всегда эффективно и безопасно.
Кроме того, существуют тормоза-замедлители, способные к рекуперации (накоплению) энергии при торможении с дальнейшим возвращением её при разгоне. К таковым, например, можно отнести инерционные замедлители с массивными маховиками. При затормаживании автомобиля энергия его движения посредством специальных устройств передается маховику, который при этом раскручивается. В дальнейшем энергия вращающегося маховика может быть использована для разгона автомобиля без существенных затрат топлива.
Гидравлический тормоз-замедлитель
Гидравлический (гидродинамический) тормоз-замедлитель конструктивно представляет собой гидромуфту, одно из колес которой закреплено неподвижно, а другое установлено на валу трансмиссии (за коробкой передач) и вращается вместе с валом. При включении ретардера его корпус и пространство между лопастями колес заполняется жидкостью.
Центробежная сила, возникающая при вращении ротора, стремится вытеснить жидкость к внешней части корпуса, в то время как крыльчатка статора препятствует этому, изменяя направление потока жидкости таким образом, что она, воздействуя на лопасти ротора, оказывает замедляющее действие и притормаживает его. В выключенном состоянии, когда жидкости в корпусе замедлителя нет, лопасти вращаются свободно и практически не взаимодействуют.
Тормозной момент гидравлического тормоза-замедлителя зависит от скорости вращения рабочего колеса и количества подаваемой жидкости.
Гидравлические тормоза-замедлители имеют большую массу и малоэффективны при небольших скоростях движения автомобиля.
Электрический тормоз-замедлитель
Электрический (электродинамический) тормоз-замедлитель обычно располагают за коробкой передач. Он представляет собой массивный стальной диск (ротор), закрепленный на валу трансмиссии и вращающийся с валом относительно неподвижных электромагнитов, образующих статор.
Торможение автомобиля происходит за счет работы, которая затрачивается на преодоление магнитного взаимодействия между вращающимся диском и электромагнитами.
После включения ретардера ток от аккумулятора поступает на электрические обмотки статора, создавая магнитное поле, в котором вращается ротор. Возникающие вихревые токи создают поля, противоположные тем, что генерирует статор, препятствуя вращению ротора.
Электрические тормоза-замедлители высокоэффективны и обеспечивают плавность торможения автомобиля. Однако они имеют большую массу, дорогие в изготовлении и расходуют дополнительную энергию аккумуляторных батарей.
Как и в гидродинамических ретардерах, в процессе работы электродинамических замедлителей выделяется значительное количество тепла, поэтому их приходится охлаждать воздушным потоком, создаваемый специальной крыльчаткой. Кроме того, электродинамические ретардеры снабжены системой ограничения подачи тока в случае перегрева.
Компрессорный тормоз-замедлитель
Компрессорный тормоз-замедлитель представляет собой моторный тормоз, использующий противодавление на выпуске при работе двигателя на компрессорном режиме. Механизм моторного тормоза устанавливают в приемной трубе глушителя. В корпусе механизма на валу закреплены заслонка и приводной рычаг. Для создания противодавления при торможении автомобиля приемная труба глушителя перекрывается заслонкой. Одновременно с этим прекращается подача топлива в цилиндры двигателя, и двигатель работает как компрессор. В результате тормозной момент двигателя возрастает почти в два раза по сравнению с моментом при обычном торможении двигателем. Компрессорный тормоз-замедлитель прост по конструкции и не требует больших затрат. Однако он малоэффективен при торможении автомобиля, движущегося на высших передачах.
Тормоза-замедлители обычно используются в сочетании с основными тормозными системами автомобиля (рабочей, запасной, а иногда и в сочетании со стояночной тормозной системой). Особенно это относится к компрессорным замедлителям, которые не в состоянии поддерживать скорость автотранспортного средства постоянной – при длительном спуске она будет постепенно нарастать. Поэтому водителю периодически приходится притормаживать посредством основной системы торможения.
Читайте также: