Диполь тесла своими руками
Нельзя сказать, что изготовление катушки Тесла своими руками – простая задача. Необходимо знать ее устройство, принцип действия. Подбор материалов также важен, как и правильность расчетов. Однако, даже не имея образования инженера-электротехника, собрать прибор можно, если действовать согласно инструкции, приведенной ниже. Перед началом работ ознакомьтесь с теоретической частью, чтобы понимать, что и зачем вы делаете. В остальном процедура не составит труда.
Описание прибора
В большинстве случаев КТ (катушку Николя Тесла) описывают сложно. На самом деле она является обычным резонансным трансформатором. При эксплуатации вырабатывается электрический ток высокой частоты. Сейчас инженеры, которые трудятся на оборонный комплекс, создали устройство, обладающее мощностью в 1 Тгц. И теперь многим интересно, как и зачем появилась катушка Тесла, если ученый трудился над созданием беспроводной передачей сигнала, к которому мы все привыкли в современной жизни.
Предполагалось, что если разместить два устройства на удалении друг от друга, электричество от первой катушки можно передать на другую. Единственное условие – обе должны иметь идентичные технические параметры. Более того, амбициозность Тесла позволяла ему надеяться, что таким образом можно создать вечный двигатель. И если бы у него все получилось, люди смогли бы отказаться от использования АЭС, ТЭС и ГЭС, а проблема экологии разрешилась сама собой. Тем не менее, продолжения разработка не получила. Причина тому до сих пор неизвестна.
Принцип работы
Большинство ошибок, допускаемых любителями при сборке, связано с непониманием принципа работы устройства. Стараясь имитировать, считая прибор простым трансформатором, они забывают о необходимости ясно представлять, как на самом деле она должна действовать КТ. Предусмотрено две обмотки. Одна именуется первичной, другая вторичной. К первой (разрядник) подводятся провода, идущие к внешнему источнику питания. Вокруг создается электромагнитное поле. Когда колебательный контур наберет достаточно мощности, заряд по воздуху передается на вторую обмотку.
Частично переданная энергия преобразуется в напряжение. Причем есть закономерная взаимосвязь между этой величиной и временем, за которое образуется колебательный контур. Показатели прямо пропорциональны. Наличие двух колебательных контуров и является принципиальным отличием катушки Тесла от простого трансформатора. Причем результат работы первой заключается в появлении видимых стримеров – разрядов молнии искусственного происхождения. В результате происходит ионизация водорода, содержащегося в воздухе, как и во время сильной грозы.
Устройство катушки
Составляющих минимум. Для сборки помимо первичной и вторичной обмотки потребуется тороид, защитное кольцо, диэлектрический короб и терминал. Чтобы лучше разобраться, как сделать катушку Тесла, необходимо подготовить все необходимое. А для большего понимания процесса рассмотрим каждый элемент катушки отдельно:
Первичная обмотка изготавливается из проволоки большего сечения. Металл должен иметь малое сопротивление.
Расчет катушки
Тем, кто собирает трансформатор Тесла своими руками в домашних условиях, рассчитывать ничего не придется. Ниже в описании будут приведены все рекомендации с учетом параметров каждого из элементов. Но если работы ведутся в промышленных условиях, инженеры тщательно просчитывать множество параметров. Главное, что нужно знать – главное правильно рассчитать число витков обмоток. Есть взаимосвязь между количеством оборотов первичное и вторичной катушки.
Невозможно создать рабочее устройство, не зная индуктивности каждой из них и емкости контуров. Также просчитывается рабочая частота трансформатора и емкость конденсатора. Для любознательных читателей есть возможность сделать это своим умом. Формула и схема есть на сайте. А ниже приведена пошаговая инструкция с указанием конкретных параметров, и достаточно просто следовать алгоритму действий. Но перед этим подготовьте все необходимое с теми же характеристиками, которые указаны в описании процесса сборки.
Самостоятельное изготовление катушки Тесла по схеме
При монтаже трансформатора Тесла схема реализуется следующим образом:
- Берем ПВХ-трубу, и отрезаем кусок длиной 300 миллиметров.
- Наматываем на трубку медную проволоку. Если она не имеет эмалированного покрытия, после окончания работы обмотку покрывают лаком. Витки плотно прижаты друг к ругу, а концы продеты сквозь отверстия в трубе и выведены на 20 мм. каждый. Контакты делают сверху.
- Основанием послужит конструкция из ДСП. Диэлектрическая платформа должна быть устойчивой. Поэтому лучше сделать ее шире, чем диаметр элементов, размещаемых на опоре.
- Первичная обмотка – это обычно три с половиной витка. Материал – медная трубка. Важно прочно закрепить деталь на опоре. Используя трубку малого диаметра можно делать больше витков. Диаметр контура должен быть больше, чем у первичной катушки приблизительно на 30 мм.
- Тороиды бывают разные. Одни используют всю тот же медный профиль круглого сечения. Другие мастера берут алюминиевую гофру. В последнем случае для крепления используют железную перекладину, монтируемую в местах вывода контактов вторичного контура.
- Один конец первичной цепи заземляют. Если такой возможности нет, устанавливают защитное кольцо из материала, не проводящего электричество. Можно использовать фрагмент пластиковой трубы.
На завершающем этапе транзистор соединяют согласно схеме. Конструкция оснащается радиатором или кулером. Теперь можно подключать элемент питания. Обычно используют обычную крону.
Подбор материалов и деталей
Чтобы работа катушки Николя Тесла была эффективной, необходимо побеспокоиться о качестве примененных материалов. Проволока и медная трубка должны быть цельными. Счаливание, пайка приведут к тому, что устройство будет работать некорректно. Наличие эмалированного покрытия на проводе крайне желательно. Если он используется вторично, скорее всего оно повреждено. Заранее приобретите лак, который нанесите на вторичную обмотку. Основание может быть изготовлено не только из ДСП, а штатив не только из ПВХ. Главное, чтобы они не проводили электричество.
Если говорить конкретней, то выбор материалов и узлов предполагает следующие условия:
- Источник питания должен выдавать от 12 до 19 Вольт. Подходит автомобильный или мотоциклетный аккумулятор. Можно использовать зарядку от ноутбука. Также пользуются понижающим трансформатором, если он оснащен диодным мостом для преобразования переменного тока в постоянный.
- Площадь сечения проволоки, используемой для сборки вторичной катушки, – от 0,1 до 0,3 квадратных миллиметров. Количество оборотов от 700 до тысячи.
- Терминал – это дополнительная емкость на вторичном контуре. Если стримеры отсутствуют, необходимости в нем не возникает. Тогда выводят конец контура на 0,5-5,0 см. вверх.
Вместо лака можно использовать краску. Желательно, чтобы лакокрасочное покрытие было жаростойким. Помните, что устройство склонно к перегреванию. Оголенные провода – причина появления неконтролируемых зарядов, способных убить человека, а приборы, находящиеся в комнате, и подключенные к электросети, попросту сгорят.
Сборка катушки Николя Тесла по инструкции
Сразу изготовьте все необходимое. Намотайте проволоку на трубу, покройте лаком, дайте просохнуть. Изготовьте первичную обмотку, диэлектрическое основание, защитное кольцо. Затем приступайте к монтажу. Установите первичную катушку на основу. Наденьте и закрепите первичный контур. Смонтируйте остальные элементы. Подсоединять источник питания лучше через выключатель. Причем делается это в последнюю очередь, когда катушка Теска полностью собрана. Пользуйтесь принципиальной схемой.
Новомодный феномен резонансного трансформатора Николы Тесла возник не давно, а Интернет забит фотографиями и интригующими видеосъемками молний и коронарных разрядов.
Вспомним, что трансформатор первоначально был предназначен не для показательного выступления в цирке, а для передачи радиосигналов на далекие расстояния. В связи с этим предлагаю ознакомиться с его принципом работы и найти ему практическое применение.
Трансформатор Тесла состоит из двух основных частей, см. рис.1а;
1. Генерирующей части, состоящей из высоковольтного источника питания, накопительного конденсатора С1, разрядника и катушки связи L1. Частота генерации зависит от напряжения питания, емкости конденсатора С1, характеризующее время разряда, а так же промежутком между электродами разрядника;
2. Резонансной катушки индуктивности L2, заземления и сферы, см. рис. 1а.
Если вглядеться в схему этого трансформатора внимательнее, то мы увидим известную схему последовательного колебательного контура, состоящего из катушки индуктивности L2 с открытой емкостью С, образованной между сферой и землей. Это открытый колебательный контур, который был открыт Дж. К. Максвеллом.
Обратимся к классической теории принципа действия открытого колебательного контура:
Как известно колебательный контур состоит из катушки индуктивности и конденсатора. Исследуем простейший колебательный контур, катушка которого состоит из одного витка, а конденсатор представляет собой две рядом расположенные металлические пластины. Подадим в разрыв индуктивности контура 1 переменное напряжение от генератора, см. рис.2а. В витке потечет переменный ток и создаст вокруг проводника магнитное поле. Это сможет подтвердить магнитный индикатор в виде витка, нагруженного лампочкой. Для того, что бы получить открытый колебательный контур, раздвинем пластины конденсатора. Мы наблюдаем, что лампа индикатора магнитного поля продолжает гореть. Чтобы лучше понять, что происходит в данном опыте, смотри рис. 2а. По витку контура 1 течёт ток проводимости, который вокруг себя создает магнитное поле Н, а между пластинами конденсатора – равный ему, так называемый, ток смещения. Несмотря на то, что между пластинами конденсатора нет тока проводимости, опыт показывает, что ток смещения создаёт такое же магнитное поле, как и ток проводимости. Первым, кто об этом догадался, был великий английский физик Дж. К. Максвелл.
В 60-х годах 19-го столетия, формулируя систему уравнений для описания электромагнитных явлений, Дж. К. Максвелл столкнулся с тем, что уравнение для магнитного поля постоянного тока и уравнение сохранения электрических зарядов переменных полей (уравнение непрерывности) несовместимы. Чтобы устранить противоречие, Максвелл, не имея на то никаких экспериментальных данных, постулировал, что магнитное поле порождается не только движением зарядов, но и изменением электрического поля, подобно тому, как электрическое поле порождается не только зарядами, но и изменением магнитного поля. Величину где - электрическая индукция, которую он добавил к плотности тока проводимости, Максвелл назвал током смещения. У электромагнитной индукции появился магнитоэлектрический аналог, а уравнения поля обрели замечательную симметрию. Так, умозрительно был открыт один из фундаментальнейших законов природы, следствием которого является существование электромагнитных волн. В последствии Г.Герц опираясь на эту теорию доказал, что электромагнитное поле излучаемое электрическим вибратором равно полю излучаемое емкостным излучателем.
Раз так, убедимся еще раз, что происходит, когда закрытый колебательный контур превращается в открытый и как можно обнаружить электрическое поле Е ? Для этого рядом с колебательным контуром поместим индикатор электрического поля, это вибратор, в разрыв которого включена лампа накаливания, она пока не горит. Постепенно раскрываем контур, и мы наблюдаем, что лампа индикатора электрического поля загорается, рис. 2б. Электрическое поле теперь не сосредоточено между пластинами конденсатора, его силовые линии идут от одной пластины к другой через открытое пространство. Таким образом, мы имеем экспериментальное подтверждение утверждения Дж. К. Максвелла, что емкостной излучатель порождает электромагнитную волну. Никола Тесла обратил на этот факт внимание, что при помощи совсем не больших излучателей можно создать достаточно эффективный прибор для излучения электромагнитной волны. Так родился резонансный трансформатор Н. Тесла. Проверим и этот факт, для чего вновь рассмотрим назначение деталей трансформатора.
И так, сфера и заземление выполняют роль пластин открытого конденсатора. Геометрические размеры сферы и технические данные катушки индуктивности определяют частоту последовательного резонанса, которая должна совпадать с частотой генерации разрядника.
Иными словами, режим последовательного резонанса позволяет трансформатору Тесла достигать таких величин напряжений, что на поверхности сферы появляется коронарный разряд и даже молнии. Весь фокус состоит в том, что коэффициент трансформации резонансного трансформатора выше соотношения витков катушек L1/L2 и значительно выше, чем в трансформаторах с ферро сердечниками. Здесь индуктивность L2, сфера и заземление, представляют из себя открытый резонансный колебательный контур. Именно по этому трансформатор Тесла называется резонансным.
Рассмотрим работу трансформатора Тесла, как последовательный колебательный контур:
- Этот контур необходимо рассматривать как обычный LC – элемент, рис. 1а.б, а так же рис. 2а, где включены последовательно индуктивность L, открытый конденсатор С и сопротивление среды Rср. Угол сдвига фаз в последовательном колебательном контуре между напряжением и током равен нулю (φ=0), если ХL = - Хс, т.е. изменения тока и напряжения в нем происходят синфазно. Это явление называется резонансом напряжений (последовательным резонансом). Следует отметить, что при понижении частоты от резонанса, ток в контуре уменьшается, а резонанс тока несет емкостной характер. При дальнейшей расстройке контура и понижении тока на 0,707, его фаза смещается на 45 градусов. При расстройке контура вверх по частоте, он приобретает индуктивный характер. Это явление часто используют в фазоинверторах.
Если мы рассмотрим схему изображенную на рис. 3, то мы сможем предоставить простые расчеты, из которых видно, что напряжение на пластинах излучателя вычисляется исходя из добротности контура Q, которая реально может находиться в пределах 20 – 50 и много выше.
Где полоса пропускания определяется добротностью контура:
Тогда напряжение на пластинах излучателя будет выглядеть согласно следующей формуле:
В таблице 1 расчетные данные приведены для частоты 7.0 МГц не случайно, это дает возможность любому желающему коротковолновику провести радиолюбительский эксперимент в эфире. Здесь входное напряжение U1 условно взято за 100 Вольт, а добротность за 26.
Радиолюбители увлекающиеся приемом и передачей на коротких волнах, по моему мнению, делятся на две категории - те у кого есть возможность поставить полноразмерную антенну на участке или крыше дома, и те кто верят в сказки чудо антенну.
Действительно, зачем усовершенствовать то, что и так прекрасно работает. А вот если у радиолюбителя поставить большую антенну возможности нет, то приходится следить за научными разработками в области антенностроения, пытаться повторить эти конструкции по чертежам из подручных средств.
Если радиолюбитель живет в небольшой квартирке с женой и детьми, да еще эта квартира съёмная, или он скромный пенсионер, возможности установить на крыше дома хоть какую-то антенну, у него нет. А в плотной городской застройке даже скоромная антенна длинный луч (веревка) оказывается мечтой радиолюбителя. Вот тут то и приходят на помощь всяческие ноу хау, которые обещают при малых размерах и установке на балкон или внутри комнаты, неплохие результаты.
Что стоит хотя бы байка с ртутной антенной, которую вы наверняка слышали. Это там где радиолюбитель изготовил антенну из алюминиевых трубок, а потом наполнил их ртутью. Якобы результат у него был ошеломительный. Радиолюбитель смог прослушивать телефоны, которые были расположены на другом конце земли. Правда после этого к нему приехали спецслужбы, а через девять месяцев, во всех окрестных селах, родились детишки с темным цветом кожи. Если не слышали эту историю, обязательно погуглите. Тот еще баян.
Но вернемся к нашей антенне. Тут совсем недавно, я наткнулся на статью в журнале, в которой описывалась усовершенствованная антенна, основоположником которой является Никола Тесла. Великий ученый, предложил в качестве активного элемента антенны использовать обкладки конденсатора и даже запатентовал это изобретение.
Диполь Николы Тесла, представляет собой конденсатор, с катушкой связи, через которую он подключается к передатчику или приемнику.
Наш современник Тэд Хард, усовершенствовал данную конструкцию и запатентовал ее под названием ЕН-антенна. Есть даже одноименная книга этого автора. Данная антенна проста в изготовлении, занимает немного места, может быть установлена дома, а по характеристикам и восторженным отзывам в интернете, ей просто нет равных.
Для расчета параметров антенны данного типа, существует масса специальных программ. А так же полно описаний различных готовых конструкций ЕН-антенн.
Однако я не поспешил в ближайший магазин сантехники за покупкой канализационной трубы (именно она используется как основа для конструкции большинства ЕН антенн). А так же медная фольга, в качестве обкладок большого конденсатора. Решил повнимательнее почитать в интернете, а стоит ли ее изготавливать? Так как я больше увлекаюсь радио мониторингом, нежели общением в эфире, то мне бы пригодилась хорошая широкополосная антенна на коротковолновый диапазон и желательно небольших размеров. Что бы ее можно было расположить за окном, при этом не использовать близлежащие столбы освещения и деревья. А так же не привлекая особого внимания соседей на конструкции, типа огромных удочек торчащих из окна.
Поэтому основной целью написания этой статьи было обращение к моему читателю с просьбой дать совет. Если вы сталкивались с конструированием и использованием ЕН-антенн, посоветуйте пожалуйста хорошую конструкцию для использования на прием на коротковолновый диапазон, особенно на нижнюю его часть.
А то ведь вот что получается - простенький китайский приемник с КВ диапазоном на маленький телескопчик принимает лучше, чем хороший SDR приемник на шестиметровый провод, натянутый на балконе. Ну не может же такого быть? Однако это так. Как сказал мне один знающий человек, это связанно с разностью волновых сопротивлений антенных входов приемников.
Дело в том, что антенный вход китайского приемника высокоомный и рассчитан на подключение антенн типа "телескоп" или "веревка", которые так же имеют большое волновое сопротивление. А антенный вход SDR имеет входное сопротивление 50 Ом. А таким сопротивлением будут обладать только полноразмерные антенны, либо антенны с согласующим трансформатором.
Схема рабочего генератора Тесла, дающего бесплатную электроэнергию . Генератор позволяет экономить на энергоносителях до 95%. В статье дано понятие "электрического" тока, электрон. Даны рисунок, видео работы генератора бесплатного электричества.
Перед тем как рассмотреть схему генератор Тесла, проясним что представляет собой -"электрический" ток- с точки зрения эфиродинамики и микроквантовой физики.Согласно эфиродинамике :
Магнитное поле, вызываемое током,-это ротор-увлекаемого током потока внешнего эфира. Таким образом- ток по всей длине проводника будет пропорционален количеству движения потока эфира, проходящему через проводник за единицу времени.
Согласно микроквантовой теории , если представить провод как некую трубу по которой передается "электрическая" мощность, то агентом передающим мощность является пространство внутри провода (трубы) и внешнее пространство, сама же мощность - это поток микроквантов . Эти два пространства находятся в неразрывной связи, поскольку представляют собой одно и то же пространство только разной плотности. А электроны (это фотоны захваченные внешней оболочкой атома ) , которые являются непременной составляющей обычного (в школьной физике) "электрического" тока, тут только мешают процессу передачи электрической мощности. Поскольку именно они обуславливают активные и индуктивные ёмкостные сопротивления провода.
Образно говоря если представить "электрический" ток в проводнике - в виде воды текущей в трубе, то электроны - это булыжники двигающиеся в обратном течению воды направлении, а молекулы воды- это микрокванты (амеры эфира) мощности электрического тока.
Теперь разберём микроквантовые эфирные потоки, в т.ч. потоки "электрической" мощности, или "электрические" токи. Микроквант в микроквантовой физике, аналогичен амеру эфира в эфиродинамике. В отличие от электронов микрокванты передвигающиеся по проводу методом телепортации изначально движутся со скоростями превышающими скорость света, и к тому же они гасят тепловые фотоны в момент перехода их в линейное состояние. Согласно микроквантовой теории:
"Электрический" ток - это поток микроквантов в проводнике, тормозимый "электронами" в проводнике.[А.Хажакян, Теория микроквантов , Яндекс].
Поэтому напряженность магнитного поля и мощность которую можно передать или получить используя микроквантовые токи без разрушения структуры проводника может быть на десятки порядков выше. Как использовать микроквантовые токи для генерации мощности впервые придумал Никола Тесла. Его схему с незначительными доработками Вы видите ниже.
Данное устройство опасно делать самостоятельно! Возможны форс-мажорные обстоятельства и ухудшение здоровья испытателей.
Краткое содержание представляемого видео:
- Модель движения электронов в проводнике
- Модель движения микроквантов в материи под действием напряжения
- Объяснение работы микроквантового усилителя мощности
- Объяснение приемопередатчика микроквантов
- Объяснение эффекта схлопывания пространства
- Автомобиль Теслы
- Мотор Эдвина Грея.
Читайте также: