Диагностика кшм ваз 2114
Доступно для всех учеников 1-11 классов и дошкольников
ИНСТРУКТИВНАЯ КАРТА №3
Рабочее место №1 __
ТЕМА: Диагностирование КШМ и ГРМ.
Цель работы : Приобретение навыков и умений в диагностировании деталей КШМ и ГРМ
К выполнению лабораторной работы допущены студенты гр._____ прошедшие соответствующий курс теоретической подготовки и инструктаж по технике безопасности (что удостоверяется личной подписью)
Оснащение рабочего места: стенды с двигателями ЗИЛ-130, ЗМЗ-53,КамаАЗ -740, компрессометр К—181, прибор для замера относительных утечек в цилиндрах двигателя К-69М, газовый сметчик ГКФ-6, вакууметр, гаечные ключи.
Порядок работы:
1 . Определение компрессии в цилиндрах двигателя
Один из показателей, характеризующих техническое состояние деталей цилиндро-поршневой группы, — давление Р тс конца такта сжатия, которое определяется на предварительно прогретом двигателе при вывернутых свечах и полностью открытых дроссельной и воздушной заслонках. При замере коленчатый вал проворачивают стартером (150—180 об/мин) или вручную, с помощью рукоятки, примерно на 10-12 оборотов. Значение Р тс определяют компрессометром, наконечник которого плотно вставляют в отверстия для свечей зажигания или форсунок. Величину давления сжатия для каждого цилиндра определяют 2— 3 раза.. При этом разность показаний по цилиндрам не должна превышать 1 кгс/см 2
Составить отчет по п. 1. Указать номинальные и предельные величины компрессии проверяемого двигателя.
2. Определение относительной негерметичности цилиндров .
Для оценки технического состояния цилиндро-поршневой группы и клапанного механизма наиболее распространен способ, основанный на замере относительной утечки в зазорах (величина которых зависит от степени изношенности сопряжений) воздуха, подаваемого под давлением в цилиндры двигателя через отверстия для свечей или форсунок.
Относительную утечку воздуха через зазоры замеряют прибором модели К-69М, предназначенным для автомобильных двигателей с диаметром цилиндров 50—130 мм.
Чтобы измерение было более точное, перед диагностированием необходимо прогреть двигатель до нормального теплового состояния (75. 80°С), затем ослабить затяжку свечей и вновь запустить двигатель на 10. 15 с. Вывернуть свечи, а у дизельного двигателя отсоединить топливные трубки, гайки крепления и вынуть форсунки. Снять крышку с прерывателя-распределителя и токоразносчик, а у дизельных двигателей К-69М собрать указатель из комплекта принадлежностей.
Подсоединить прибор К-69М к двигателю. Все части прибора крепятся снизу панели. На верхней стороне панели находятся измерительный манометр, выходной и входной штуцера, редуктор давления воздуха и винт для периодической регулировки прибора. К выходному штуцеру с помощью накидной гайки крепится соединительный шланг для подвода сжатого воздуха в цилиндр двигателя. В комплект прибора входят принадлежности, применяемые при диагностировании цилиндропоршневой группы и клапанов двигателя.
Если в полость цилиндра через отверстие свечи зажигания подавать сжатый воздух через сечение постоянной величины и под определенным давлением, то по количеству проходящего через неплотности цилиндра воздуха можно судить о состоянии цилиндра. В цилиндр подводится сжатый воздух из магистрали (из баллона) под давлением 0,16 МПа, которое поддерживается редуктором и фиксируется манометром. Затем воздух через сопло поступает в цилиндр двигателя. Таким образом, прибор разделяет поток воздуха на две части: одна часть потока — до калиброванного отверстия, другая — после калиброванного отверстия. До калиброванного отверстия давление поддерживается постоянным, а после калиброванного — величина давления изменяется в зависимости от герметичности цилиндров.
Чем выше герметичность в надпоршневом пространстве, тем давление, измеряемое манометром , будет больше. В изношенном двигателе давление за калиброванным отверстием меньше, так как пропуск воздуха в картер увеличится. У нового двигателя давление за калиброванным отверстием будет близким к давлению 0,3---0,6 МПа перед калиброванным отверстием. Для удобства пользования прибором шкала его проградуиро-вана не в абсолютных величинах утечки воздуха, а в процентах максимальной, т. е. такой утечки, которая возможна при свободном выходе воздуха из прибора в атмосферу. Фактическое состояние цилиндропоршневой группы или клапанов оценивается по таблицам или по закрашенной части шкалы, где указана допустимая величина утечки воздуха в процентах.
Замеряют при положении поршня в в. м. т, (конец такта сжатия, определяемый с помощью специального сигнализатора, устанавливаемого в резьбовом штуцере). Утечку воздуха через неплотности определяют индикатором или на слух Если. Относительная утечка воздуха, замеренная в конце такта сжатия, больше допустимого значения, то необходимо определить ее величину при положении поршня в н. м. т. (начало такта сжатия). Если разность значений величины относительной утечки воздуха при положении поршня в в.м.т. и н.м.т. больше допустимых величин, то цилиндро-поршневую группу нужно ремонтировать оставить отчет по п. 2. Указать номинальные и предельные величины относительной негерметичности цилиндров проверяемого двигателя
3. Проверка количества газов прорывающихся в картер двигателя. Для замера количества газов, прорывающихся в картер ^ 1 двигателя используется газовый расходомер или счетчик 6 марки ГКФ-6 (применяемый для учета расхода газа в быту) или ротаметр. Перед замером картер двигателя герметизируется. Замер прорыва газов производится на режиме максимальной мощности при максимальных оборотах коленчатого вала двигателя. Этот режим создается в течение 30 сек при движении на нижней (второй или третьей) передаче при полном открытии дросселя и притормаживании автомобиля ножным тормозом.
Составить отчет по п. 3. Указать номинальные и предельные величины количества газов прорывающихся в картер проверяемого двигателя.
Контрольные вопросы к защите:
1. Причины понижения компрессии в цилиндрах двигателя.
2. Пояснить технологию проверки компрессии в цилиндрах двигателя.
3. Пояснить технологию определения относительной негерметичности цилиндров прибором К-69М
4. Пояснить технологию проверки количества газов прорывающихся в картер двигателя
Предварительная оценка состояния сопряжения КШМ по давлению масла и стукам
Предварительную оценку состояния сопряжений КШМ можно получить по величине давлении масла в главной магистрали и характеру стуков в определенных зонах двигателя.
Давление масла проверяют устройством КИ-5472 ГОСНИТИ, которое состоит из манометра, соединительного рукава с ниппелем и накидной гайкой, демпфера для сглаживания пульсации масла при измерении давления и сменных штуцеров. Чтобы измерить давление в главной магистрали дизеля, устройство подключают к корпусу масляного фильтра, отсоединив трубку штатного манометра.
Для проверки давления выполните следующие операции:
- подсоедините к корпусу масляного фильтра КИ-5472
- запустите и прогрейте до нормального теплового состояния двигатель
- зафиксируйте давление масла в магистрали при номинальной и минимально устойчивой частоте вращения коленчатого вала на холостом ходу
Стуки в сопряжениях КШМ прослушивают при неработающем двигателе электронным автостетоскопом ТУ 14 МО.082.017, попеременно создавая в надпоршневом пространстве разрежение и давление с помощью компрессорно-вакуумной установки КИ-4912 ГОСНИТИ или КИ-13907 ГОСНИТИ. Прослушивают стуки в сопряжениях бобышки поршня — поршневой палец, поршневой палец — втулка верхней головки шатуна, шейка коленчатого вала — шатунный механизм.
Если давление масла ниже допустимых значений, при наличии стуков в сопряжениях коленчатого вала проверяют зазоры в указанных сопряжениях. При пониженном давлении масла и отсутствии стуков проверяют регулировку сливного клапана смазочной системы. Если это не даст положительных результатов, проверяют подачу масла насосом и состояние редукционного клапана смазочной системы на стенде.
Определение состояния КШМ по зазорам в его сопряжениях
Заключение о состоянии КШМ можно сделать по величине зазоров в его сопряжениях. Суммарный зазор в верхней головке шатуна и шатунном подшипнике замеряют устройством КИ-11140 ГОСНИТИ.
Для измерения зазоров необходимо:
- установить поршень проверяемого цилиндра в ВМТ на такте сжатия и застопорить коленчатый вал
- закрепить устройство в головке цилиндров вместо форсунки, ослабив стопорный винт и приподняв направляющую с индикатором и штоком вверх
- опустить направляющую до упора штока в днище поршня (натягом) и зафиксировать ее винтом
- присоединить распределительный трубопровод компрессорно-вакуумной установки к штуцеру пневматического приемника
- включить установку и довести давление и разрежение в ее ресиверах соответственно до 0,06—0,1 МПа и 0,06—0,07 МПа
- выполнить два-три цикла подачи в надпоршневое пространство давления и разрежения переключением распределительного крана до получения стабильных показаний индикатора
- соединить краном ресивер сжатого воздуха с надпоршневым пространством и настроить индикатор на нуль
- плавно соединить ресивер разреженного воздуха с надпоршневым пространством и зафиксировать по индикатору сначала зазор в соединении поршневой палец — верхняя головка шатуна, затем суммарный зазор в верхней головке шатуна и шатунном подшипнике
Зазоры в КШМ измеряют 3-кратно и принимают среднее значение.
Если зазоры хотя бы у одного шатуна превышают допустимые значения, двигатель подлежит ремонту.
Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.
Детали кривошипно-шатунного механизма можно разделить на:
- неподвижные — картер, блок цилиндров, цилиндры, головка блока цилиндров, прокладка головки блока и поддон. Обычно блок цилиндров отливают вместе с верхней половиной картера, поэтому иногда его называют блок-картером.
- подвижные детали КШМ — поршни, поршневые кольца и пальцы, шатуны, коленчатый вал и маховик.
Кроме того, к кривошипно-шатунному механизму относятся различные крепежные детали, а также коренные и шатунные подшипники.
Блок-картер
Блок-картер — основной элемент остова двигателя. Он подвергается значительным силовым и тепловым воздействиям и должен обладать высокой прочностью и жесткостью. В блок-картере устанавливают цилиндры, опоры коленчатого вала, некоторые устройства механизма газораспределения, различные узлы смазочной системы с ее сложной сетью каналов и другое вспомогательное оборудование. Блок-картер изготавливают из чугуна или алюминиевого сплава литьем.
Цилиндр
Цилиндры представляют собой направляющие элементы ⭐ кривошипно-шатунного механизма. Внутри их перемещаются поршни. Длина образующей цилиндра определяется ходом поршня и его размерами. Цилиндры работают в условиях резко изменяющегося давления в надпоршневой полости. Их стенки соприкасаются с пламенем и горячими газами, имеющими температуру до 1500… 2 500 °С.
Цилиндры должны быть прочными, жесткими, термо- и износостойкими при ограниченном количестве смазки. Кроме того, материал цилиндров должен обладать хорошими литейными свойствами и легко обрабатываться на станках. Обычно цилиндры изготавливают из специального легированного чугуна, но могут применяться также алюминиевые сплавы и сталь. Внутреннюю рабочую поверхность цилиндра, называемую его зеркалом, тщательно обрабатывают и покрывают хромом для уменьшения трения, повышения износостойкости и долговечности.
В двигателях с жидкостным охлаждением цилиндры могут быть отлиты вместе с блоком цилиндров или в виде отдельных гильз, устанавливаемых в отверстиях блока. Между наружными стенками цилиндров и блоком имеются полости, называемые рубашкой охлаждения. Последняя заполняется жидкостью, охлаждающей двигатель. Если гильза цилиндра своей наружной поверхностью непосредственно соприкасается с охлаждающей жидкостью, то ее называют мокрой. В противном случае она называется сухой. Применение сменных мокрых гильз облегчает ремонт двигателя. При установке в блок мокрые гильзы надежно уплотняются.
Цилиндры двигателей воздушного охлаждения отливают индивидуально. Для улучшения теплоотвода их наружные поверхности снабжают кольцевыми ребрами. У большинства двигателей воздушного охлаждения цилиндры вместе с их головками крепят общими болтами или шпильками к верхней части картера.
В V-образном двигателе цилиндры одного ряда могут быть несколько смещены относительно цилиндров другого ряда. Это связано с тем, что на каждом кривошипе коленчатого вала крепятся два шатуна, один из которых предназначен для поршня правой, а другой — для поршня левой половины блока.
Блок цилиндров
На тщательно обработанную верхнюю плоскость блока цилиндров устанавливают головку блока, которая закрывает цилиндры сверху. В головке над цилиндрами выполнены углубления, образующие камеры сгорания. У двигателей жидкостного охлаждения в теле головки блока предусмотрена рубашка охлаждения, сообщающаяся с рубашкой охлаждения блока цилиндров. При верхнем расположении клапанов в головке имеются гнезда для них, впускные и выпускные каналы, отверстия с резьбой для установки свечей зажигания (у бензиновых двигателей) или форсунок (у дизелей), магистрали смазочной системы, крепежные и другие вспомогательные отверстия. Материалом для головки блока обычно служит алюминиевый сплав или чугун.
Плотное соединение блока цилиндров и головки блока обеспечивается с помощью болтов или шпилек с гайками. Для герметизации стыка с целью предотвращения утечки газов из цилиндров и охлаждающей жидкости из рубашки охлаждения между блоком цилиндров и головкой блока устанавливается прокладка. Она обычно изготавливается из асбестового картона и облицовывается тонким стальным или медным листом. Иногда прокладку с обеих сторон натирают графитом для защиты от пригорания.
Остов двигателя
Соединенные друг с другом неподвижные детали кривошипно-шатунного механизма являются остовом двигателя, воспринимающим все основные силовые и тепловые нагрузки, как внутренние (связанные с работой двигателя), так и внешние (обусловленные трансмиссией и ходовой частью). Силовые нагрузки, передающиеся на остов двигателя от несущей системы ТС (рама, кузов, корпус) и обратно, существенно зависят от способа крепления двигателя. Обычно он крепится в трех или четырех точках так, чтобы не воспринимались нагрузки, вызванные перекосами несущей системы, возникающими при движении машины по неровностям. Крепление двигателя должно исключать возможность его смещения в горизонтальной плоскости под действием продольных и поперечных сил (при разгоне, торможении, повороте и т.д.). Для уменьшения вибрации, передающейся на несущую систему ТС от работающего двигателя, между двигателем и подмоторной рамой, в местах крепления, устанавливаются резиновые подушки разнообразных конструкций.
Поршневую группу кривошипно-шатунного механизма образует поршень в сборе с комплектом компрессионных и маслосъемных колец, поршневым пальцем и деталями его крепления. Ее назначение заключается в том, чтобы во время рабочего хода воспринимать давление газов и через шатун передавать усилие на коленчатый вал, осуществлять другие вспомогательные такты, а также уплотнять надпоршневую полость цилиндра для предотвращения прорыва газов в картер и проникновения в него моторного масла.
Поршень
Поршень представляет собой металлический стакан сложной формы, устанавливаемый в цилиндре днищем вверх. Он состоит из двух основных частей. Верхняя утолщенная часть называется головкой, а нижняя направляющая часть — юбкой. Головка поршня содержит днище 4 (рис. а) и стенки 2. В стенках проточены канавки 5 для компрессионных колец. Нижние канавки имеют дренажные отверстия 6 для отвода масла. Для увеличения прочности и жесткости головки ее стенки снабжены массивными ребрами 3, связывающими стенки и днище с бобышками, в которых устанавливается поршневой палец. Иногда оребряют также внутреннюю поверхность днища.
Юбка имеет более тонкие стенки, чем у головки. В ее средней части расположены бобышки с отверстиями.
Рис. Конструкции поршней с различной формой днища (а—з) и их элементов:
1 — бобышка; 2 — стенка поршня; 3 — ребро; 4 — днище поршня; 5 — канавки для компрессионных колец; 6 — дренажное отверстие для отвода масла
Днища поршней могут быть плоскими (см. а), выпуклыми, вогнутыми и фигурными (рис. б—з). Их форма зависит от типа двигателя и камеры сгорания, принятого способа смесеобразования и технологии изготовления поршней. Самой простой и технологичной является плоская форма. В дизелях применяются поршни с вогнутыми и фигурными днищами (см. рис. е—з).
При работе двигателя поршни нагреваются сильнее, чем цилиндры, охлаждаемые жидкостью или воздухом, поэтому расширение поршней (особенно алюминиевых) больше. Несмотря на наличие зазора между цилиндром и поршнем, может произойти заклинивание последнего. Для предотвращения заклинивания юбке придают овальную форму (большая ось овала перпендикулярна оси поршневого пальца), увеличивают диаметр юбки по сравнению с диаметром головки, разрезают юбку (чаще всего выполняют Т- или П-образный разрез), заливают в поршень компенсационные вставки, ограничивающие тепловое расширение юбки в плоскости качания шатуна, или принудительно охлаждают внутренние поверхности поршня струями моторного масла под давлением.
Поршень, подвергающийся воздействию значительных силовых и тепловых нагрузок, должен обладать высокой прочностью, теплопроводностью и износостойкостью. В целях уменьшения инерционных сил и моментов у него должна быть малая масса. Это учитывается при выборе конструкции и материала для поршня. Чаще всего материалом служит алюминиевый сплав или чугун. Иногда применяют сталь и магниевые сплавы. Перспективными материалами для поршней или их отдельных частей являются керамика и спеченные материалы, обладающие достаточной прочностью, высокой износостойкостью, низкой теплопроводностью, малой плотностью и небольшим коэффициентом теплового расширения.
Поршневые кольца
Поршневые кольца обеспечивают плотное подвижное соединение поршня с цилиндром. Они предотвращают прорыв газов из надпоршневой полости в картер и попадание масла в камеру сгорания. Различают компрессионные и маслосъемные кольца.
Компрессионные кольца (два или три) устанавливают в верхние канавки поршня. Они имеют разрез, называемый замком, и поэтому могут пружинить. В свободном состоянии диаметр кольца должен быть несколько больше диаметра цилиндра. При введении в цилиндр такого кольца в сжатом состоянии оно создает плотное соединение. Для того чтобы обеспечить возможность расширения установленного в цилиндре кольца при нагревании, в замке должен быть зазор 0,2…0,4 мм. С целью обеспечения хорошей приработки компрессионных колец к цилиндрам часто применяют кольца с конусной наружной поверхностью, а также скручивающиеся кольца с фаской на кромке с внутренней или наружной стороны. Благодаря наличию фаски такие кольца при установке в цилиндр перекашиваются в сечении, плотно прилегая к стенкам канавок на поршне.
Маслосъемные кольца (одно или два) удаляют масло со стенок цилиндра, не позволяя ему попадать в камеру сгорания. Они располагаются на поршне под компрессионными кольцами. Обычно маслосъемные кольца имеют кольцевую канавку на наружной цилиндрической поверхности и радиальные сквозные прорези для отвода масла, которое по ним проходит к дренажным отверстиям в поршне (см. рис. а). Кроме маслосъемных колец с прорезями для отвода масла используются составные кольца с осевыми и радиальными расширителями.
Для предотвращения утечки газов из камеры сгорания в картер через замки поршневых колец необходимо следить за тем, чтобы замки соседних колец не располагались на одной прямой.
Поршневые кольца работают в сложных условиях. Они подвергаются воздействию высоких температур, а смазывание их наружных поверхностей, перемещающихся с большой скоростью по зеркалу цилиндра, недостаточно. Поэтому к материалу для поршневых колец предъявляются высокие требования. Чаще всего для их изготовления применяют высокосортный легированный чугун. Верхние компрессионные кольца, работающие в наиболее тяжелых условиях, обычно покрывают с наружной стороны пористым хромом. Составные маслосъемные кольца изготавливают из легированной стали.
Поршневой палец
Поршневой палец служит для шарнирного соединения поршня с шатуном. Он представляет собой трубку, проходящую через верхнюю головку шатуна и установленную концами в бобышки поршня. Крепление поршневого пальца в бобышках осуществляется двумя стопорными пружинными кольцами, расположенными в специальных канавках бобышек. Такое крепление позволяет пальцу (в этом случае он называется плавающим) проворачиваться. Вся его поверхность становится рабочей, и он меньше изнашивается. Ось пальца в бобышках поршня может быть смещена относительно оси цилиндра на 1,5…2,0 мм в сторону действия большей боковой силы. Благодаря этому уменьшается стук поршня в непрогретом двигателе.
Поршневые пальцы изготавливают из высококачественной стали. Для обеспечения высокой износоустойчивости их наружную цилиндрическую поверхность подвергают закалке или цементации, а затем шлифуют и полируют.
Поршневая группа состоит из довольно большого числа деталей (поршень, кольца, палец), масса которых по технологическим причинам может колебаться; в некоторых пределах. Если различие в массе поршневых групп в разных цилиндрах будет значительным, то при работе двигателя возникнут дополнительные инерционные нагрузки. Поэтому поршневые группы для одного двигателя подбирают так, чтобы они несущественно отличались по массе (для тяжелых двигателей не более чем на 10 г).
Шатунная группа кривошипно-шатунного механизма состоит из:
- шатуна
- верхней и нижней головок шатуна
- подшипников
- шатунных болтов с гайками и элементами их фиксации
Шатун
Шатун соединяет поршень с кривошипом коленчатого вала и, преобразуя возвратно-поступательное движение поршневой группы во вращательное движение коленчатого вала, совершает сложное движение, подвергаясь при этом действию знакопеременных ударных нагрузок. Шатун состоит из трех конструктивных элементов: стержня 2, верхней (поршневой) головки 1 и нижней (кривошипной) головки 3. Стержень шатуна обычно имеет двутавровое сечение. В верхнюю головку для уменьшения трения запрессовывают бронзовую втулку 6 с отверстием для подвода масла к трущимся поверхностям. Нижнюю головку шатуна для обеспечения возможности сборки с коленчатым валом выполняют разъемной. У бензиновых двигателей разъем головки обычно расположен под углом 90° к оси шатуна. У дизелей нижняя головка шатуна 7, как правило, имеет косой разъем. Крышка 4 нижней головки крепится к шатуну двумя шатунными болтами, точно подогнанными к отверстиям в шатуне и крышке для обеспечения высокой точности сборки. Чтобы крепление не ослабло, гайки болтов стопорят шплинтами, стопорными шайбами или контргайками. Отверстие в нижней головке растачивают в сборе с крышкой, поэтому крышки шатунов не могут быть взаимозаменяемыми.
Рис. Детали шатунной группы:
1 — верхняя головка шатуна; 2 — стержень; 3 — нижняя головка шатуна; 4 — крышка нижней головки; 5 — вкладыши; 6 — втулка; 7 — шатун дизеля; S — основной шатун сочлененного шатунного узла
Для уменьшения трения в соединении шатуна с коленчатым валом и облегчения ремонта двигателя в нижнюю головку шатуна устанавливают шатунный подшипник, который выполнен в виде двух тонкостенных стальных вкладышей 5, залитых антифрикционным сплавом. Внутренняя поверхность вкладышей точно подогнана к шейкам коленчатого вала. Для фиксации вкладышей относительно головки они имеют отогнутые усики, входящие в соответствующие пазы головки. Подвод масла к трущимся поверхностям обеспечивают кольцевые проточки и отверстия во вкладышах.
Для обеспечения хорошей уравновешенности деталей кривошипно-шатунного механизма шатунные группы одного двигателя (как и поршневые) должны иметь одинаковую массу с соответствующим ее распределением между верхней и нижней головками шатуна.
В V-образных двигателях иногда используются сочлененные шатунные узлы, состоящие из спаренных шатунов. Основной шатун 8, имеющий обычную конструкцию, соединен с поршнем одного ряда. Вспомогательный прицепной шатун, соединенный верхней головкой с поршнем другого ряда, нижней головкой шарнирно крепится с помощью пальца к нижней головке основного шатуна.
Коленчатый вал
Коленчатый вал, соединенный с поршнем посредством шатуна, воспринимает действующие на поршень силы. На нем возникает вращающий момент, который затем передается на трансмиссию, а также используется для приведения в действие других механизмов и агрегатов. Под влиянием резко изменяющихся по величине и направлению сил инерции и давления газов коленчатый вал вращается неравномерно, испытывая крутильные колебания, подвергаясь скручиванию, изгибу, сжатию и растяжению, а также воспринимая тепловые нагрузки. Поэтому он должен обладать достаточной прочностью, жесткостью и износостойкостью при сравнительно небольшой массе.
Конструкции коленчатых валов отличаются сложностью. Их форма определяется числом и расположением цилиндров, порядком работы двигателя и числом коренных опор. Основными частями коленчатого вала являются коренные шейки 3, шатунные шейки 2, щеки 4, противовесы 5, передний конец (носок 1) и задний конец (хвостовик 6) с фланцем.
К шатунным шейкам коленчатого вала присоединяют нижние головки шатунов. Коренными шейками вал устанавливают в подшипниках картера двигателя. Соединяются коренные и шатунные шейки при помощи щек. Плавный переход от шеек к щекам, называемый галтелью, позволяет избежать концентрации напряжений и возможных поломок коленчатого вала. Противовесы предназначены для разгрузки коренных подшипников от центробежных сил, возникающих на кривошипах вала во время его вращения. Их, как правило, изготавливают как единое целое со щеками.
Для обеспечения нормальной работы двигателя к рабочим поверхностям коренных и шатунных шеек необходимо подавать моторное масло под давлением. Масло поступает из отверстий в картере к коренным подшипникам. Затем оно через специальные каналы в коренных шейках, щеках и шатунных шейках попадает к шатунным подшипникам. Для дополнительной центробежной очистки масла в шатунных шейках имеются грязеуловительные полости, закрытые заглушками.
Коленчатые валы изготавливают методом ковки или литья из среднеуглеродистых и легированных сталей (может применяться также чугун высококачественных марок). После механической и термической обработки коренные и шатунные шейки подвергают поверхностной закалке (для повышения износостойкости), а затем шлифуют и полируют. После обработки вал балансируют, т. е. добиваются такого распределения его массы относительно оси вращения, при котором вал находится в состоянии безразличного равновесия.
В коренных подшипниках применяют тонкостенные износостойкие вкладыши, аналогичные вкладышам шатунных подшипников. Для восприятия осевых нагрузок и предотвращения осевого смещения коленчатого вала один из его коренных подшипников (обычно передний) делают упорным.
Маховик
Маховик крепится к фланцу хвостовика коленчатого вала. Он представляет собой тщательно сбалансированный чугунный диск определенной массы. Кроме обеспечения равномерного вращения коленчатого вала маховик способствует преодолению сопротивления сжатия в цилиндрах при пуске двигателя и кратковременных перегрузок, например, при трогании ТС с места. На ободе маховика закреплен зубчатый венец для пуска двигателя от стартера. Поверхность маховика, которая соприкасается с ведомым диском сцепления, шлифуют и полируют.
Рис. Коленчатый вал:
1 — носок; 2 — шатунная шейка; 3 — коренная шейка; 4 — щека; 5 — противовес; 6 — хвостовик с фланцем
Если есть что-то, что прочно ассоциируется с любым автомобилем, это механизм двигателя. Как ни странно, принцип его действия мало изменился с тех пор, как 120 лет назад Карл Бенц запатентовал свой первый автомобиль. Система усложнялась, обрастала сложной электроникой, совершенствовалась, но кривошипно-шатунный механизм (КШМ) остался самым узнаваемым “портретом” любого мотора.
Что такое КШМ и для чего он нужен?
Двигатель в процессе работы должен давать какое-то постоянное движение, и удобней всего, чтобы это было равномерное вращение. Однако силовая часть (цилиндро-поршневая группа, ЦПГ) вырабатывает поступательное движение. Значит, нужно сделать так, чтобы один тип движения преобразовался в другой, причем с наименьшими потерями. Вот для этого и был создан кривошипно-шатунный механизм.
По сути, КШМ – это устройство для получения и преобразования энергии и передачи ее дальше, другим узлам, которые уже эту энергию используют.
Устройство КШМ
Строго говоря, КШМ автомобиля состоит из самого кривошипа, шатунов и поршней. Однако говорить о части, не рассказав о целостной конструкции, было бы в корне неправильно. Поэтому схема и назначение КШП и смежных элементов будет рассматриваться в комплексе.
- Блок цилиндров – это начало всего движения в моторе. Его составляющие – поршни, цилиндры и гильзы цилиндров, в которых эти поршни движутся;
- Шатуны – это соединительные элементы между поршнями и коленвалом. По сути, шатун представляет собой прочную металлическую перемычку, которая одной стороной крепится к поршню с помощью шатунного пальца, а другой фиксируется на шейке коленвала. Благодаря пальцевому соединению поршень может двигаться относительно цилиндра в одной плоскости. Точно так же шатун охватывает посадочное место коленвала – шатунную шейку, и это крепление позволяет ему двигаться в той же плоскости, что и соединение с поршнем;
- Коленвал – коленчатый вал вращения, ось которого проходит через носок вала, коренные (опорные) шейки и фланец маховика. А вот шатунные шейки выходят за ось вала, и благодаря этому при его вращении описывают окружность;
- Маховик – обязательный элемент механизма, накапливающий инерцию вращения, благодаря которой двигатель работает ровней и не останавливается в “мертвой точке”.
Эти и другие элементы КШМ можно условно разделить на подвижные, те, что выполняют непосредственную работу, и неподвижные вспомогательные элементы.
Подвижная (рабочая) группа КШМ
Как понятно из названия, к подвижной группе относятся элементы, которые активно задействованы в работе двигателя.
-
Поршень. При работе двигателя поршень перемещается в гильзе цилиндра под действием выталкивающей силы при сгорании топлива – с одной стороны, и поворотом коленвала – с другой. Для уплотнения зазора между ним и цилиндром на боковой поверхности поршня находятся поршневые кольца (компрессионные и маслосъемные), которые герметизируют промежуток и препятствуют потере мощности во время сгорания топлива.
Неподвижная группа КШМ
Неподвижной группой можно назвать внешнюю часть двигателя, в которой находится КШП.
-
Блок цилиндров. По сути, это корпус, в котором располагаются непосредственно цилиндры, каналы системы охлаждения, посадочные места распредвала, коленвала и т.д. Он может выполняться из чугуна или алюминиевого сплава, и сегодня производители всё чаще используют алюминий, чтобы облегчить конструкцию. Для этой же цели вместо сплошного литья используются ребра жесткости, которые облегчают конструкцию без потери прочности. На боковых сторонах блока цилиндров располагаются посадочные места для вспомогательных механизмов двигателя.
Принцип работы КШМ
Работа механизма двигателя основана на энергии расширения при сгорании топливно-воздушной смеси. Именно эти “микровзрывы” являются движущей силой, которую кривошипно-шатунный механизм переводит в удобную форму. На видео, ниже, подробно описанный принцип работы КШМ в 3Д анимайии.
Принцип работы КШМ:
Интересно, что для старта двигателя нужно сначала раскрутить маховик. Для этой цели нужен стартер, который сцепляется с зубчатым венцом маховика и раскручивает его, пока мотор не заведется. Закон сохранения энергии в действии.
Остальные элементы двигателя: клапаны, распредвалы, толкатели, система охлаждения, система смазки, ГРМ и прочие – необходимые детали и узлы для обеспечения работы КШМ.
Основные неисправности
Учитывая нагрузки, как механические, так и химические, и температурные, кривошипно-шатунный механизм подвержен различным проблемам. Избежать неприятностей с КШП (а значит, и с двигателем) помогает грамотное обслуживание, но всё равно от поломок никто не застрахован.
Стук в двигателе
Один из самых страшных звуков, когда в моторе вдруг появляется странный стук и прочие посторонние шумы. Это всегда признак проблем: если что-то начало стучать, значит, с ним проблема. Поскольку в двигателе элементы подогнаны с микронной точностью, стук свидетельствует об износе. Придется разбирать двигатель, смотреть, что стучало, и менять изношенную деталь.
Основной причиной износа чаще всего становится некачественное ТО двигателя. Моторное масло имеет свой ресурс, и его регулярная замена архиважна. То же относится и к фильтрам. Твердые частички, даже мельчайшие, постепенно изнашивают тонко пригнанные детали, образуют задиры и выработку.
Стук может говорить и об износе подшипников (вкладышей). Они также страдают от недостатка смазки, поскольку именно на вкладыши приходится огромная нагрузка.
Снижение мощности
Потеря мощности двигателя может говорить о залегании поршневых колец. В этом случае кольца не выполняют свою функцию, в камере сгорания остается моторное масло, а продукты сгорания прорываются в двигатель. Прорыв газов говорит и о пустой растрате энергии, и это чувствует автовладелец как снижение динамических характеристик. Продолжительная работа в такой ситуации может только ухудшить состояние двигателя и довести стандартную, в общем-то, проблему до капремонта двигателя.
Проверить состояние мотора можно самостоятельно, измерив компрессию в цилиндрах. Если она ниже нормативной для данной модификации двигателя, значит, предстоит ремонт двигателя.
Повышенный расход масла
Если двигатель начал “жрать” масло, это явный признак залегания поршневых колец или других проблем с цилиндро-поршневой группой. Масло сгорает вместе с топливом, из выхлопной трубы идет черный дым, температура в камере сгорания превышает расчетную, и это не добавляет двигателю здоровья. В некоторых случаях может помочь очистка без демонтажа двигателя, но в большинстве случаев предстоит разборка и дефектовка двигателя.
Нагар
Отложения на поршнях, клапанах и свечах зажигания говорят о том, что с двигателем есть проблема. Если топливо не сгорает полностью, нужно искать причину неисправности и устранять ее. В противном случае мотору грозит перегрев из-за ухудшения теплопроводности поверхностей со слоем нагара.
Белый дым из выхлопной трубы
Появляется, когда в камеру сгорания попадает антифриз. Причиной чаще всего бывает износ прокладки ГБЦ или микротрещины в рубашке охлаждения двигателя, и для устранения проблемы необходима ее замена.
Медлить в этой ситуации нежелательно: маленькая протечка может обернуться гидроударом. Камера сгорания наполняется жидкостью, поршень движется вверх, но жидкость, в отличие от воздуха, не сжимается, и получается эффект удара о твёрдую поверхность. Последствия такой катастрофы могут быть любые, вплоть до “кулака дружбы” и продажи машины на запчасти.
Заключение
Несмотря на высокие нагрузки, критические условия работы и даже небрежность владельцев, кривошипно-шатунный механизм отличается завидной живучестью. Вывести его из строя можно неправильным обслуживанием, нештатными нагрузками, поломкой смежных элементов. Да, двигатель почти всегда можно починить, но эта услуга обойдётся в разы дороже, чем просто грамотное регулярное ТО. Недаром же есть двигатели “миллионники”, которые способны служить десятилетиями, не доставляя проблем владельцу машины.
Доступно для всех учеников 1-11 классов и дошкольников
Описание презентации по отдельным слайдам:
Последовательность проверки компрессии в цилиндрах ДВС: Прогреть двигатель до рабочей температуры. Отвернуть все свечи зажигания. Установить в первый цилиндр компрессометр. Провернуть коленчатый вал 5-6 раз стартером, при нажатой педали газа. 5. Повторить процедуру с остальными цилиндрами. 6. Сравнить полученные данные.
В случае получения низких показаний компрессии, Необходимо применить метод маслянной пленки. В цилиндры двигателя добавляют 20 куб.см. моторного масла, после чего повторяют замер компрессии и делают выводы. Так: Если компрессиия после заливки масла возросла, значит Причиной является износ стенок цилиндра и кольца. 2. Если еомпрессия осталась неизменной, то причина Находится в неплотно прилегающих клапанах или пробитой ГБЦ.
Проверка утечки воздуха Тестер относительной утечки воздуха из цилиндра
Порядок работы с тестером 1.Прогреть двигатель автомобиля до рабочей температуры, после чего выключить зажигание и заглушить его. 2.Вывернуть свечи зажигания. 3.Установить поршень проверяемого цилиндра в положение верхней мертвой точки (в дальнейшем ВМТ) в конце такта сжатия и заблокировать коленчатый вал (для автомобилей с механической КПП – поставить автомобиль на передачу и стояночный тормоз, а для АКПП - удерживать коленчатый вал двигателя специальным фиксатором или ключом). 4.Ввернуть шланг тестера в свечное отверстие проверяемого цилиндра, при необходимости использовать для этого адаптеры. 5.Подключить прибор к источнику сжатого воздуха с давлением 6,5…10 бар (к магистральному воздухопроводу или компрессору) через входной штуцер 5.
6.С помощью регулятора высокого давления, стрелку манометра № 2 установить в положение соответствующее значению 6 бар. 7.Подсоединить шланг, идущий к цилиндру двигателя к быстросъемной муфте тестера. 8.Выставить, если существует вероятность неточной работы прибора, с входное давление на 6 бар по манометру 2 помощью регулятора. 9.По цветной шкале манометра 3 определить показания процента утечки воздуха из цилиндра. 10.Перед отсоединением шланга высокого давления от тестера во избежание поломок прибора необходимо снизить давление сжатого воздуха в приборе посредством регулятора давления!
Читайте также: