Вторая лямбда на что влияет
Если вы попали сюда по запросу о показаниях второго (2) лямбда-зонда, то вам СЮДА.
Итак, попробуем разобраться в том как работает датчик кислорода. Ну, как вы уже знаете есть много датчиков, необходимых для работы современного двигателя, но, однако функция других датчиков зачастую не так важна, как функция датчиков кислорода.
Эти датчики считывают количество несгоревшего кислорода в выхлопных газах. Затем компьютер использует это значение для баланса топливной смеси. Когда содержание кислорода в выхлопных газах увеличивается (характеризует смесь как обедненную) выходное напряжение датчиков уменьшается. Это является сигналом для ЭБУ к увеличению объема топлива подаваемого через форсунки. В свою очередь, когда содержание кислорода в выхлопных газах снижается (характеризует смесь как богатую), датчик кислорода увеличивает напряжение выходного сигнала, а компьютер реагирует путем уменьшение подачи топлива. Как только количество топлива уменьшается, мы возвращаемся к обедненной смеси, и напряжение на датчике падает. Этот процесс многократно повторяется пока двигатель работает. Это непрерывный цикл обратной связи является сердцем системы контроля подачи топлива.
Типичные показания датчика при обедненной смеси - напряжение между 0 и 0.3 В и для богатой смеси показания в диапазоне от 0.6 до 1 вольта. Идеальная воздушно-топливная смесь (14.7:1) создает напряжение на выводах датчика 0.5 В
Так почему бы просто не поддерживать постоянно дозированное количество топлива, которое изменяется с положения дроссельной заслонки ? На самом деле, довольно много факторов влияют на количество топлива, которое необходимо для поддержания отношения 14.7:1. Некоторые из этих факторов: качество топлива, атмосферное давление, влажность и многое другое. Таким образом, необходимы О2-датчики (датчики кислорода)! Количество раз в единицу времени обновлений информации датчиками весьма разнятся, но большинство современных датчиков в среднем обновляют показания минимум полдюжины раз в секунду. Старые датчики обновляли показания медленно порядка одного раза в секунду, так что вы можете себе представить насколько лучше стали контролировать выхлоп современные датчики.
Старые кислородные датчики, использовавшиеся до 1982 года были 1 или 2 проводные неподогреваемого типа. Эти датчики не будут на самом деле начинать правильно регистрировать состояние выхлопной пока датчик не нагреется, чтобы достичь свой рабочий диапазон. В результате компьютер работает в режиме "открытого контура" (использование заданных топливных значений, которые фактически заставляют двигатель работать на переобогащенной смеси) в течение более длительных периодов времени. Все датчики нового типа "с подогревом" (датчик ho2s), которые включают нагревательный элемент для приведения датчика до рабочей температуры быстрее, обычно это занимает меньше минуты, так быстро, как это возможно, даже за 10 секунд - это возможно! Нагревательные элементы предотвращают охлаждение датчиков, когда двигатель работает на холостом ходу. Эти подогреваемые датчики имеют обычно 3 и 4 провода в конструкции своих разъемов.
Есть несколько различных видов датчиков, которые различаются по химическому составу и дизайну, но их назначение и функции остаются неизменными. Техника за эти годы вышла далеко за рамки того, что описано на этой странице, но есть несколько вещей, которые нужно понимать. Датчики кислорода сравнивают содержание кислорода в окружающем воздухе с содержанием кислорода в выхлопных газах. Наружного воздух попадает в датчик через отверстие в корпусе датчика или через разъем проводки. Некоторые типы датчиков генерируют (изменяют) напряжение, когда изменяется содержание кислорода в выхлопных газах, а некоторые изменяют сопротивление. Новейший тип, обогреваемые широкополосные O2 датчики (кислородные датчики) имеют диапазон напряжений от 2 до 5 вольт.
Несмотря на все их различия и фактические показания выдаваемые датчиками, компьютер обрабатывает информацию так, что у нас ожидаются значения от 0 до 1 В. Есть пара исключений, конечно. Некоторые типы кислородных датчиков "Титания" с подогревом могут производить напряжение до 5 вольт. Это значение не изменяется с помощью компьютера. Еще один тип того же датчика настроен для чтения значений противоположное тому, что вы ожидаете. Высокое напряжение указывают на бедную смесь и низкое напряжение на богатую. Эти 2 типа датчиков кислорода не распространены и использовались в основном на некоторых Ниссанах, Jeep'ах и Иглах. В каждом правиле должны быть исключения! Инженеры они такие, да, я знаю.
Вы также заметите, что на большинстве автомобилей после '96 года, есть второй комплект датчиков кислорода за каталитическим нейтрализатором (т.е. там стоит вторая лямбда, он же 2 датчик кислорода). Их функция такая же, как и передних О2 датчиков, а их показания используются по-разному, и их целью является измерить эффективность преобразователей, а не контролировать соотношение топлива двигателя. Вы можете обратиться к нашей статье "коды по датчику кислорода" и "помощь в диагностике" для дальнейшего уточнения показаний датчиков кислорода. Эти статья содержат ценную диагностическую информацию и процедуры проведения испытаний, а также возможные причины кодов ошибок по богатой или бедной смеси. Я надеюсь, что вы нашли эту информацию полезной.
У меня комплектация LEV, наверно такая коплектация или подобная теперь у большинства.
Стоит у меня две 4-х проводниковых лямбды, зачем проводков 4 я знаю.
Зачем вторая лямбда нужна и как она влияет на поведение машины, компьютера?
прошу не пинать, укажите где написано или расжуйте.
Сум, с такими фразами далеко не уедешь.
Вторая лямбда оценивает работу ката и сравнивает, изменилось ли содержание кислорода по сравнению с показаниями первой. если не изменилось, значит кат недожигает выхлопные газы (а должен это делать), поэтому выхлоп в итоге получается не такой чистый, и загорается джекичан. Если горит джекичан, то можно сделать 2 вещи:
1. выбить кат(заменить на пламегаситель) и на вторую лямбду одеть обманку (делается из ввертыша для свечей)
2. заменить кат.
первый способ дешевле ;)
и датчик тоже есть
Василий58, спасибо.
если вторую лямбду отключить должен загореться чек тогда.
Василий,смысла то в нем ноль,на работу двига он не влияет и я его давно отрезал,кат выбил,а провод от датчика сначала бросил на массу,а потом и вовсе отключил лампу на панели,не думаю что у тебя стоит катализатор;)
Василий,смысла то в нем ноль,на работу двига он не влияет и я его давно отрезал,кат выбил,а провод от датчика сначала бросил на массу,а потом и вовсе отключил лампу на панели,не думаю что у тебя стоит катализатор;)
Тем самым ты лишился хоть и не великолепного то всеже какого ни какого механизма самодиагностики. Я имею ввиду лампочку.
ката у меня нет, о чем сожалею, ибо нарушена правильная работа коллектора выпускного :-(
у меня стоит обманка
а у меня осенью обломился разъем прямо в этом датчике контроля температуры ката. тоже почитал, выяснил что вроде на комп не влияет, а тока для контроля первой лямбды и ката. провод убрал, лампу вывернул. щас езжу и время от времени думаю: "заказывать, не заказывать ентот датчик за 3000р?". мало того что бабки потратишь на призрачный контроль, да еще и поипешься пока старый выкрутишь из ката.
вопрос не в датчике перегрева катализатора, а о второй лямбде
получается если в катализаторе не догорает кислород по показаниям второй лямбды, то комп. еще больше льет бензина, обогащая смесь?
по поводу катализатора, я против его выбивания, если он функционирует нормально, есть такие тюненгаторы, которые якобы снижают сопротивление в выхлопной системе выбивая канализатор и ставят туда пламягаситель, что тоже создает сопротивление в системе.
Надо думать об экологии, на загруженых дорогах города дышать нечем, так как концентрация выхлопных газов ахриненая, на сколько они вредны это уже проблема каждого из нас кто ездит на авто.
Вторая лямбда - ничего не регулирует. А является контролем работы католизатора. Как только параметры выходят за предел, загорается "джекичан" (как кто-то в этой ветке сказал) :)
Обманки ниразу не видел.
Католик трогать нельзя, если стоит 2 кислородника. Один выход, менять католик
Вторая лямбда как раз для экологии - Евро3,4, LEV и т.д.
Как показывает практика, движки с 2 лямбдами меньше мощности чем с 1.
Например, Stream K20A на кузове RN3- пер. привод - 2 лямбды - 154л.с.,
На кузове RN4 - 4WD - лямбда 158л.с.
Тот же авто с D17A RN1-2 лямбды - пер. прив.- 125 л.с., RN2 - 4WD -1 лямбда - 128л.с.
С ним точнее, чем без него
Точность — понятие относительное
Лямбда-зонд — это фактически два электрода, разделенные твердым электролитом в виде керамики из диоксида циркония. Редко — из диоксида титана.
Внешний электрод (скрыт под защитным колпачком с прорезями) находится в потоке выхлопных газов.
Внутренний электрод расположен в воздухе под атмосферным давлением. Воздух попадает внутрь либо через место, где в датчик входит проводка, .
. либо через специальные отверстия, прикрытые неким пористым материалом.
Внутри у него две ячейки — измерительная и насосная. Еще с простых датчиков стехиометрической смеси соответствует напряжение в 0,45 В. Если оно изменяется, насосная ячейка подает в измерительную или откачивает оттуда некое количество воздуха. И по изменению тока, требуемого для этого, блок управления видит состав смеси и корректирует подачу топлива.
Диапазон измерений лежит в пределах до 5 В. Естественно, используется нагревательный элемент. А связь с ЭБУ состоит из пяти или шести проводов. С конца 90-х (эконормы Евро-3) широкополосный датчик стал неотъемлемым атрибутом автомобилей классом выше среднего. А с начала — середины 2000-х, ближе к появлению Евро-4 или уже с этими экотребованиями, датчики состава смеси вытеснили обычные лямбда-зонды. Тогда же или чуть раньше за катализатором, придвинутым вплотную к выпускному коллектору, появился второй датчик.
Ресурс велик, но есть нюансы
Симптомы потери работоспособности датчика могут быть разными. Объединяет едва ли не все системы то, что, скорее всего, загорится check engine. Но и это не обязательное условие. Растет расход топлива, однако не всегда настолько, что владелец это обязательно заметит. От переливов топлива из выхлопной трубы может попахивать бензином. Кроме того, двигатель способен перебоить на холостом ходу и иметь провалы тяги на разгоне. Да попросту глохнуть.
— Теоретически любые примеси в бензине могут вывести лямбда-зонд из строя. Тем более моторное масло, которое, если расход на угар велик, в сгоревшем виде попадает на его внешний электрод. Точных значений последнего не скажу. Отмечу лишь, что сейчас все-таки повальных отказов не наблюдаем.
Без работоспособного датчика перед катализатором блок управления будет неправильно готовить топливовоздушную смесь, переливать или обеднять. В первом случае излишки топлива будут догорать в катализаторе. При бедной смеси в камерах сгорания не будет вспышки и несгоревший бензин опять же отправится в нейтрализатор. Излишне говорить, что с ним в итоге произойдет.
Нагревательный элемент датчика выходит из строя не только от старости, хотя это самая распространенная причина. Может и от механического воздействия. Коллега ремонтировал подвеску собственного автомобиля, молотком попал по выпускному тракту рядом с датчиком и, очевидно, стряхнул его. Оценивать смесь он не прекратил, однако нагрев потерял. При отрицательных температурах из-за отсутствия подогрева увеличившийся расход топлива реально почувствовать. Не только при низкотемпературных пусках, но, например, в городских пробках, когда выпускной коллектор может охлаждаться ниже 300℃.
Очень часто все задаются вопросом: "Что должен показывать второй лямбда зонд ? ", "Зачем нужен второй лямбда зонд ? " и пр. А все, на самом деле, очень просто.
Второй лямбда зонд появился в результате очередного (в лохматых годах) ужесточения экологических норм, чтобы оценивать эффективность каталитического нейтрализатора (по нашему, катализатора или каталика). Он вообще не влияет на работу мотора и призван лишь отслеживать состояние каталика. Ранее вместо него был датчик температуры катализатора, который определял его забитость благодаря тому, что забитый каталик начинал сильно нагреваться проходящими выхлопными газами, в ответ на что мозг кидал ошибку по нему. Забивается вплоть до наступления перегрева каталик намного позже, чем начинает терять эффективность, поэтому отслеживать его состояние через лямбду намного эффективнее.
Сигнал второй лямбды должен быть в несколько раз ниже по значению напряжения, чем первой. Точные значения диапазонов показаний, которые ЭБУ автомобиля считает нормальными смотрите в руководстве по каждому конкретному автомобилю, но основная суть в том, что когда показания второй лямбды начинают приближаться к показаниям первой лямбды (в районе 0,500 В) или доходить до некоторого (прописанного в мозгах автомобиля) порогового значения, блок управления двигателем выкидывает ошибку по низкой эффективности каталитического нейтрализатора.
Что это означает для нас - рядовых обывателей ? Значит, что каталик ваш здох и больше вам не нужен. Свою работу он уже не выполняет, а со временем будет забиваться и ухудшать прохождение выхлопа, оплавляться или рассыпется и будет громыхать в трубе - бывает по разному. Нам нужно будет либо удалить его, заменив пламегасителем (хотя можно просто трубой, но тогда под ногами будет слышен рокот), либо забить до обострения симптомов, но, в любом случае, для погашения ошибки по лямбде, нужно будет либо поставить механическую обманку в виде проставки под лямбду, которая отодвинет ее чуток от выхлопной трубы и она будет меньше захватывать выхлоп, что уменьшит ее показания, либо сделать электронную обманку из 120 Ом-ного резистора и конденсатора на 1 - 2.2 мкф.
Собственно в этом и вся суть - ничего особенного. Ниже фото обманок.
Электронная обманка
Механическая обманка
Датчик кислорода или лямбда-зонд – устройство, устанавливаемое в выпускном коллекторе. Его основная задача контролировать количество кислорода, оставшегося после сгорания топливной смеси. По стандартам эта смесь формируется в пропорции 1 к 14,7, при отклонении данного показателя лямбда-зонд передает команду в ЭБУ о нарушении качества воздушно-топливной смеси. В некоторых автомобилях устанавливают второй зонд после катализатора. Если работа датчика кислорода нарушена или он вообще вышел из строя, возникают проблемы в работе двигателя:
- машина неадекватно реагирует на нажатие педали газа;
- появляется запах топлива в салоне;
- существенно увеличивается расход топлива (до 2 раз);
- выхлоп имеет резкий запах.
Зачем нужен кислородный датчик
Этот конструктивный элемент появился в 1976 году, и первые лямбда-зонды были выпущены немецким концерном Bosch. Его появление было вызвано тем, что в середине 70-х годов прошлого века случился резкий скачок цен на нефть, поэтому большинство автовладельцев задумались об экономичности своих машин. Благодаря датчику удалось достигнуть ощутимой экономии топлива без снижения мощности.
Датчик лямбда-зонд анализирует количество несгоревшего в выхлопе кислорода. Если его много, то подаваемая в цилиндры смесь – бедная, когда его мало – воздушно-топливная смесь слишком обогащена. Благодаря этим данным электронный блок управления регулирует соотношение воздуха и горючего в смеси, что позволяет достигнуть максимально эффективности при работе, а это приводит к экономии топлива. Идеальный показатель – на сгорание 1 кг топлива должно потребляться 14,7 кг воздуха. Стандартный кислородный датчик находится в выпускном коллекторе.
С 90-х годов на автомобили стали устанавливать два лямбда-зонда – верхний кислородный датчик непосредственно на выходе из двигателя, а нижний датчик после катализатора. Первый зонд контролирует качество подаваемой топливной смеси, а второй – следит за состоянием катализатора, что важно для соблюдения экологических норм.
Из-за плохого качества топлива и других проблем нижний датчик кислорода часто выходит из строя. Решать эту проблему пытаются разными способами, один из них – программное отключение, другой – механическая обманка лямбда-зонда. Такая обманка датчика кислорода работает очень просто – в ней делается дополнительное отверстие или устанавливается сеточка для доступа воздуха извне. В результате концентрация выхлопа и вредных веществ в нем снижается и зонд считает, что с экологией все нормально. Более надежный вариант — перепрошивка ЭБУ.
Устройство лямбда-зонда
Чтобы понять принцип работы датчика кислорода, нужно знать его устройство. В лямбда-зонде установлены два электрода. Внешний электрод взаимодействует непосредственно с выхлопом, внутренний электрод взаимодействует с атмосферным воздухом. Между этими электродами располагается слой диоксида циркония. Существуют титановые зонды, которым не требуется контакта с атмосферой, но они встречаются очень редко и стоят дорого.
В результате взаимодействия с различными средами на электродах возникает разное напряжение, результирующее значение которого передается по проводу в ЭБУ. Из этих данных делается вывод о богатстве или бедности смеси. При значениях от 0,1 до 0,45 В – смесь обедненная, в диапазоне 0,45-0,9 В – смесь обогащенная. Идеальное соотношение воздушно-топливной смеси достигается при 0,45 В.
Первые модели датчиков кислорода работали только до 3000 оборотов двигателя, а после этого он переходил на усредненные параметры обогащения смеси. Но современные лямбда-зонды работают во всем диапазоне оборотов, что обеспечивает лучшую эффективность и экономичность.
Диагностика
Проверку лямбда-зонда осуществляют, не снимая его с автомобиля. Для этого берется специальное приспособление и присоединяется к эклектической системе, после заводится двигатель. Чтобы датчик начал работать, его нужно разогреть до 300 градусов, а титановый зонд – до 700.
Значения напряжения на устройстве должны меняться в диапазоне от 0,1 до 0,9 В примерно 8 раз в 10 секунд. Это означает, что датчик работает правильно и никаких проблем с ним не возникает. Если частота смены показателей уменьшается, зонд не работает нормально и скоро выйдет из строя. При полном выходе из строя на экране диагностического аппарата высвечивается одно значение.
Что происходит при неисправном кислородном датчике
В случае неисправности лямбда-зонда, когда напряжение на нем не меняется, ЭБУ начинает обогащать рабочую смесь, обеднять ее он не будет, поскольку это приводит к более серьезным последствиям.
Специфический запах начинает проникать в салон, а расход топлива возрастает в 2 раза. При этом разгоняется автомобиль гораздо хуже, поскольку топливо заливает цилиндры, иногда из выхлопной трубы доносятся характерные хлопки.
Что приводит к поломке лямбда-зонда
Устройство датчика кислорода таково, что главным его врагом являются высокие температуры. При удалении катализаторов, без соответствующей компенсации, температура выхлопных газов увеличивается, что со временем это приводит к выходу зонда из строя.
Вторая проблема – попадание антифриза в выхлопные газы. Но если охлаждающая жидкость попадает в камеры сгорания, а из них в выхлопной коллектор, поломка кислородного датчика – это наименьшая из проблем.
Третья распространенная причина поломки – попадание масла на электроды. Это происходит, когда выкинутое из мотора масло попадает на турбину, где оно выгорает, а пары попадают в лямбда-зонд, который выходит из строя. Выгорающие масляные брызги существенно поднимают температуру в выхлопном коллекторе.
При изготовлении тюнингованных систем выхлопа датчик кислорода иногда устанавливают снизу. Это ошибка, поскольку образующийся конденсат и твердый осадок приведут к быстрой коррозии электродов, и устройство сломается. Поэтому лямбда-зонд устанавливают сверху магистрали и еще под углом 45 градусов, чтобы поток выхлопных газов заходил правильнее.
Сколько времени работает лямбда-зонд
Первые варианты кислородных датчиков, с двумя проводами, при нормальном режиме эксплуатации работали в районе 50 тыс. км пробега. Новая конструкция зондов с тремя или четырьмя проводами проработает в районе 80 тыс. км. Лямбда-зонды, устанавливаемые в современные автомобили способны отработать до замены около 150 тыс. км.
Отдельный подвид этих датчиков – широкополосные лямбда-зонды, которые проходят не менее 150 тыс. км., обладая рядом преимуществ. Они оборудованы отдельной шкалой вывода, поэтому водитель может в реальном времени видеть, какая смесь подается в двигатель. Это устройство работает во всем диапазоне оборотов и обрабатывает информацию с гораздо большей скоростью. Особенно полезны такие датчики для автовладельцев, которые любят заниматься тюнингом своих моторов.
Видео: Лямбда! Датчик Кислорода и Повышенный расход топлива
Датчики от сторонних производителей
Чтобы улучшить работу двигателя или просто заметить кислородный датчик, вышедший из строя, автовладельцы обращаются к вариантам от сторонних производителей, выпускающих, в том числе, и широкополосные датчики. Для этого лучше брать продукцию известных компаний, среди которых популярны:
- АЕМ performance electronics;
- INNOVATE motorsports;
- Depo Racing.
Каждый из этих брендов предлагает несколько типов и поколений датчиков кислорода, которые отличаются приемлемым уровнем точности и надежности. Есть определенные нарекания к широкополосным зондам от Depo Racing, но и здесь многие специалисты поспорили бы.
Зонды от INNOVATE motorsports требуют предварительной калибровки. Для этого их нужно подключить на воздухе, чтобы они установили нужное значение, и только после этого устанавливать в выхлопную систему. Иногда в них возникают проблемы с контроллерами и другой электронной начинкой. Наименьшее количество проблем возникает с АЕМ performance electronics, но они стоят дороже всего.
При установке широкополосного лямбда-зонда нужно знать, что он не переносит перегрева. Поэтому они устанавливаются на расстоянии не менее 40, а лучше 50 см от турбины или начала штанов выпускного коллектора.
Заключение
Датчик кислорода – необходимый элемент любого современного двигателя. Благодаря ему мотор понимает, что происходит в камерах сгорания, достаточно ли топлива в них поступает или нужно увеличить количество воздуха в смеси. Бедные смеси приводят к детонации и преждевременному износу двигателя, разрушению поршневой группы и цилиндров. При излишне богатой смеси в камерах сгорания образуется нагар, кроме того, она смывает масло со стенок цилиндров, что тоже приводит к ускоренному износу.
При замене лямбда-зонда можно обращаться к сторонним производителям, перепиновав несколько проводов и получив более точное и надежное устройство. При этом ускоренная передача информации позволяет работать по более адекватному алгоритму, оперативно реагируя на изменившиеся условия. В результате это поможет сэкономить деньги на топливе, избежать проблем с богатой или бедной смесью, а двигатель будет работать в идеальном для него режиме.
Читайте также: