От чего зависит крутящий момент стартера
Электрические стартеры отличаются способами возбуждения электродвигателя, крепления на двигателе, видами механизма привода, степени герметичности.
По способу возбуждения различают стартеры с последовательным, смешанным возбуждением и возбуждением от постоянных магнитов. Смешанное возбуждение применяют для ограничения частоты вращения вала якоря nя в режиме холостого хода. В диапазоне рабочих токов характеристики стартеров смешанного и последовательного возбуждения отличаются незначительно. Характеристики электродвигателей с возбуждением от постоянных магнитов аналогичны характеристикам электродвигателей с независимым возбуждением. Возбуждение от постоянных магнитов применяется на стартерах малой мощности. Для мощных стартеров налаживают выпуск небольших магнитов с высокой энергией, например, на основе элементов неодим-железо-бор.
Электростартер должен иметь надежное соединение с коленчатым валом двигателя на период пуска и автоматически отключаться от него после выхода двигателя на режим самостоятельной работы. От передаточного числа привода от стартера к маховику зависит согласование характеристик стартерного- электродвигателя с пусковыми характеристиками двигателя. Повышение передаточного числа позволяет применять более быстроходные и меньшие по габаритным размерам электродвигатели. С целью увеличения передаточного числа в стартере используют дополнительный понижающий редуктор.
Шестерню привода стартера располагает между опорами под крышкой привода или консольно за пределами крышки. Стартеры с шестерней между опорами могут быть двух- и трехопорными. Двухопорными выполняются стартеры мощностью до 1,5 кВт. В трехопорных стартерах привод с шестерней расположен на валу якоря между подшипниковыми втулками крышки привода и промежуточной опоры.
Консольное расположение шестерни характерно для стартеров с инерционным приводом, перемешающимся якорем, а также для стартеров с тяговыми реле, встроенными в крышку привода соосно с приводом или размещенными в крышке коллектора.
Разработаны конструкции стартеров с одной опорой в крышке коллектора (стартер 29.3708 автомобиля ВАЗ-2108) при расположении второй опоры вала якоря со стороны привода в картере маховика. В этом случае отпадает необходимость в крышке привода, снижаются нагрузки на детали крепления стартера и уменьшается его масса.
Рис. Стартер с принудительным электромеханическим включением шестерни и роликовой МСХ: 1 — вал якоря с винтовыми шлицами; 2 — шестерня привода; 3 — кольцо упорное; 4 — ведущая обойма МСХ; 5 — крышка со стороны привода; 6 — буферная пружина; 7 — рычаг включения привода; 8 — возвратная пружина тягового реле; 9 — удерживающая обмотка тягового реле; 10 — втягивающая обмотка тягового реле; 11 — тяговое реле; 12 — неподвижный контакт; 13 — контактный болт; 14 — подвижный контакт; 15 — крышка коллектора; 16 — щеткодержатель; 17 — щеточная пружина; 18 — коллектор; 19 — щетка; 20 — корпус стартера; 21 — полюс; 22 — якорь; 23 — полюсный винт; 24 — катушка обмотки возбуждения; 25 — обмотка якоря; 26 — роликовая МСХ.
На отечественных автомобилях и тракторах применяют стартеры с принудительным электромеханическим включением шестерни, имеющие роликовые, храповые или фрикционные муфты свободного хода (МСХ) и управляемые дистанционно с помощью тяговых электромагнитных реле, устанавливаемых на крышке привода.
Основными деталями и узлами электростартера являются корпус 20 с полюсами и катушками обмотки возбуждения, якорь 22 с коллектором 18 и обмоткой якоря 25, механизм привода с МСХ 26, электромагнитное тяговое реле 11, крышка привода 5, крышка коллектора 15, щеточный узел с щеткодержателями, щетками и щеточными пружинами.
Изменения в конструкции корпусов электростартеров и якорей электродвигателей связаны с применением в качестве катушечной и пазовой изоляции полимерных материалов, а также коллекторов из пластмассы.
Использование пластмассы в коллекторах позволяет увеличить их механическую прочность, дает возможность автоматизировать формирование пакета коллектора. Особый интерес представляют торцовые и свертные коллекторы. Замена цилиндрических коллекторов торцовыми и свертными снижает расход коллекторной меди и повышает срок службы щеточно-коллекторного узла. Свертной коллектор получают из медной ленты, которая подвергается расчеканке на требуемое количество пластин. После свертывания ленты в цилиндр и опрессовки пластмассой цилиндрическую часть коллектора обтачивают, в результате перемычки между пластинами срезаются и они оказываются изолированными.
Механизм привода стартера располагается на шлицевой части вала якоря. МСХ привода обеспечивает передачу вращающего момента от вала якоря маховику во время пуска двигателя и препятствует вращению якоря маховиком после пуска. Применение МСХ в приводных механизмах стартеров повышает их надежность и исключает преждевременный выход шестерни их зацепления с венцом маховика при пуске холодного двигателя в условиях низких температур.
Наибольшее распространение получили роликовые МСХ. Они просты по конструкции, мало чувствительны к загрязнению, надежны, не требуют регулировки и ухода в эксплуатации. На автотракторных стартерах устанавливают роликовые МСХ с бесплунжерными прижимными устройствами. Прижимное устройство в виде Г-образного толкателя 2 расположено между роликом У и специальным упором, закрепленным на наружной ведущей обойме 12. При включении МСХ в работу наружная ведущая обойма 12 поворачивается относительно ведомой обоймы 17 с шестерней, ролики под действием прижимных пружин и сил трения между обоймами и роликами перемещаются в узкую часть клиновидного пространства и МСХ заклинивается. После пуска двигателя частота вращения ведомой обоймы 17 с шестерней превышает частоту вращения наружной ведущей обоймы 12, ролики перемещаются в широкую часть клиновидного пространства и МСХ проскальзывает.
На стартерах мощностью 6-10 кВт в настоящее время применяется привод с храповой МСХ. Преимуществом храповой МСХ по сравнению с роликовыми является высокая прочность и возможность передачи большого вращающего момента при сравнительно небольших ее размерах.
Рис. Бесплунжерная роликовая МСХ: 1 — ролик; 2 — толкатель; 3 — прижимная пружина; 4 и 8 — замковые кольца; 5 — опорная чашка; 6 — пружина; 7 — поводковая муфта: 9 — буферная пружина; 10 — направляющая шлкцевая втулка; 11 — центрирующее кольцо; 12 — наружная ведущая обойма; 13 — фиксатор пружины (пластина с отогнутыми лепестками); 14 — шайба; 15 — войлочный уплотнитель; 16 — кожух МСХ: 17 — ведомая обойма с шестерней; 18 — втулка.
При срабатывании тягового реле рычаг привода через корпус 2 МСХ перемещает направляющую шлицевую втулку 1 вместе с ведущим 5 и ведомым 6 храповиками по шлицам вала и вводит шестерню в зацепление с венцом маховика. Вращающий момент к венцу маховика передается через шлицевую втулку 1, ведущий 5 и ведомый 6 храповики и шестерню 8. Осевое усилие, возникающее в винтовых шлицах втулки 1 и храповика 5, воспринимается резиновым кольцом 11.
Рис. Приводной механизм с храповой МСХ: 1 — шлицевая втулка: 2 — корпус привода: 3 — шайба: 4 — пружина; 5 — ведущий храповик: 6 — ведомый храповик; 7 — штифт направляющий; 8 — шестерня; 9 — сегмент; 10 — коническое кольцо; 11 — резиновое кольцо; 12 — запорное кольцо.
В случае, когда шестерня упирается в венец маховика, сжимается пружина 4, и ведущий храповик 5, перемещаясь по винтовым шлицам втулки 1, своими торцовыми зубьями поворачивает ведомый храповик 6 с шестерней 8 на угол, достаточный для ввода шестерни в зацепление.
Если частота вращения шестерни и ведомого храповика больше частоты вращения направляющей втулки 1, ведущий храповик, перемещаясь по винтовым шлицам втулки 1, отходит от ведомого храповика и шестерня вращается вхолостую. Вместе с ведущим храповиком отходит и коническое кольцо 10, при этом сегменты получают свободу перемещения в радиальном направлении вдоль штифтов 7 ведомого храповика и фиксируют МСХ в расцепленном состоянии. Во время отдельных вспышек воспламенения в цилиндрах двигателя шестерня остается в зацеплении с венцом маховика и может снова передавать вращающий момент от электродвигателя после выравнивания частот вращения ведущего и ведомого храповиков. Шестерня выходит из зацепления только после выключения тягового реле электростартера.
Фрикционные дисковые муфты применяют на мощных стартерах автомобилей БелАЗ. МСХ состоит из ведущий и ведомой полумуфт и заклинивается после ввода шестерни в зацепление. Фрикционные диски прижимаются друг к другу в результате усилия в резьбовом соединении ведомой втулки муфты и корпуса шестерни. После пуска двигателя усилие в резьбовом соединении меняет направление, прижатие дисков ослабевает и муфта пробуксовывает. Недостатком фрикционных МСХ является изменение передаваемого вращающего момента в процессе эксплуатации вследствие износа фрикционных дисков.
Рис. Схема управления электростартером
Электростартеры конструктивно выполнены в герметичном исполнении. Степень защиты стартера от проникновения посторонних тел и воды оговаривается в стандартах на отдельные виды изделий. Стартеры, предназначенные для тяжелых условий работы (на большегрузных автомобилях и на тракторах), отличаются большей степенью герметизации. Герметизация обеспечивается установкой в местах разъема резиновых колец, применением пластмассовых втулок и уплотнительных прокладок из мягких пластических материалов.
Конструктивное исполнение стартера зависит от способа крепления его на двигателе. Обычно стартер располагают сбоку картера двигателя, при этом крышка привода обращена в сторону маховика и входит в отверстие картера сцепления. Крепление стартера на двигателе обеспечивает сохранение постоянного расстояния между центрами шестерни привода и зубчатого венца маховика при снятии стартера и его установке после технического обслуживания и ремонта. Такому условию удовлетворяет фланцевое крепление. Конфигурация и размеры присоединительного фланца на крышке со стороны привода стандартизованы. При фланцевом креплении крепежный фланец несет нагрузку как от усилий, возникающих при передаче вращающего момента от стартера к двигателю, так и от массы стартера. Поэтому для стартеров большой мощности осуществляют крепление на постели двигателя посредством натяжной ленты. Установка стартера на постели упрощает конструкцию крышки со стороны привода, но повышает требования к качеству изготовления корпуса стартера. Для предотвращения проворачивания стартера в канавке на его корпусе и в постели двигателя установлены специальные шпонки.
Типовая схема дистанционного управления стартером с дополнительным реле включения приведена на рисунке. При замыкании контактов выключателя S зажигания контакты К1 дополнительного реле подключают втягивающую КА2 и удерживающую KV2 обмотки тягового реле к аккумуляторной батарее GB. Под действием МДС двух обмоток якорь реле перемещается и с помощью рычага привода вводит шестерню в зацепление с венцом маховика. В конце хода якоря реле замыкаются силовые контакты К2 тягового реле и аккумуляторная батарея соединяется со стартерным электродвигателем М.
Шестерня остается в зацеплении с венцом маховика до тех пор, пока водитель не отключит питание дополнительного реле. После размыкания контактов К1 дополнительного реле втягивающая КА2 и удерживающая KV2 обмотки тягового реле оказываются включенными последовательно, получая питание через контакты К2. Число. витков обеих обмоток одинаково, и по ним проходит ток одной и той же силы. Так как направление тока во втягивающей обмотке в этом случае изменяется, обмотки действуют встречно и создают два равных, но противоположно направленных магнитных потока. Сердечник электромагнита размагничивается и возвратная пружина, перемещая якорь реле в исходное положение, размыкает силовые контакты К2 и выводит шестерню из зацепления с венцом маховика.
Примем как руководство к действию, что мотор стартера должен удовлетворять всем критериям, которые мы обсудили ранее. Чтобы определить крутящий момент, требуемый от стартера, вернемся к рисунку, на котором показан крутящий момент, необходимый для проворачивания вала двигателя с учетом минимальной скорости вращения.
Изготовители двигателей стартера предоставляют его характеристики в форме графиков. Эти данные показывают крутящий момент, скорость вращения, мощность и потребление тока стартера при +20 и -20 «С.
Оценка мощности стартера дается при температуре -20 «С и использовании рекомендованной батареи.
На рисунке показано, как необходимая выходная мощность стартера соотносится с характеристиками двигателя.
Рис. Выходная мощность стартера в сопоставлении с характеристиками двигателя
В общем случае крутящий момент стартера, требуемый на литр объема двигателя при предельной температуре запуска, находится по таблице.
Таблица. Крутящие моменты, требуемые для двигателей различных типов
Больший крутящий момент требуется дли двигателей с меньшим числом цилиндров из-за большего хода поршня в цилиндре. Этот фактор определяет пиковые значения крутящего момента. Другой главный фактор — степень сжатия.
Чтобы иллюстрировать связь между вращающим моментом и мощностью, предположим следующее. При самых худших условиях (-20 «С), двухлитровый двигатель с четырьмя цилиндрами требует для преодоления статического трения момент в 480 Нм и момент в 160 Нм, чтобы поддерживать минимальную скорость вращения 100 об/мин. С учетом связи шестерни стартера с венцом маховика через передаточное отношение 1:10 стартер должен быть способен создать максимальный крутящий момент 48 Нм и крутящий момент движения 16 Нм. Надо учесть, что начальный крутящий момент, вообще говоря, в три-четыре раза больше крутившего момента проворачивания вала двигателя.
Крутящий момент связан с мощностью следующим соотношением:
Р = Tw,
где Р — мощность, Т — крутящий момент и w — угловая скорость.w = 2Пn/60,
где n — число оборотов в минуту.
Крутящий момент стартера увеличивается почти пропорционально квадрату тока, проходящего по обмоткам стартера, и максимальное значение имеет в начале пуска. Число оборотов якоря растет пропорционально напряжению на его зажимах. [1]
Замыкание обмоток стартера на массу ведет к значительному снижению крутящего момента стартера при большом потребляемом токе. [2]
Загрязнение или обгорание контактного кольца включателя, соединяющего стартер с батареей, также сопровождается уменьшением крутящего момента стартера . После зачистки контактного кольца необходимо проверить, правильно ли отрегулирован момент включения стартера. [3]
Характеристики системы пуска ( рис. 19) представляют собой зависимость мощности, частоты вращения и крутящего момента стартера от потребляемого тока. [5]
Загрязнение коллектора, износ щеток и ослабление пружин щеткодержателей - вер эти неисправности приводят к уменьшению крутящего момента стартера . В результате даже при заряженной аккумуляторной батарее стартер вращает вал двигателя слишком медленно или вовсе не вращает. [6]
Загрязнение коллектора, износ щеток и ослабление пружин щеткодержателей - все эти неисправности приводят к снижению крутящего момента стартера . В результате даже при заряженной аккумуляторной батарее стартер вращает вал двигателя слишком медленно или вовсе не вращает. Эти неисправности устраняют теми же способами, какие применяют для ликвидации аналогичных неисправностей генератора. [7]
Характеристиками системы пуска являются по существу характеристики электродвигателя стартера. Они представляют собой зависимости мощности, частоты вращения якоря и крутящего момента стартера от величины тока, потребляемого стартером. [8]
Подшипники стартеров изнашиваются неравномерно по окружности. Наибольший износ происходит в направлении действия поперечной силы, возникающей при передаче крутящего момента стартера на двигатель. [9]
Якорь стартера автомобиля развивает момент значительно меньше пускового момента коленчатого вала. Однако поворачивание коленчатого вала обеспечивается благодаря большому передаточному числу между зубчатым венцом маховика и шестерней стартера; например, зубчатый венец на маховике двигателя ГАЗ-51 имеет 148 зубцов, а на шестерне стартера 9 зубцов. Следовательно, на один оборот маховика якорь стартера сделает 16 4 оборота, и величина крутящего момента стартера должна быть меньше пускового момента коленчатого вала в 16 4 раза. [10]
Привод работает следующим образом. В момент включения тяговое реле посредством рычага перемещает привод вдоль шлицев вала и вводит шестерню в зацепление с венцом маховика. Когда шестерня привода входит в зацепление, замыкаются контакты тягового реле и включается стартер. Крутящий момент стартера передается на шестерню привода через шлицевое соединение вала с направляющей втулкой 1, далее через ленточную резьбу на ведущую половину 4 муфты и через храповое зацепление на ведомую половину 5 муфты и шестерню привода. При передаче вращения через ленточную резьбу возникает осевое усилие, плотно прижимающее друг к другу половины 4 и 5 муфты. [12]
В качестве стартера применяют электродвигатели постоянного тока последовательного или смешанного возбуждения. На рис. 12.1 изображены электромеханические характеристики стартера. С ростом тока, потребляемого стартером, его крутящий момент растет, а частота вращения якоря уменьшается. Кривая мощности стартера имеет вид параболы. Крутящий момент стартера в этот момент будет равен нулю. [13]
Стартер автомобиля — электрический мотор постоянного тока, который применяется для пуска ДВС (двигателя внутреннего сгорания).
В момент активации стартера (например, после поворота ключа в замке зажигания) устройство вращает коленчатый вал, имитируя работу двигателя.
После воспламенения горючей смеси в камере сгорания мотор переходит на автономный режим работы, а стартер отключается.
Основные технические характеристики
В процессе ремонта или замены стартера важно знать его технические характеристики.
К основным параметрам стоит отнести:
- Мощность — показатель, который определяется минимальной пусковой частотой вращения, а также сопротивлением прокручивания коленвала. Параметр зависит от типа транспортного средства. Так, у легковых машин мощность стартера равна 1-2,2 кВт, у грузового транспорта — 4-8 кВт, у тракторов —1,6-4 кВт, а у специальной техники — до 9 кВт. Параметр может меняться с учетом типа двигателя. Чтобы выяснить параметр мощности стартера машины, достаточно заглянуть в паспорт машины.
- Момент сопротивления прокручиванию. В автомобильном стартере показатель зависит от объема мотора. Чем выше последний, тем больше момент сопротивления.
- Минимальная пусковая частота. Этот параметр зависит от особенностей цикла зажигания в моторе, а также условий образования горючей смеси. Так, в двигателях, работающих на бензине, устанавливается стартер с пусковой частотой 40-50 оборотов в минуту. Если речь идет о моторе грузового авто или дизеле, этот параметр равен 80-250 оборотов в минуту.
Даем определения
При изучении особенностей стартера стоит выделить следующие термины:
- Мощность стартера — параметр, который характеризует количество энергии, развиваемое мотором постоянного тока в процессе пуска двигателя. Паспортная и номинальная мощности равны, когда вращение стартера происходит без нагрузки. В момент запуска возникают пусковые токи, которые больше номинального в несколько раз.
- Минимальная пусковая частота — параметр, по которому можно судить о частоте вращения коленвала при оптимальных условиях образования смеси и зажигания.
- Момент сопротивления прокручивания — величина момента вращения сопротивления прокручиванию вала мотора.
От чего зависит срок службы устройства?
Ресурс стартера автомобиля во многом зависит от нескольких факторов — уровня износа двигателя, емкости АКБ, а также пробега транспортного средства.
Средний срок жизни наиболее изнашиваемых элементов (втулки, муфты и ротора) равен 80-120 тысячам километров. В целом стартер автомобиля служит 5-6 лет при интенсивной эксплуатации автомобиля.
При эксплуатации в условиях большого города ресурс снижается до 3-4 лет. Чтобы продлить срок службы стартера, требуется три компонента:
- Принятие профилактических мер;
- Своевременная диагностика неполадок;
- Квалифицированный ремонт.
Как рассчитать пусковой ток?
Часто в распоряжении автовладельца имеется только мощность стартера и номинальное напряжение (12 или 24 Вольта).
Расчет пускового тока производится по формуле:
I=P/U,
где U — напряжение, В.
P — мощность, которая указывается в паспорте автомобиля, В*А.
Мощности и характеристики стартеров разных машин
Стартеры многих авто имеют индивидуальные параметры. Рассмотрим некоторые варианты.
- Мощность (номинальная) — 1,3 кВт (1300 Вт);
- Ток в заторможенной позиции — 500-550А;
- Ток на ХХ (без реле) — 35-60А;
- Номинальный ток — 260-290А.
- Мощность (номинальная) — 1,55 кВт (1550 Вт);
- Ток в заторможенной позиции — 700А;
- Ток на ХХ — 80 А;
- Номинальный ток (при максимальной мощности) — 375 А.
КАМАЗ, Евро-1 и Евро-2:
- Напряжение номинальное — 24В;
- Мощность — 8,2 кВт (8200 Вт);
- Направление прокручивания — вправо;
- Масса — 24.7 кг (для Евро-1) и 26 кг (для Евро-2).
Для автомобилей УАЗ стартер имеет следующие параметры:
- Направление вращения — вправо;
- Напряжение номинальное — 12В;
- Мощность (если емкость АКБ равна 60 А*ч) — 1,2 кВт (1200Вт);
- Ток (при ХХ и температуре 20 0 С) — 75А;
- Частота вращения ротора (при ХХ и температуре 20 0 С) — 5000 об/мин;
- Ток (полное торможение, температура 20 0 С) — 520А;
- Тормозной момент (полное торможение, температура 20 0 С) — 1,6 кгс*м (±0,16);
- Напряжение на выводе (полное торможение, температура 20 0 С) — 7 Вольт.
Для примера возьмем автомобиль КАМАЗ, у которого мощность стартера согласно технической документации равна 8200 Вт. Напряжение бортовой сети 24В.
Примем как руководство к действию, что мотор стартера должен удовлетворять всем критериям, которые мы обсудили ранее. Чтобы определить крутящий момент, требуемый от стартера, вернемся к рисунку, на котором показан крутящий момент, необходимый для проворачивания вала двигателя с учетом минимальной скорости вращения.
Изготовители двигателей стартера предоставляют его характеристики в форме графиков. Эти данные показывают крутящий момент, скорость вращения, мощность и потребление тока стартера при +20 и -20 «С.
Оценка мощности стартера дается при температуре -20 «С и использовании рекомендованной батареи.
На рисунке показано, как необходимая выходная мощность стартера соотносится с характеристиками двигателя.
Рис. Выходная мощность стартера в сопоставлении с характеристиками двигателя
В общем случае крутящий момент стартера, требуемый на литр объема двигателя при предельной температуре запуска, находится по таблице.
Таблица. Крутящие моменты, требуемые для двигателей различных типов
Больший крутящий момент требуется дли двигателей с меньшим числом цилиндров из-за большего хода поршня в цилиндре. Этот фактор определяет пиковые значения крутящего момента. Другой главный фактор — степень сжатия.
Чтобы иллюстрировать связь между вращающим моментом и мощностью, предположим следующее. При самых худших условиях (-20 «С), двухлитровый двигатель с четырьмя цилиндрами требует для преодоления статического трения момент в 480 Нм и момент в 160 Нм, чтобы поддерживать минимальную скорость вращения 100 об/мин. С учетом связи шестерни стартера с венцом маховика через передаточное отношение 1:10 стартер должен быть способен создать максимальный крутящий момент 48 Нм и крутящий момент движения 16 Нм. Надо учесть, что начальный крутящий момент, вообще говоря, в три-четыре раза больше крутившего момента проворачивания вала двигателя.
Крутящий момент связан с мощностью следующим соотношением:
Р = Tw,
где Р — мощность, Т — крутящий момент и w — угловая скорость.
w = 2Пn/60,
где n — число оборотов в минуту.
Большая Энциклопедия Нефти и Газа
Крутящий момент — стартер
Крутящий момент стартера увеличивается почти пропорционально квадрату тока, проходящего по обмоткам стартера, и максимальное значение имеет в начале пуска. Число оборотов якоря растет пропорционально напряжению на его зажимах. [1]
Замыкание обмоток стартера на массу ведет к значительному снижению крутящего момента стартера при большом потребляемом токе. [2]
Загрязнение или обгорание контактного кольца включателя, соединяющего стартер с батареей, также сопровождается уменьшением крутящего момента стартера . После зачистки контактного кольца необходимо проверить, правильно ли отрегулирован момент включения стартера. [3]
Характеристики системы пуска ( рис. 19) представляют собой зависимость мощности, частоты вращения и крутящего момента стартера от потребляемого тока. [5]
Загрязнение коллектора, износ щеток и ослабление пружин щеткодержателей — вер эти неисправности приводят к уменьшению крутящего момента стартера . В результате даже при заряженной аккумуляторной батарее стартер вращает вал двигателя слишком медленно или вовсе не вращает. [6]
Загрязнение коллектора, износ щеток и ослабление пружин щеткодержателей — все эти неисправности приводят к снижению крутящего момента стартера . В результате даже при заряженной аккумуляторной батарее стартер вращает вал двигателя слишком медленно или вовсе не вращает. Эти неисправности устраняют теми же способами, какие применяют для ликвидации аналогичных неисправностей генератора. [7]
Характеристиками системы пуска являются по существу характеристики электродвигателя стартера. Они представляют собой зависимости мощности, частоты вращения якоря и крутящего момента стартера от величины тока, потребляемого стартером. [8]
Подшипники стартеров изнашиваются неравномерно по окружности. Наибольший износ происходит в направлении действия поперечной силы, возникающей при передаче крутящего момента стартера на двигатель. [9]
Якорь стартера автомобиля развивает момент значительно меньше пускового момента коленчатого вала. Однако поворачивание коленчатого вала обеспечивается благодаря большому передаточному числу между зубчатым венцом маховика и шестерней стартера; например, зубчатый венец на маховике двигателя ГАЗ-51 имеет 148 зубцов, а на шестерне стартера 9 зубцов. Следовательно, на один оборот маховика якорь стартера сделает 16 4 оборота, и величина крутящего момента стартера должна быть меньше пускового момента коленчатого вала в 16 4 раза. [10]
Привод работает следующим образом. В момент включения тяговое реле посредством рычага перемещает привод вдоль шлицев вала и вводит шестерню в зацепление с венцом маховика. Когда шестерня привода входит в зацепление, замыкаются контакты тягового реле и включается стартер. Крутящий момент стартера передается на шестерню привода через шлицевое соединение вала с направляющей втулкой 1, далее через ленточную резьбу на ведущую половину 4 муфты и через храповое зацепление на ведомую половину 5 муфты и шестерню привода. При передаче вращения через ленточную резьбу возникает осевое усилие, плотно прижимающее друг к другу половины 4 и 5 муфты. [12]
В качестве стартера применяют электродвигатели постоянного тока последовательного или смешанного возбуждения. На рис. 12.1 изображены электромеханические характеристики стартера. С ростом тока, потребляемого стартером, его крутящий момент растет, а частота вращения якоря уменьшается. Кривая мощности стартера имеет вид параболы. Крутящий момент стартера в этот момент будет равен нулю. [13]
Что такое скорость и крутящий момент стартера?
1. Вспомним, что при вращении якоря, витки его обмотки пересекают линии магнитного поля, а следовательно, в них индуцируется напряжение (противо-э.д.с). Это никак не связано с тем фактом, что якорь вращается под действием тока, идущего от аккумулятора – э.д.с, будет точно такой же, если вращать якорь внешней механической силой.
2. Противо-э.д.с, как показывает само название, всегда направлена против внешнего тока, в данном случае – аккумулятора, и ее значение прямо зависит от скорости вращения якоря. Проще говоря, электродвигатель под действием внешнего тока будет разгоняться до тех пор, пока противо-э.д.с, не станет равной подводимому напряжению, е точнее – немного меньше последнего за счет падения напряжения в проводах и контактах щеток (см. Рис. 4.5).
Рис. 4.5 Работа стартера под нагрузкой
3. Крутящий момент стартера зависит от двух факторов – магнитного поля и тока якоря, поэтому электродвигатель с последовательным возбуждением идеален, когда требуется создать большой крутящий момент по двум причинам:
а) При включении стартера электродвигатель не вращается. Поэтому нет никакой противо-э.д.с, и ток стартера ограничивается только сопротивлением его обмоток. Таким образом, при пуске ток стартера очень высок.
б) Этот большой ток проходит через обмотку возбуждения и создает в ней магнитное поле высокой напряженности.
По этим причинам электродвигатели последовательного возбуждения находят широкое применение в качестве стартеров, а также для привода оборудования, требующего высоких пусковых характеристик, например для привода подъемников автопогрузчиков.
4. Другой особенностью электродвигателей с последовательным возбуждением является то, что они могут развивать без нагрузки очень высокие обороты. Поэтому на стартер не следует подавать напряжение без нагрузки, если Вы не хотите, чтобы его обмотки разлетелись в стороны под действием центробежных сил.
Какая мощность стартера у автомобилей
Стартер автомобиля — электрический мотор постоянного тока, который применяется для пуска ДВС (двигателя внутреннего сгорания).
В момент активации стартера (например, после поворота ключа в замке зажигания) устройство вращает коленчатый вал, имитируя работу двигателя.
После воспламенения горючей смеси в камере сгорания мотор переходит на автономный режим работы, а стартер отключается.
Основные технические характеристики
В процессе ремонта или замены стартера важно знать его технические характеристики.
К основным параметрам стоит отнести:
- Мощность — показатель, который определяется минимальной пусковой частотой вращения, а также сопротивлением прокручивания коленвала. Параметр зависит от типа транспортного средства. Так, у легковых машин мощность стартера равна 1-2,2 кВт, у грузового транспорта — 4-8 кВт, у тракторов —1,6-4 кВт, а у специальной техники — до 9 кВт. Параметр может меняться с учетом типа двигателя. Чтобы выяснить параметр мощности стартера машины, достаточно заглянуть в паспорт машины.
- Момент сопротивления прокручиванию. В автомобильном стартере показатель зависит от объема мотора. Чем выше последний, тем больше момент сопротивления.
- Минимальная пусковая частота. Этот параметр зависит от особенностей цикла зажигания в моторе, а также условий образования горючей смеси. Так, в двигателях, работающих на бензине, устанавливается стартер с пусковой частотой 40-50 оборотов в минуту. Если речь идет о моторе грузового авто или дизеле, этот параметр равен 80-250 оборотов в минуту.
Даем определения
При изучении особенностей стартера стоит выделить следующие термины:
- Мощность стартера — параметр, который характеризует количество энергии, развиваемое мотором постоянного тока в процессе пуска двигателя. Паспортная и номинальная мощности равны, когда вращение стартера происходит без нагрузки. В момент запуска возникают пусковые токи, которые больше номинального в несколько раз.
- Минимальная пусковая частота — параметр, по которому можно судить о частоте вращения коленвала при оптимальных условиях образования смеси и зажигания.
- Момент сопротивления прокручивания — величина момента вращения сопротивления прокручиванию вала мотора.
От чего зависит срок службы устройства?
Ресурс стартера автомобиля во многом зависит от нескольких факторов — уровня износа двигателя, емкости АКБ, а также пробега транспортного средства.
Средний срок жизни наиболее изнашиваемых элементов (втулки, муфты и ротора) равен 80-120 тысячам километров. В целом стартер автомобиля служит 5-6 лет при интенсивной эксплуатации автомобиля.
При эксплуатации в условиях большого города ресурс снижается до 3-4 лет. Чтобы продлить срок службы стартера, требуется три компонента:
- Принятие профилактических мер;
- Своевременная диагностика неполадок;
- Квалифицированный ремонт.
Как рассчитать пусковой ток?
Часто в распоряжении автовладельца имеется только мощность стартера и номинальное напряжение (12 или 24 Вольта).
Расчет пускового тока производится по формуле:
P — мощность, которая указывается в паспорте автомобиля, В*А.
Мощности и характеристики стартеров разных машин
Стартеры многих авто имеют индивидуальные параметры. Рассмотрим некоторые варианты.
- Мощность (номинальная) — 1,3 кВт (1300 Вт);
- Ток в заторможенной позиции — 500-550А;
- Ток на ХХ (без реле) — 35-60А;
- Номинальный ток — 260-290А.
- Мощность (номинальная) — 1,55 кВт (1550 Вт);
- Ток в заторможенной позиции — 700А;
- Ток на ХХ — 80 А;
- Номинальный ток (при максимальной мощности) — 375 А.
- Напряжение номинальное — 24В;
- Мощность — 8,2 кВт (8200 Вт);
- Направление прокручивания — вправо;
- Масса — 24.7 кг (для Евро-1) и 26 кг (для Евро-2).
Для автомобилей УАЗ стартер имеет следующие параметры:
- Направление вращения — вправо;
- Напряжение номинальное — 12В;
- Мощность (если емкость АКБ равна 60 А*ч) — 1,2 кВт (1200Вт);
- Ток (при ХХ и температуре 20 0 С) — 75А;
- Частота вращения ротора (при ХХ и температуре 20 0 С) — 5000 об/мин;
- Ток (полное торможение, температура 20 0 С) — 520А;
- Тормозной момент (полное торможение, температура 20 0 С) — 1,6 кгс*м (±0,16);
- Напряжение на выводе (полное торможение, температура 20 0 С) — 7 Вольт.
Для примера возьмем автомобиль КАМАЗ, у которого мощность стартера согласно технической документации равна 8200 Вт. Напряжение бортовой сети 24В.
Рассчитываем пусковой ток. 8200/24=341,66 Ампер.
Виды, устройство и принцип работы стартера автомобиля
Для успешного запуска двигателя внутреннего сгорания необходимо устройство, которое придаст кривошипно-шатунному механизму начальный импульс, то есть провернет маховик до нужных оборотов. Таким устройством является стартер и именно он отвечает за пуск двигателя. В статье подробно рассмотрим устройство и принцип работы стартера автомобиля, а также его возможные неисправности.
Устройство стартера
Стартер автомобиля представляет собой электродвигатель. Он преобразует электрическую энергию от аккумулятора в механическую работу, которая приводит в движение маховик и коленчатый вал, для начала процесса движения поршней. Стартером оборудованы все двигатели.
Принцип работы устройства основан на законах физики, которые известны со школьной скамьи. Если между двумя полюсами магнита поместить проволочную рамку с двумя концами, а потом пустить через нее ток, то она начнет вращаться. Это и есть самый простой электродвигатель.
Простой автомобильный стартер представляет собой металлический корпус, в котором находятся четыре магнитных сердечника (башмаки). Эти магниты в корпусе и представляют собой статор электродвигателя. Раньше на башмаках наматывалась обмотка возбуждения, на которую подавался электрический ток от аккумулятора. То есть это был классический электромагнит. На современных же устройствах применяются обычные магниты.
Другой важной деталью устройства является якорь. Он представляет собой вал с напрессованным сердечником из электротехнической стали. В пазах сердечника находятся те самые рамки, которые будут вращаться вокруг полюсов магнита. Концы рамок соединены с коллектором, к которому подходят четыре щетки – две положительные от АКБ и две отрицательные, которые будут идти к массе.
В закрывающей задней крышке находятся щеткодержатели с пружинками, которые постоянно поддавливают щетки к коллектору для обеспечения контакта. Также в задней крышке установлена опорная втулка якоря или подшипник.
Устройство обычного стартера
На металлическом корпусе находится входной контакт. К этому контакту подключается плюсовая клемма аккумулятора (+). Ток проходит по рамкам якоря и выходит на отрицательные щетки массы. Масса соединяется с отрицательной клеммой аккумулятора. Таким образом, создается магнитное поле вокруг рамок якоря и он вращается.
Плюсовой провод АКБ, который подходит к стартеру, значительно толще остальных. По этому проводу подается пусковой ток, равный примерно 400А.
Ток от аккумулятора на стартер не может подаваться постоянно. Он нужен только в момент запуска двигателя. Поэтому между плюсовым проводом аккумулятора и контактом стартера есть так называемый медный пятак, который замыкает контакты.
На валу якоря также выполнено шлицевое соединение, на котором находится направляющая втулка и бендикс с шестерней с возможностью осевого перемещения. Это движение обеспечивает контакт шестерни непосредственно с зубчатым венцом маховика. Простыми словами можно сказать, что бендикс подходит к маховику, проворачивает его, сколько это необходимо, а потом отходит обратно.
Но бендикс не перемещается по валу самостоятельно. Это делает другой электромагнит меньшего размера – втягивающее реле. От реле к шестерне подходит вилка, которая и толкает бендикс. К катушке втягивающего подается управляющий ток от аккумулятора через замок зажигания. При включении зажигания катушка намагничивается и втягивает сердечник. Этот сердечник, с одной стороны, связан с вилкой бендикса, с другой – с пятаками, замыкающими контакты электродвигателя. Когда напряжение с катушки втягивающего реле снимается, то вилка вновь втягивается обратно на место, а электродвигатель прекращает свою работу.
Якорь начинает вращение только тогда, когда шестерня уже вошла в зацепление с маховиком.
Читайте также: