Одинаковые ли лямбда зонды до и после катализатора
Доброго времени суток! Зависла ошибка 0135 по первой лямбде, после сброса сразу возвращается. Вопрос в следующем: возможно поменять местами первый и второй датчики кислорода? Есть у кого подобный опыт? Сразу благодарю откликнувшихся)
P.S. Фото из интернета необъятного
Opel Astra 2001, engine Gasoline 1.8 liter., 125 h. p., Front drive, Manual — DIY
Comments 15
Ну что ставил? Помогло.тоже полетела первая лямбда, есть 2.
Не, не успел, двигатель менял и там лямбда была.
Gladiator14
Ну что ставил? Помогло.тоже полетела первая лямбда, есть 2.
Пробывал менять у себя?
Ставь обманку механическую, или прошивай. Без катализатора обязана быть ошибка по второй лямбде.
просто, местами менять смысл какой? будет ошибка по второй лямбде вместо первой и в чем прикол?
Я тоже смотрел по коду и выдает одни аналоги что для первой, что для второй. А прикол в том, что вторую лямбду программно можно отключить)
Если катализатор живой, зачем отключать лямбду? По цене прошивка сопоставима с ценой новой лямбды
Катализатора давно нет. Лямбда 2-я без дела стоит
А, ну тогда да, тогда без вопросов )
Единственное, сзади, зачем-то проставка-переходник на трубу идет под лямбду, но я когда менял и трубы и датчик, проставку не брал, а зонд номально вкрутился в дырку на трубе.
Абсолютно одинаковые лямбды сзади и спереди, по каталогу даже один номер и разъёмы одинаковые.
Согласен, но различие между 1 и 2 лямбдой в длине провода
Ни разу разницы не увидел в длине провода — как они могут быть разные если артикул у них один и тот же? Заказываешь лямбду и говоришь — уважаемый Bosch, я ваш датчик покупаю для установки номером 1, перепаяйте мне, пожалуйста, подлинее провод! :D
ну что касается непосредственно опеля не подскажу. просто не сталкивался. но вот что касается доджа в моих машинах то там они не взаимозаменяемые. один преднозначен для плавильного смесеобразования топлива(контроль наличия кислорода). а второй отвечает за концентрацию вредных в-в после катализатора. у них малость разные функции. и размеры тоже разные. первый который в выпускном коллекторе- он больше второго. это что касается крайслер групп. да и как мне кажется ЭБУ не увидит их и будет гнать усредненное смесеобразование. хотя на практике может и по другому. Могу сказать одно. если есть возможность- поставь тот который нужен и не заморачивайся. если нет и хочется поэксперементировать- будем следить за БЖ)
P.S. на фотке лямбды либо заглушки- либо универсальные бошевские. просто одна старая, одна новая. удачи в решении проблемы)
@andrienko.1966 --> Могут быть датчики одинаковые и различие только в проводке, на некоторых авто они одинаковые, можно попробовать поставить и проверить параметры его работы диагностическим оборудованием.
Датчики могут быть одинаковыми, а вот разница в длине провода делает их разными — разница в сопротивлении, а значит в показаниях. При установке универсальных датчиков приходится соблюдать длину провода и пайка проводов запрещена.
Всё будет хорошо!
У них разные задачи и потому лямбды разные.
Даже и цена отличается.
Первый датчик кислорода используется мозгами автомобиля для контроля смесеобразования.
Второй датчик анализирует количество кислорода после катализатора, можно сказать его задача контролировать исправен катализатор или нет.
Спасибо, но не совсем убедительно.
Цена, однозначно не показатель чего-либо. Тут и поставщики и сроки доставки и производители и .
Теперь по функционалу: смотрим на EMEX, оригиналы и аналоги
Датчик верхний (код: 1 376 444)
Аналог: Denso код: DOX01-50 (Япония)
Датчик нижний (код: 1 376 445)
Аналог: Denso код: DOX01-50 (Япония)
Коды аналогов одинаковые (конкретно в данном случае и у конкретного производителя), что для верхнего, что для нижнего датчиков.
По принципу работы. Принцип работы одинаковый (контроль кислорода), оба контролируют один и тот же поток отработанных газов, до и после катализатора. Соответственно их устройство, чувствительность и принцип действия должен быть одинаковым. Оба подают на выходе электрический сигнал, соответствующий уровню содержания кислорода. Только сигнал с первого датчика управляет смесеобразованием, а сигнал со второго датчика контролирует исправность первого датчика.
Если напряжение сигналов одинаковое, значит: или не исправен катализатор или не исправен первый датчик, так как он не управляет составом смеси.
Соответственно, сами датчики должны быть одинаковыми, а отличие в кодовой маркировке отражает только необходимую длину проводки от места установки датчика до соединительного разъема.
Логика следующая, что бы измерить изменения какого либо параметра на входе и на выходе, измерительный инструмент на входе и на выходе должен быть идентичным по своим характеристикам.
Неисправность датчика кислорода приводит к повышенному расходу топлива, снижению динамических характеристик автомобиля, нестабильной работе мотора на холостых оборотах, увеличение токсичности выхлопных газов. Обычно причинами неисправности датчика концентрации кислорода является его механическое повреждение, разрыв электрической (сигнальной) цепи, загрязнение чувствительной части датчика продуктами сгорания топлива. В некоторых случаях, например, при возникновении ошибки p0130 или p0141 на приборной панели активируется сигнальная лампа Check Engine. Использовать автомобиль при неисправном датчике кислорода можно, однако это приведет к указанным выше проблемам.
Назначение датчика кислорода
Предоставленная датчиком информация о количестве кислорода в составе выхлопных газов электронным блоком управления двигателем (ЭБУ) используется для корректировка впрыска топлива. Если кислорода в выхлопных газах много, значит, топливовоздушная смесь, подаваемая в цилиндры, бедная (напряжение на датчике 0,1…0,3 Вольта), а если кислорода много — значит, богатая (напряжение на датчике 0,6…0,9 Вольта). Соответственно, происходит коррекция количества подаваемого топлива при необходимости. Что сказывается не только на динамических характеристиках двигателя, но и работы каталитического нейтрализатора выхлопных газов.
В большинстве случаев диапазон эффективной работы катализатора составляет 14,6…14,8 долей воздуха на одну долю топлива. Это соответствует значению лямбда, равной единице. Таким образом, датчик кислорода является своеобразным контролером, расположенным в выпускном коллекторе.
На некоторых автомобилях конструктивно предусмотрено использование двух датчиков концентрации кислорода. Один расположен до катализатора, а второй — после. Задача первого состоит в коррекции состава топливовоздушной смеси, а второго — проверка эффективности работы катализатора. Сами же датчики по конструкции, как правило, идентичны.
Влияет ли лямбда зонд на запуск — что будет?
Если отключить лямбда зонд то будет возрастание расхода топлива, повышение токсичности газов, а иногда и нестабильная работа двигателя на холостых оборотах. Однако такой эффект происходит лишь после прогрева так как кислородный датчик начинает работать в условиях повышенной до +300°С температуры. Для этого его конструкция подразумевает использование специального подогрева, которая включается при запуске двигателя. Соответственно, непосредственно в момент запуска мотора лямбда зонд не работает, и никоим образом не влияет на сам запуск.
Лампочка “чек” при неисправности лямбда зонда горит когда в памяти ЭБУ сформированы конкретные ошибки связанные с повреждением проводки датчика либо самого датчика, однако код фиксируется лишь при определенных условиях работы двигателя.
Признаки неисправности датчика кислорода
Выход из строя лямбда зонда, как правило, сопровождается следующими внешними симптомами:
- Ухудшение тяги и снижение динамических характеристик автомобиля.
- Нестабильный холостой ход. Значение оборотов при этом могут скакать и понижаться ниже оптимальных. В самом критическом случае машина вообще не будет держать холостые обороты и без подгазовывания водителем она попросту заглохнет. . Обычно перерасход незначительный, однако можно определить при программном замере.
- Увеличение токсичности выхлопа. Выхлопные газы при этом становятся непрозрачными, а имеющими сероватый либо синеватый оттенок и более резкий, топливный, запах.
Стоит оговориться, что перечисленные выше признаки могут указывать и на другие поломки двигателя или прочих систем автомобиля. Поэтому, чтобы определить неисправности датчика кислорода, нужны несколько проверок используя в первую очередь диагностический сканер и мультиметр для проверки сигналов лямбды (управляющего и цепи подогрева).
Как правило, проблемы с проводкой датчика кислорода четко фиксируется электронным блоком управления. При этом в его памяти формируются ошибки, например, p0136, p0130, p0135, p0141 и прочие. В любом случае необходимо выполнить проверку цепи датчика (проверить наличие напряжения и целостность отдельных проводов), а также посмотреть на график работы (используя осциллограф либо программу диагностик).
Причины неисправности датчика кислорода
В большинстве случаев кислородная лямбда работает около 100 тыс. км без сбоев однако есть причины которые значительно сокращают его ресурс и приводят к неисправности.
- Неисправность цепи датчика кислорода. Выражаться по-разному. Это может быть полный обрыв питающих и/или сигнальных проводов. Возможно повреждение цепи подогрева. В этом случае лямбда зонд не будет работать до тех пор, пока выхлопные газы не разогревают его до рабочей температуры. Возможно повреждение изоляции на проводах. В этом случае имеет место короткое замыкание.
- Замыкание датчика. В этом случае он полностью выходит из строя и, соответственно, не подает никаких сигналов. Большинство лямбда зондов ремонту не подлежат и их надо менять на новые.
- Загрязнение датчика продуктами сгорания топлива. В процессе эксплуатации датчик кислорода по естественным причинам постепенно загрязняется и со временем может перестать передавать корректную информацию. По этой причине автопроизводители рекомендуют периодически менять датчик на новый, отдавая при этом предпочтение оригиналу так как универсальная лямбда не всегда корректно показывает информацию.
- Термические перегрузки. Обычно это происходит по причине проблем с зажиганием, в частности, перебоев с ним. В таких условиях датчик работает при критических для него температурах, что снижает его общий ресурс и постепенно выводит из строя.
- Механические повреждения датчика. Они могут возникнуть при неаккуратных ремонтных работах, при езде по бездорожью, ударах при ДТП.
- Использование при установке датчика герметиков, которые вулканизируются при высокой температуре.
- Многократные неудачные попытки запуска двигателя. При этом в двигателе, и в частности, в выпускном коллекторе накапливается несгоревшее топливо.
- Попадание на чувствительный (керамический) наконечник датчика различных технологических жидкостей или мелких посторонних предметов.
- Негерметичность в выпускной системе выхлопных газов. Например, может прогореть прокладка между коллектором и катализатором.
Обратите внимание, что состояние датчика кислорода во многом зависит от состояния других элементов двигателя. Так, значительно снижают ресурс лямбда зонда следующие факторы: неудовлетворительное состояние маслосъемных колец, попадание антифриза в масло (цилиндры), обогащенная топливовоздушная смесь. И если при исправном датчике кислорода количество углекислого газа составляет порядка 0,1…0,3%, то при выходе лямбда зонда из строя соответствующее значение увеличивается до 3…7%.
Как определить неисправность датчика кислорода
Существует ряд методов для проверки состояния лямбда датчика и его питающих/сигнальных цепей.
Специалисты компании BOSCH советуют проверять соответствующий датчик каждые 30 тысяч километров пробега, либо при выявлении описанных выше неисправностей.
Что нужно сделать в первую очередь при диагностике?
Как проверить лямбда-зонд видео
Обратите внимание, что нормальная работа датчика кислорода возможна лишь при его нормальной рабочей температуре, равной +300°С…+400°С. Это обусловлено тем, что лишь в таких условиях циркониевый электролит, нанесенный на чувствительный элемент датчика, становится проводником электрического тока. Также при такой температуре разница атмосферного кислорода и кислорода в выхлопной трубе приведет к тому, что на электродах датчика появится электрический ток, который и будет передаваться на электронный блок управления двигателем.
Так как проверка кислородного датчика во многих случаях подразумевает снятие/установку то стоит учесть такие нюансы:
- Лямбда — устройства очень хрупкие, поэтому при проверке нельзя подвергать их механическим нагрузкам и/или ударам.
- Резьбу датчика необходимо обработать специальной термопастой. При этом нужно следить, чтобы паста не попала на его чувствительный элемент, поскольку это приведет к его некорректной работе.
- При закручивании необходимо соблюдать значение крутящего момента, и пользоваться для этих целей динамометрическим ключом.
Точная проверка лямбда зонда
Точнее всего определить неисправность датчика концентрации кислорода позволит осциллограф. Причем использовать профессиональный аппарат необязательно можно снять осциллограмму используя программу-симулятор на ноутбуке либо другом гаджете.
График правильной работы датчика кислорода
На первом рисунке в данном разделе представлен график правильной работы датчика кислорода. В этом случае на сигнальный провод поступает сигнал, похожий на ровную синусоиду. Синусоида в данном случае означает, что контролируемый датчиком параметр (количество кислорода в выхлопных газах) находится в предельно допустимых границах, и просто происходит его постоянная и периодическая проверка.
График работы сильно загрязненного датчика кислорода
График работы датчика кислорода на обедненной топливной смеси
График работы датчика кислорода на обогащенной топливной смеси
График работы датчика кислорода на бедной топливной смеси
Далее представлены графики, соответствующие сильно загрязненному датчику, использованию двигателем автомобиля обедненной топливной смеси, богатой смеси, а также бедной смеси. Ровные линии на графиках означают, что контролируемый параметр вышел за допустимые пределы в ту или другую сторону.
Как устранить неисправность датчика кислорода
Если впоследствии проверки показало что причина в проводке, то проблема решится заменой жгута проводов либо фишки подключения, а вот при отсутствии сигнала от самого датчика зачастую говорит о необходимости замены датчика концентрации кислорода на новый, но прежде чем покупать новую лямбду можно воспользоваться одним из представленных ниже способов.
Метод первый
Предполагает очистку элемента подогре от нагара (применяется когда возникает неисправность нагревателя датчика кислорода). Для реализации этого метода необходимо обеспечить доступ к чувствительной керамической части устройства, которая скрыта за защитным колпачком. Снять указанный колпачок можно с помощью тонкого напильника, с помощью которого нужно сделать надрезы в области основания датчика. Если демонтировать колпачок полностью не получится, то допускается сделать маленькие окошки размером около 5 мм. Для дальнейшей работы необходимо около 100 мл ортофосфорной кислоты либо преобразователя ржавчины.
Когда защитный колпачок был демонтирован полностью, то для его восстановления на его посадочном месте придется воспользоваться аргоновой сваркой.
Процедура по восстановлению выполняется по следующему алгоритму:
- Налить 100 мл ортофосфорной кислоты в стеклянную емкость.
- Опустить керамический элемент датчика в кислоту. Полностью опускать датчик в кислоту нельзя! После этого подождать около 20 минут с тем, чтобы кислота растворила сажу.
- Извлечь датчик и промыть его проточной водой из крана, а затем дать ему высохнуть.
Порой на выполнение чистки датчика таким методом нужно потратить до восьми часов времени, ведь если с первого раза очистить сажу не получилось, то имеет смысл повторить процедуру два и более раза, причем можно воспользоваться кистью для выполнения механической обработки поверхности. Вместо кисти можно воспользоваться зубной щеткой.
Метод второй
Предполагает выпаливание нагара на датчике. Для выполнения чистки датчика кислорода вторым методом кроме той же ортофосфорной кислоты понадобится еще и газовая горелка (как вариант использовать домашнюю газовую плиту). Алгоритм чистки следующий:
- Окунуть чувствительный керамический элемент датчика кислорода в кислоту, обильно смочив его.
- Взять датчик пассатижами с противоположной от элемента стороны и поднести к горящей конфорке.
- Кислота на чувствительном элементе будет закипать, а на его поверхности образуется соль зеленоватого оттенка. Однако вместе с этим сажа с него будет удаляться.
Повторить описанную процедуру нужно несколько раз до тех пор, пока чувствительный элемент не станет чистым и блестящим.
В карбюраторных системах ни одного этого элемента нет и при постройки как обычного инжектора, так и 16кл. возникает вопрос как быть, что делать, что нужно, а что нет.
Начнем с лямды
Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах:
Данный датчик стоит в выпускной системе и анализирует насколько правильно сгорает бензино-воздушная сместь в двигателе. Напомню, идеальное соотношение бензин-воздушной смеси это 14,7 . Т.е. по простому на 1 кг топлива приходится 15кг воздуха. Это оптимальное соотношение, при котором двигатель достигает оптимальных характеристик. Если увеличить количество воздуха, то смесь называется обедненной. При обедненной смеси ухудшается динамика, так уже немного уменьшается расход бензина. При уменьшении количества воздуха смесь называется обогащенной бензином. При таком режиме двигатель приобретает максимальную мощность, но и увеличивается расход бензина. Только стоит помнить, что излишнее обогащение, как и излишнее обеднение смеси ведет к ухудшению динамики двигателя. Т.е. обеднять или обогащеть смесь надо при определенных режимах. При соотношениях 19:1 или 5:1 бензин вообще не может воспламениться.
Короче — смесь должна быть всегда оптимальная. В нормальных режимах оптимальное значение — это 14,7. Под это соотношения заделаны ваши инжекторы.
Но так как инжектор это одно, а реальный двигатель это другое, то смесь может и не быть такой. к примеру если подтекает форсунка или откуда то идет подсос воздуха. Т.е. по данным других датчиков смесь оптимальна, а в движке почему то не очень хорошо сгорает… Вот для этого и нужен датчик кислорода. Он ориентируется по выхлопным газам насколько успешно сгорела наша бензин-воздушная смесь, какое количество бензина не сгорело. Он передает данные в инжектор, который подстраивается под эту работу. Т.е. датчик кислорда это реализации обратной связи в системе управления двигателем.
Поэтому сами посудите — нужен ли он вам или нет ? Я считаю, что да. Исключения составляют лишь форсированные моторы, о них я напишу в самом низу этой статьи. Пока что мы рассматриваем обычные инжекторные системы.
Датчик кислорода устанавливается в приемной трубе глушителя. На первых инжекторах его не было. Но, последние 10 лет он есть на всех машинах, а на некоторых их даже два. Но об этом поговорим вместе с катализатором.
Катализатор
Когда то люди особо не парились на счет выхлопных газов… и экологии. Но это было достаточно давно, потом стали вводить разные нормы CO и т.д. Настраивать смесь под оптимальные показания выхлопа с точки зрения экологии. Но с изучением автомобилей пришло осознание что не все так просто и в любом случае, как бы не крутить показания лямды, все равно в выхлопе содержаться или те или иные вредные вещества.
Катализатор представляет собой керамическую сотовую конструкцию, которая увеличивает площадь контакта выхлопных газов с поверхностью покрытом тонким слоем платино-иридиевого сплава. Не догоревшие остатки (CO, CH, NO) касаясь поверхности каталитического слоя, окисляются до конца кислородом, присутствующим так же в выхлопных газах. В результате реакции выделяется тепло, разогревающее катализатор и, тем самым, активизируется реакция окисления. В конечном итоге на выходе из катализатора (исправного) выхлопные газы имеют концентрацию СО2.
Катализатор установлен после приемной трубы, перед резонатором.
Перед катализатором стоит датчик кислорода о котором говорили выше. В дальнейшем с ужесточением норм токсичности машины стали переводить на нормы Евро-3.
В этих машинах стоят два датчика кислорода. Перед катализатором и после. Т.е. двойной контроль!
В современных системах на двигателях 1,6 катализатор соединен вместе с выпускным коллектором. туда же вставляется датчик кислорода. Вся эта штука получается достаточно дорогой.
В случае в катализаторами которые совмещены с коллекторами, меняют все это скопом и ставят старые модели коллекторов. Все равно получается дешевле чем покупать новый катколлектор.
Конечно все это не очень хорошо для экологии, но если учитывать что у нас в стране до сих пор производят автомобили которые проектировались в середине века, совесть обычно не очень сильно мучает.
Только стоит помнить что когда убираете из рабочей системы катализатор нужно перепрошить инжектор. Особенно если в системе два датчика кислорода.
Для тех, кто строит инжектор — я советую строить систему без катализатора.
C другой стороны, те кто строят инжектор из карба, у тех есть преимущество. Если они не трогают патрубки бака, то они не нарушают карбюраторную систему вентиляцию бака и адсорбер им не нужен.
Чтобы чек не загорался из-за адсорбера можно поступить двумя способами: 1 отключить продувку адсорбера в прошивке. 2 . купить а разборке старый адсорбер, отломать от туда датчик и поставить его в свой разъем. т.е. обмануть систему. Только не забудьте, что нужно заглушить отверстие на дросселе в которое должен приходить шланг от адсорбера, иначе дросель будет сосать воздух не учтенный ДМРВ.
Надо ли менять выпуск и ставить датчик кислорода при строительстве форсированного мотора ?
— Любой нестандартный мотор по уму должен быть настроен индивидуально и иметь свою собственную прошивку. Настройщики настраивают мотор при помощи профессионального ПО, а так же Широкополосного датчика кислорода (Innovate MotorSports.).
Обычный датчик кислорода имеет очень маленький диапазон работы, а ШДК имеет более широкий диапазон. С ним можно более точно посмотреть беднит или богатит смесь, где и на каких режимах. В общем по большому счету визуально это тот же датчик кислорода, просто более качественный. И для его использования для него нужно отверстие в выхлопе.
Т.е. при постройки мотора, особенно нестандартного, независимо от того будете ли вы использовать штатный датчик кислорода или нет, в любом случае стоит иметь отверстие для установки датчика.
Бензиновому двигателю для работы требуется смесь с определенным соотношением воздух-топливо. Соотношение, при котором топливо максимально полно и эффективно сгорает, называется стехиометрическим и составляет оно 14,7:1. Это означает, что на одну часть топлива следует взять 14,7 частей воздуха. На практике же соотношение воздух-топливо меняется в зависимости от режимов работы двигателя и смесеобразования. Двигатель становится неэкономичным. Это и понятно!
Коэффициент избыточности воздуха — L (лямбда) характеризует — насколько реальная топливно-воздушная смесь далека от оптимальной (14,7:1). Если состав смеси — 14,7:1, то L=1 и смесь оптимальна. Если L < 1, значит недостаток воздуха, смесь обогащенная. Мощность двигателя увеличивается при L=0,85 — 0,95. Если L >1, значит налицо избыток воздуха, смесь бедная. Мощность при L=1,05 — 1,3 падает, но зато экономичность растет. При L > 1,3 смесь перестает воспламеняться и начинаются пропуски в зажигании. Бензиновые двигатели развивают максимальную мощность при недостатке воздуха в 5-15% (L=0,85 — 0,95), тогда как минимальный расход топлива достигается при избытке воздуха в 10-20%% (L=1,1 — 1,2). Таким образом соотношение L при работе двигателя постоянно меняется и диапазон 0,9 — 1,1 является рабочим диапазоном лямбда-регулирования. В то же время, когда двигатель прогрет до рабочей температуры и не развивает большой мощности (например работает на ХХ), необходимо по возможности более строгое соблюдение равенства L=1 для того, чтобы трехкомпонентный катализатор смог полностью выполнить свое предназначение и сократить объем вредных выбросов до минимума.
Датчик кислорода — он же лямбда-зонд — устанавливается в выхлопном коллекторе таким образом, чтобы выхлопные газы обтекали рабочую поверхность датчика. Материал его как правило циркониевый (используется керамический элемент на основе двуокиси циркония, покрытый платиной) — гальванический источник тока, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Конструкция его предполагает, что одна часть соединяется с наружним воздухом, а другая — с выхлопными газами внутри трубы. В зависимости от концентрации кислорода в выхлопных газах, на выходе датчика появляется сигнал. Уровень этого сигнала, для датчиков систем впрыска конца 80-х — начала 90-х годов, может быть низким (0,1…0,2В) или высоким (0,8…0,9В). Таким образом датчик кислорода — это своеобразный переключатель (триггер), сообщающий контроллеру впрыска о качественной концентрации кислорода в отработавших газах. Фронт сигнала между положениями "Больше" и "меньше" очень мал. Настолько мал, что его можно не рассматривать всерьез. Контроллер принимает сигнал с ЛЗ, сравнивает его с значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов.
Лямбда-зонды бывают одно-, двух-, трех- и четырехпроводные. Однопроводные и двухпроводные датчики применялись в самых первых системах впрыска с обратной связью (лямбда-регулированием). Однопроводный датчик имеет только один провод, который является сигнальным. Земля этого датчика выведена на корпус и приходит на массу двигателя через резьбовое соединение. Двухпроводный датчик отличается от однопроводного наличием отдельного земляного провода сигнальной цепи. Недостатки таких зондов: рабочий диапазон температуры датчика начинается от 300 градусов. До достижения этой температуры датчик не работает и не выдает сигнала. Стало быть необходимо устанавливать этот датчик как можно ближе к цилиндрам двигателя, чтобы он подогревался и обтекался наиболее горячим потоком выхлопных газов. Процесс нагрева датчика затягивается и это вносит задержку в момент включения обратной связи в работу контроллера. Кроме того, использование самой трубы в качестве проводника сигнала (земля) требует нанесения на резьбу специальной токопроводящей смазки при установке датчика в выхлопной трубопровод и увеличивает вероятность сбоя (отсутствия контакта) в цепи обратной связи.
Указанных недостатков лишены трех- и четырехпроводные лямбда зонды. В трехпроводный ЛЗ добавлен специальный нагревательный элемент, который включен как правило всегда при работе двигателя и, тем самым, сокращает время выхода датчика на рабочую температуру. А так же позволяет устанавливать лямбда-зонд на удалении от выхлопного коллектора, рядом с катализатором. Однако остается один недостаток — токопроводящий выхлопной коллектор и необходимость в токопроводящей смазке. Этого недостатка лишен четырехпроводный лямбда-зонд — у него все провода служат для своих целей — два на подогрев, а два — сигнальные. При этом вкручивать его можно так как заблагорассудится.
Несколько слов о взаимозаменяемости датчиков. Лямбда-зонд с подогревом может устанавливаться вместо такого же, но без подогрева. При этом необходимо смонтировать на автомобиль цепь подогрева и подключить ее к цепи, запитываемой при включении зажигания. Самое выгодное — в параллель к цепи питания электробензонасоса. Не допускается обратная замена — установка однопроводного датчика вместо трех- и более- проводных. Работать не будет. Ну и конечно необходимо, чтобы резьба датчика совпадала с резьбой, нарезанной в штуцере.
Как понять насколько работоспособен датчик? Ввобще-то для этого потребуется осциллограф. Ну или специальный мотор-тестер, на дисплее которого можно наблюдать осциллограмму изменения сигнала на выходе ЛЗ. Наиболее интересными являются пороговые уровни сигналов высокого и низкого напряжения (со временем, при выходе датчика из строя, сигнал низкого уровня повышается (более 0,2В — криминал), а сигнал высокого уровня — снижается (менее 0,8В — криминал)), а также скорость изменения фронта переключения датчика из низкого в высокий уровень. Есть повод задуматься о предстоящей замене датчика, если длительность этого фронта превышает 300 мсек. Это усредненные данные. В реальной жизни для оценки состояния лямбда-зонда необходимо провести цикл измерений. Не имея под рукой мотор-тестера или осциллографа определить неисправность лямбда-зонда можно пользуясь бортовой системой диагностики, существующей в контроллере системы впрыска, которая фиксирует в своей памяти случаи, когда сигнал с ЛЗ выходил за определенные пределы. Фиксация неисправностей производится при помощи запоминания специальных кодов, которые могут быть считаны в тестовом режиме. Однако не всегда можно с уверенностью поставить четкий диагноз о неисправности лямбда-зонда пользуясь только бортовой системой диагностики. Об этом стоит помнить! Не поленитесь съездить на диагностику.
На что менять? Самое лучшее — это менять датчик на такой, какой стоит в списке запчастей для Вашего автомобиля. В таком случае гарантия работоспособности системы после замены будет 100%. Но не всегда по финансовым соображениям выгодно гоняться за оригинальными каталожными датчиками. Ведь тот же Bosch выпускает лямбда-датчики и для других моделей. И они по принципу работы одинаковы, а внешне очень похожи. Ну и что, что каталожный номер будет стоять другой. При правильной установке и грамотном подборе можно съэкономить весьма кругленькую сумму, купив "жигулевский" датчик от фирмы Bosch за 10-20$ вместо точно такого же по сути, но фирменного за 100$ и работать он будет ничуть не хуже. Найти ЛЗ в магазине сейчас можно все чаще и чаще, а значит они будут дешеветь.
Порядок замены ЛЗ таков:
1. Отсоединить кабель ЛЗ от электропроводки.
2. Снять старый ЛЗ используя подходящий ключ. Лучше если это будет высокая головка или накидной — так вероятность повредить грани приржавленного ЛЗ будет меньше, но у меня нормально открутился на работающем моторе накидным ключом. Снимать датчик стоит при работающем двигателе. Т.е. пока трубопровод и датчик горячий. В противном случае есть вероятность отломать датчик или сорвать резьбу, т.к. металл сжимается и выворачивать очень трудно. Выкручивайте датчик до тех пор, пока из отверстия не пойдет дымок. Потом глушите машину и откручивайте совсем.
3. Отрезать аккуратно провода от старого ЛЗ и соединить с проводами нового, которые тоже придется отрезать от колодки. Схема соединения зависит от того — какой ЛЗ Вы купили. Но обычные цвета и предназначение проводов даны чуть выше, на картинках.
4. Следует иметь ввиду, что если штатный лямбда-зонд трехпроводный, то у него провода подписаны (см. на разъеме) "А" и "Б" — подогрев, "С" — сигнальный. Провода подогрева белого цвета (полярность не имеет значения), а сигнальный провод — черный.
5. Четвертый (незадействованный ранее) провод стоит вывести и надежно прикрутить к массе двигателя. Проверить также соединение двигателя с массой корпуса. Я прикрутил его под болт крепления главного тормозного цилиндра (в торце кронштейн) — мне так показалось удобнее.
6. Вкрутить новый ЛЗ. Если он четырехпроводный, то токопроводящая смазка не нужна. Достаточно графитовой — для смазки резьбовых соединений.
7. Соединение проводов не стоит осуществлять скруткой проводов — этот вариант ненадежен и долго не проживет. Самое лучшее — это спаять все положенные провода и хорошенько заизолировать. Паять провода стоит до того, как ЛЗ установлен в трубе, т.е. на столе.
Читайте также: