Что такое точка обода колеса
2. Период вращения лопастей ветряной мельницы равен 5 с. Определите число оборотов лопастей за 1 ч.
3. Определите частоту движения:
б) минутной, – стрелок механических часов.
Секундная стрелка часов совершает один оборот за 1 мин, минутная стрелка – один оборот за 1 ч.
4. Частота вращения воздушного винта самолета 25 Гц. За какое время винт совершает 3000 оборотов.
5. Период вращения Земли вокруг своей оси равен 1 сут. Определите частоту ее вращения.
6. Колесо совершило 15 полных оборотов. Определите его угловое перемещение.
7. Колесо радиуса 0,5 м прокатилось 100 м. Определите угловое перемещение колеса.
8. Определите угловую скорость вращения колеса, если за 60 с колесо поворачивается на 20π.
9. Угловая скорость барабана сепаратора 900 рад/с. Определите угловое перемещение барабана за 15 с.
10. Определите угловую скорость вала, вращающегося:
а) с периодом 10 с;
б) с частотой 30 Гц.
11. Маховик вращается с постоянной угловой скоростью 9 рад/с. Определите:
а) частоту его вращения;
б) период его вращения.
12. Укажите направление скорости в точках А, В, С, D (рис. 1), если круг вращается:
а) по часовой стрелке;
б) против часовой стрелки.
13. Колесо велосипеда имеет радиус 25 см. Определите линейную скорость точек обода колеса, если оно вращается с частотой 4 Гц.
14. Точильный круг радиусом 10 см делает один оборот за 0,2 с. Найдите скорость точек, наиболее удаленных от оси вращения.
15. Скорость точек экватора Солнца при его вращении вокруг своей оси равна 2,0 км/с. Найдите период вращения Солнца вокруг своей оси, если радиус Солнца 6,96∙10 8 м.
16. Тело движется по окружности радиусом 3 м со скоростью 12π м/с. Чему равна частота обращения?
17. Тело движется по дуге окружности радиусом 50 м. Определите линейную скорость тела, если известно, что его угловая скорость равна π рад/с.
18. Спортсмен бежит равномерно по окружности радиусом 100 м со скоростью 10 м/с. Определите его угловую скорость.
19. Укажите направление ускорения в точках A, B, C, D при движении по окружности (рис. 2).
20. Велосипедист движется по закруглению дороги радиусом 50 м со скоростью 36 км/ч. С каким ускорением он проходит закругление?
21. Каков радиус кривизны закругления дороги, если по ней автомобиль движется с центростремительным ускорением 1 м/с 2 при скорости 10 м/с?
22. С какой скоростью велосипедист проходит закругление велотрека радиусом 50 м, если он имеет центростремительное ускорение 2 м/с 2 ?
23. Шкив вращается с угловой скоростью 50 рад/с. Определите центростремительное ускорение точек находящихся на расстоянии 20 мм от оси вращения.
24. Земля вращается вокруг своей оси с центростремительным ускорением 0,034 м/с 2 . Определите угловую скорость вращения, если радиус Земли 6400 км.
Уровень B
1. Может ли тело двигаться по окружности без ускорения?
3. Искусственный спутник Земли (ИСЗ) движется по круговой орбите со скоростью 8,0 км/с с периодом вращения 96 мин. Определите высоту полета спутника над поверхностью Земли. Радиус Земли принять равным 6400 км.
4. Какова линейная скорость точек Земной поверхности на широте Санкт-Петербурга (60°) при суточном вращении Земли? Радиус Земли принять равным 6400 км.
6. Скорость поезда 72 км/ч. Сколько оборотов в минуту делают колеса локомотива, радиус которых 1,2 м?
7. Какова угловая скорость вращения колеса ветродвигателя, если за 2 мин колесо сделало 50 оборотов?
8. За какое время колесо, имеющее угловую скорость 4π рад/с, сделает 100 оборотов?
9. Диск диаметром 50 см равномерно перекатывают на расстояние 2 м за 4 с. Какова угловая скорость вращения диска?
10. Тело движется по дуге окружности радиусом 50 м. Определите линейную скорость движения тела и пройденный им путь, если известно, что его угловое перемещение за 10 с равно 1,57 рад.
11. Как изменится линейная скорость вращения материальной точки по окружности, если угловую скорость точки увеличить в 2 раза, а расстояние от точки до оси вращения уменьшить в 4 раза?
12. Рабочее колесо турбины Красноярской ГЭС им. 50-летия СССР имеет диаметр 7,5 м и вращается с частотой 93,8 об/мин. Каково центростремительное ускорение концов лопаток турбины?
13. Ветряное колесо радиусом 2,0 м делает 40 оборотов в минуту. Найдите центростремительное ускорение концевых точек лопастей колеса.
15. Угловая скорость вращения лопастей колеса ветродвигателя 6 рад/с. Найдите центростремительное ускорение концов лопастей, если линейная скорость концов лопастей 20 м/с.
16. Две материальные точки движутся по окружностям радиусами R1 = 10 см и R2 = 30 см с одинаковыми скоростями 0,20 м/с. Во сколько раз отличаются их центростремительные ускорения?
17. Две материальные точки движутся по окружностям радиусами R1 = 0,2 м и R2 = 0,4 м с одинаковыми периодами. Найдите отношение их центростремительных ускорений.
Точка обода колеса велосипеда совершает один оборот за две секунды.Радиус колеса 35 см.Чему равно центростремительное ускорение точки обода колеса?
Новые вопросы в Физика
На рисунке представлен участок упругой нити, по которой распространяется волна. Определите длину распространяющейся волны (в метрах).
при проведении эксперимента пружинного маятника с телом массой 3 кг, получили гармонические колебания.определите коэффициент жестокости пружины≈1,87Н/ … м≈1,46Н/м≈1,52Н/м≈1,23Н/м≈1,38Н/м
Основные характеристики упругих волн Скорость распространения Угловая скорость Период Амплитуда Смещение Длина волны Ускорение Частота
родители Айнаш заметили что у дочери испортилось зрение. записали её на приём к окулисту окулист выписал Айнаш очки с оптической силой 2,5 дптр. вид л … инзы Айнаш?двояковыпуклыесобирающиерассеивающиеплоско выпуклыеворнуто выпуклые
Сила взаимодействия двух точечных зарядов равна 2 Н. чему станет равна эта сила если заряды раздвинуть на втрое меньшее расстояние. Ответь дайте в нью … тонах
Как вы думаете, что произойдет с проводником с током, если его поместить в магнитное поле? физика, 8 класс, только кратко, заранее спасибо))
Добрый вечер. Помогите пожалуйста в решении задач по квантовой физике. Даю 50 баллов. Заранее большое спасибо. Найти мощность излучения и количеств … о всех квантов света с длиной 5·10⁻⁷ м, падающих перпендикулярно зеркальной поверхности площадью 400 см² за 5 мин, если сила давления на поверхность 20 см² составляет 0,16 мН.
Добрый вечер. Помогите пожалуйста в решении задач по квантовой физике. Даю 50 баллов. Заранее большое спасибо. При какой скорости электроны имеют э … нергию, равную энергии фотонов электромагнитной волны длиной 400 нм.
Рис. 3.2. Циклоида как траектория точки обода катящегося колеса
Во всех инерциальных системах отсчёта материальная точка имеет одно и то же ускорение. Поэтому находить его можно в любой такой системе отсчёта. Ясно, что ускорение точек обода колеса связано только с его вращением вокруг оси. Поэтому ускорение 𝑎 любой точки обода направлено по радиусу к центру колеса и определяется выражением
Значит, и в высшей точке циклоиды ускорение элемента обода колеса равно 𝑣²/𝑟 и направлено вниз (рис. 3.2).
Теперь рассмотрим движение этой же точки обода как движение по циклоиде. Скорость в любой точке траектории направлена по касательной к ней; значит, в высшей точке циклоиды скорость направлена горизонтально. Ускорение же, как мы выяснили, направлено вертикально вниз, т.е. перпендикулярно скорости. Поэтому найденное выше ускорение может быть записано также в виде
где 𝑉 - скорость точки обода в её верхнем положении, а 𝑅 - искомый радиус кривизны циклоиды.
Для нахождения 𝑉 будем рассуждать следующим образом. Скорость любой точки обода катящегося колеса равна векторной сумме скорости поступательного движения колеса и линейной скорости вращения вокруг оси. При отсутствии проскальзывания эти скорости равны по модулю. В верхней точке они и направлены одинаково. Поэтому 𝑉=2𝑣, и, сравнивая формулы (1) и (2), находим
Радиус кривизны циклоиды в верхней точке равен удвоенному диаметру колеса. Если бы мы рассматривали качение колеса как вращение вокруг мгновенной оси, совпадающей в каждый момент с нижней неподвижной точкой колеса (рис. 3.2), то могло бы показаться, что верхняя точка движется по окружности, радиус которой равен диаметру колеса. Так оно и было бы, если бы мгновенная ось вращения 𝑂 оставалась неподвижной. На самом деле эта ось перемещается вместе с колесом, и именно поэтому рассматриваемая точка обода 𝐴 движется в этот момент по окружности, радиус которой даётся формулой (3). ▲
4. Падающий мяч.
Заброшенный в кольцо баскетбольный мяч начинает отвесно падать из корзины без начальной скорости. В тот же момент из точки, находящейся на расстоянии 𝑙 от кольца, в падающий мяч бросают теннисный мяч (рис. 4.1). С какой начальной скоростью был брошен теннисный мяч, если мячи столкнулись на расстоянии ℎ от кольца?
Рис. 4.1. Падающий мяч
△ В поставленном вопросе подразумевается, что нужно найти вектор начальной скорости теннисного мяча, т.е. его направление (угол α) и модуль (𝑣₀). Если решать задачу в исходной (лабораторной) системе отсчёта, то ход рассуждений может быть следующим. Записываем выражения для перемещений обоих мячей за время 𝑡 от начала движения до их встречи, затем проецируем их на вертикальное и горизонтальное направления (рис. 4.2). В результате приходим к системе уравнений
Здесь 𝐻 - высота кольца над точкой бросания теннисного мяча, а √𝑙²-𝐻² представляет собой расстояние до кольца по горизонтали (рис. 4.2).
Рис. 4.2. Проекции перемещений мячей
В системе трёх уравнений (1) четыре неизвестных величины: 𝑣₀, α, 𝑡 и 𝐻. Поэтому может показаться, что задача не имеет единственного решения. Однако это не так. Действительно, подставляя ℎ из первого уравнения во второе, получаем
Разделив почленно это уравнение на третье уравнение системы (1), находим выражение для tg α:
Теперь с помощью рис. 4.2 можно увидеть, что угол α, под которым должна быть направлена начальная скорость теннисного мяча, в действительности соответствует направлению из точки бросания на кольцо. Истинное направление начальной скорости 𝒗₀ показано на рис. 4.3. Итак, бросать теннисный мяч нужно точно в направлении кольца. Модуль его начальной скорости можно найти, подставляя 𝑡=√2ℎ/𝑔 из первого уравнения системы (1) в уравнение (2). Учитывая, что 𝐻/sin α=𝑙, получаем
Рис. 4.3. Истинное направление вектора 𝑣₀ начальной скорости
Но всех этих преобразований можно избежать, если с самого начала перейти в систему отсчёта, связанную с баскетбольным мячом, т.е. свободно падающую с ускорением 𝒈 в этой системе отсчёта баскетбольный мяч, естественно, неподвижен, а теннисный движется равномерно и прямолинейно со скоростью 𝒗₀. Очевидно, что эта скорость 𝒗₀ должна быть направлена на баскетбольный мяч. Через время 𝑡=𝑙/𝑣₀ мячи столкнутся. В лабораторной системе отсчёта за это время баскетбольный мяч опустится на расстояние
откуда для 𝑣₀ получаем прежнее выражение (4). На примере этой задачи мы видим, что в некоторых случаях удобным оказывается переход в ускоренно движущуюся систему отсчёта. ▲
5. В цель с наименьшей начальной скоростью.
Необходимо с поверхности земли попасть камнем в цель, которая расположена на высоте ℎ и на расстоянии 𝑠 по горизонтали. При какой наименьшей начальной скорости камня это возможно? Сопротивлением воздуха пренебречь.
△ На первый взгляд кажется, что начальная скорость камня будет наименьшей, если верхняя точка его траектории совпадает с мишенью (рис. 5.1а).
Рис. 5.1. К выбору оптимальной траектории
Может быть, и вам так показалось? Иллюзия эта настолько сильна, что подобное решение аналогичной задачи можно встретить в некоторых солидных пособиях по решению физических задач. Однако, даже не решая задачи, легко убедиться, что это не так. Действительно, будем мысленно уменьшать высоту, на которой расположена цель. При этом точка, куда попадает камень, продолжает согласно предположению оставаться верхней точкой траектории (рис. 5.1б), в том числе и в предельном случае ℎ=0. Но совершенно очевидно, что для того чтобы попасть в цель, находящуюся на земле, достаточно просто добросить камень до цели (рис. 5.1б). Итак, предположение о том, что цель совпадает с высшей точкой траектории полёта камня, неверно.
1. Движением тела по окружности называют движение, траекторией которого является окружность. По окружности движутся, например, конец стрелки часов, точки лопасти вращающейся турбины, вращающегося вала двигателя и др.
При движении по окружности направление скорости непрерывно изменяется. При этом модуль скорости тела может изменяться, а может оставаться неизменным. Движение, при котором изменяется только направление скорости, а её модуль сохраняется постоянным, называется равномерным движением тела по окружности. Под телом в данном случае имеют в виду материальную точку.
2. Движение тела по окружности характеризуется определёнными величинами. К ним относятся, прежде всего, период и частота обращения. Период обращения тела по окружности \( T \) — время, в течение которого тело совершает один полный оборот. Единица периода — \( [\,T\,] \) = 1 с.
Частота обращения \( (n) \) — число полных оборотов тела за одну секунду: \( n=N/t \) . Единица частоты обращения — \( [\,n\,] \) = 1 с -1 = 1 Гц (герц). Один герц — это такая частота, при которой тело совершает один оборот за одну секунду.
Связь между частотой и периодом обращения выражается формулой: \( n=1/T \) .
Пусть некоторое тело, движущееся по окружности, за время \( t \) переместилось из точки А в точку В. Радиус, соединяющий центр окружности с точкой А, называют радиусом-вектором. При перемещении тела из точки А в точку В радиус-вектор повернётся на угол \( \varphi \) .
Быстроту обращения тела характеризуют угловая и линейная скорости.
Угловая скорость \( \omega \) — физическая величина, равная отношению угла поворота \( \varphi \) радиуса-вектора к промежутку времени, за которое этот поворот произошел: \( \omega=\varphi/t \) . Единица угловой скорости — радиан в секунду, т.е. \( [\,\omega\,] \) = 1 рад/с. За время, равное периоду обращения, угол поворота радиуса-вектора равен \( 2\pi \) . Поэтому \( \omega=2\pi/T \) .
Линейная скорость тела \( v \) — скорость, с которой тело движется вдоль траектории. Линейная скорость при равномерном движении по окружности постоянна по модулю, меняется по направлению и направлена по касательной к траектории.
Линейная скорость равна отношению пути, пройденному телом вдоль траектории, ко времени, за которое этот путь пройден: \( \vec=l/t \) . За один оборот точка проходит путь, равный длине окружности. Поэтому \( \vec=2\pi\!R/T \) . Связь между линейной и угловой скоростью выражается формулой: \( v=\omega R \) .
Из этого равенства следует, что чем дальше от центра окружности расположена точка вращающегося тела, тем больше её линейная скорость.
4. Ускорение тела равно отношению изменения его скорости ко времени, за которое оно произошло. При движении тела по окружности изменяется направление скорости, следовательно, разность скоростей не равна нулю, т.е. тело движется с ускорением. Оно определяется по формуле: \( \vec=\frac> \) и направлено так же, как вектор изменения скорости. Это ускорение называется центростремительным ускорением.
Центростремительное ускорение при равномерном движении тела по окружности — физическая величина, равная отношению квадрата линейной скорости к радиусу окружности: \( a=\frac \) . Так как \( v=\omega R \) , то \( a=\omega^2R \) .
При движении тела по окружности его центростремительное ускорение постоянно по модулю и направлено к центру окружности.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. При равномерном движении тела по окружности
1) изменяется только модуль его скорости
2) изменяется только направление его скорости
3) изменяются и модуль, и направление его скорости
4) не изменяется ни модуль, ни направление его скорости
2. Линейная скорость точки 1, находящейся на расстоянии \( R_1 \) от центра вращающегося колеса, равна \( v_1 \) . Чему равна скорость \( v_2 \) точки 2, находящейся от центра на расстоянии \( R_2=4R_1 \) ?
1) \( v_2=v_1 \)
2) \( v_2=2v_1 \)
3) \( v_2=0,25v_1 \)
4) \( v_2=4v_1 \)
3. Период обращения точки по окружности можно вычислить по формуле:
1) \( T=2\pi\!Rv \)
2) \( T=2\pi\!R/v \)
3) \( T=2\pi v \)
4) \( T=2\pi/v \)
4. Угловая скорость вращения колеса автомобиля вычисляется по формуле:
1) \( \omega=a^2R \)
2) \( \omega=vR^2 \)
3) \( \omega=vR \)
4) \( \omega=v/R \)
5. Угловая скорость вращения колеса велосипеда увеличилась в 2 раза. Как изменилась линейная скорость точек обода колеса?
1) увеличилась в 2 раза
2) уменьшилась в 2 раза
3) увеличилась в 4 раза
4) не изменилась
6. Линейная скорость точек лопасти винта вертолёта уменьшилась в 4 раза. Как изменилось их центростремительное ускорение?
1) не изменилось
2) уменьшилось в 16 раз
3) уменьшилось в 4 раза
4) уменьшилось в 2 раза
7. Радиус движения тела по окружности увеличили в 3 раза, не меняя его линейную скорость. Как изменилось центростремительное ускорение тела?
1) увеличилось в 9 раз
2) уменьшилось в 9 раз
3) уменьшилось в 3 раза
4) увеличилось в 3 раза
8. Чему равен период обращения коленчатого вала двигателя, если за 3 мин он совершил 600 000 оборотов?
1) 200 000 с
2) 3300 с
3) 3·10 -4 с
4) 5·10 -6 с
9. Чему равна частота вращения точки обода колеса, если период обращения составляет 0,05 с?
1) 0,05 Гц
2) 2 Гц
3) 20 Гц
4) 200 Гц
10. Линейная скорость точки обода велосипедного колеса радиусом 35 см равна 5 м/с. Чему равен период обращения колеса?
1) 14 с
2) 7 с
3) 0,07 с
4) 0,44 с
11. Установите соответствие между физическими величинами в левом столбце и формулами для их вычисления в правом столбце. В таблице под номером физической
величины левого столбца запишите соответствующий номер выбранной вами формулы из правого столбца.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
А) линейная скорость
Б) угловая скорость
В) частота обращения
ФОРМУЛА
1) \( 1/T \)
2) \( v^2/R \)
3) \( v/R \)
4) \( \omega R \)
5) \( 1/n \)
12. Период обращения колеса увеличился. Как изменились угловая и линейная скорости точки обода колеса и её центростремительное ускорение. Установите соответствие между физическими величинами в левом столбце и характером их изменения в правом столбце.
В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) угловая скорость
Б) линейная скорость
B) центростремительное ускорение
ХАРАКТЕР ИЗМЕНЕНИЯ ВЕЛИЧИНЫ
1) увеличилась
2) уменьшилась
3) не изменилась
Часть 2
13. Какой путь пройдёт точка обода колеса за 10 с, если частота обращения колеса составляет 8 Гц, а радиус колеса 5 м?
Что общего между вращением Земли вокруг своей оси, движением стрелок часов, колес автомобиля на прямолинейном участке пути и т. п.? С точки зрения кинематики, все это примеры так называемого плоскопараллельного движения твердого тела, при котором все точки тела перемещаются в параллельных плоскостях.
Разумеется, в самом общем случае различные точки тела могут двигаться по-разному. Однако принято выделять два частных случая и говорить о двух простейших типах движения — о поступательном движении и о вращении вокруг неподвижной оси. В первом случае все точки тела совершают одинаковые перемещения. Это движение самое простое, и здесь мы его обсуждать не будем. Во втором случае все точки описывают одинаковые траектории — окружности с центрами на оси вращения. Основной характеристикой такого движения является угловая скорость вращения ω.
Давайте вычислим, например, угловые скорости стрелок часов. Так как стрелки вращаются равномерно, то угол поворота φ со временем изменяется по закону φ = ωt (уравнение равномерного вращения). Секундная стрелка делает один оборот за 60 секунд; следовательно, ее угловая скорость равна ωс = 2π / 60 с = 0,1047 с -1 . Аналогично, скорость часовой стрелки равна ωч = 2π / (12·60·60) с = 0,0001455 с -1 .
А как добиться того, чтобы секундная и часовая стрелки двигались с различными угловыми скоростями, но синхронно? Оказывается, для этого используется зубчатая передача: два зубчатых колеса могут вращаться вокруг разных осей, но при этом они входят в зацепление друг с другом (рис. 1). Поскольку линейные скорости точки А одинаковы —
\(~\upsilon_A = \omega_1 R = \omega_2 r\) ,
где z1 и z2 — число зубцов шестеренок.
Теперь рассмотрим более сложное плоскопараллельное движение твердого тела, когда тело вращается, но ось вращения сама поступательно перемещается в пространстве. Скорости такого движения проще всего найти, используя понятие мгновенного центра вращения — так называют точку, скорость которой в данный момент времени равна нулю. Скорости всех остальных точек тела при этом будут такими, как будто тело вращается вокруг неподвижной оси, проходящей через мгновенный центр вращения.
В качестве примера разберем движение колеса на прямолинейном участке пути без проскальзывания. Так как колесо не проскальзывает, точка С (рис. 2), в которой колесо касается дороги, имеет скорость равную нулю. Значит, точка С и есть мгновенный центр вращения. Найдем, какой будет угловая скорость вращения колеса, если скорость его центра О (скорость поступательного движения колеса) равна υ0:
Легко находится и скорость произвольной точки А. Она направлена по линии АВ и равна
\(~\upsilon_A = \omega \cdot CA = 2 \omega r \cos \alpha = 2 \upsilon_0 \cos \alpha\) .
Теперь легко ответить на вопрос, который обычно вызывает затруднения: почему, если смотреть на движущегося велосипедиста, то верхние спицы колес сливаются в одно целое, а нижние видны раздельно. Очевидно, это связано с тем, что скорости нижней половины колеса меньше, чем верхней (подумайте, почему, если смотреть на велосипедиста из окна движущегося в ту же сторону автобуса, этот эффект пропадает?).
А что если мы захотим определить скорость колес вагона движущегося поезда? Мы обнаружим, что на ободе колеса имеются точки, которые движутся назад, в противоположную движению поезда сторону. Это — точки выступающей части колеса, например точка А на рисунке 3. Мгновенный центр вращения (точка С) находится на неподвижном рельсе, по которому колесо катится без проскальзывания. Траектория точки обода колеса еще более любопытна, чем в предыдущем случае,— на траектории имеются возвратные участки движения (петли). Интересно отметить, что аналогичные петлеобразные траектории описывают в своем движении планеты. Их наблюдали еще древнегреческие астрономы, однако объяснить увиденное они не смогли. Сейчас мы знаем, что эти траектории связаны с наложением двух вращений — Земли и наблюдаемой планеты вокруг Солнца.
Всегда ли при плоскопараллельном движении траектории оказываются такими сложными? Попробуйте определить, например, какую траекторию описывают точки обода колеса радиусом r, которое катится по внутренней поверхности неподвижного колеса радиусом 2r.
В заключение мы хотим познакомить вас с простым по конструкции, но важным для практики прибором — линейкой-эллипсографом (рис. 4), который служит для вычерчивания эллипсов. Точки А и В такого прибора двигаются по взаимно перпендикулярным направляющим ОА и OB, a точка М при этом описывает эллипс (подумайте, почему). Где находится мгновенный центр вращения в этом случае? Как найти скорость точки М, зная скорости точек А и В?
Рассмотрим жесткий треугольник СВА (точка С лежит на пересечении перпендикуляров к направляющим). Проекции скоростей двух точек твердого тела на линию их соединения всегда равны. Для точек С, А и С, В это возможно, если υC, т. е. если точка С — мгновенный центр вращения. Скорость точки М можно определить, зная скорость точки А, например:
\(~\upsilon_A = \omega \cdot CA\) , и \(~\upsilon_M = \upsilon_A \cdot \frac\) .
Аналогичным образом, используя понятие мгновенного центра вращения, можно легко находить скорости любых точек механизмов, совершающих плоскопараллельное движение.
Читайте также: