Что такое ptz в видеорегистраторе
Рассмотрим основные задачи, решаемые при автоматизации системы управления PTZ-камерой:
1. Автоматическое патрулирование
Перечисленные недостатки могут быть устранены установкой обзорных неподвижных камер, полностью закрывающих охраняемую территорию. Тогда PTZ-камера используется исключительно для получения детализированного изображения целей, обнаруживаемых при помощи обзорных камер. Так же увеличивается срок службы PTZ-камеры за счет того, что уменьшается ее механическая нагрузка.
2. Автоматический выбор цели для PTZ-слежения
Источниками сигнала для автоматического выбора цели могу быть: а) обзорная неподвижная камера, используемая параллельно с купольной; б) купольная камера в режиме патрулирования; в) другие сенсоры, например, радиоволновые или вибрационные датчики периметральной системы. Видеосигнал с телевизионной или тепловизионной камеры обрабатывается видеоаналитикой, которая детектирует цели и определяет их местонахождения для наведения PTZ-камеры без участия оператора. Пример установки, реализуемый данных подход представлен на рис. 1. Если используется несколько обзорных камер с перекрывающимися зонами действия, то желательно многоканальная (мнокамерной) видеоаналитика. Особенно важна многоканальная видеоаналитика при частом появлении целей. Повторное детектирование цели каждой камерой будет приводить к неэффективному использованию PTZ-камер и срывам слежения, что затруднит ретроспективный анализ архива.
3. Автоматическая расстановка приоритетов для детализации и слежения
4. Автоматический выбор PTZ-камеры
Алгоритм должен забирать цели из приоритезированной очереди в порядке их важности и распределять цели между доступными PTZ-камерами с учетом взаимного расположения целей и доступных камер. В работу алгоритма может вмешаться оператор, подающий команды на PTZ-камеру с помощью джойстика или программного интерфейса (рис. 4). В этом случае, алгоритм должен задействовать другие PTZ-камеры для слежения за целями, оставшимися без внимания оператора. На сложных объектах необходимо применение трехмерных моделей охраняемого объекта и зон действия камер.
5. Автоматическое наведение PTZ-камеры
В простейшем случае, алгоритм наведения может быть реализован при помощи многозонного детектора движения обзорной камеры: кадр разбивается на множество зон, каждая из которых ассоциируются с препозициями PTZ-камеры. При срабатывании детектора движения в зоне (рис. 2), PTZ-камера переводится в соответствующую предпозицию (риc. 4). Чем больше зон задается при настройке, тем большее увеличение можно получить на PTZ-камере. Недостатком данного подхода являются неустойчивая работа при наличии нескольких целей и ограничения точности наведения, связанными с выбранными предпозициями PTZ-камеры.
На объекте с большим пространством наблюдения и большим числом камер рекомендуется аналитическое преобразование координат обзорной камеры в систему координаты поворотной камеры без разделения кадров на зоны (рис. 3,4).
Более качественное наведение может быть получено при помощи профессиональной видеоаналитики. Связь обзорной и управляемой камерой устанавливается через глобальную систему координат реального мира, к которой привязываются все камеры. Точность преобразования из двумерной системы координат кадра в трехмерное пространство реального мира ограничивает приближение PTZ-камеры, т.к. в случае ошибки преобразования, на сильном увеличении объект может оказаться вне поля зрения. Поэтому особенные требования предъявляются к видеоаналитики обзорной камеры: необходима качественная локализация (сегментирование) цели и качественная калибровка для связи его координат с поворотной камерой.
6. Автоматическое слежение за целью
После того как PTZ-камера наведена на цель, желательно применение алгоритмов слежения для отображения и записи целостного фрагмента видео цели, сопровождаемой PTZ-камерой. В процессе настройки алгоритма слежения приходиться искать компромисс между степенью увеличения (и, следовательно, детализацией) цели и частотой смещений PTZ-камеры. Чем сильнее увеличение, тем чаще приходиться передвигать камеру.
PTZ-cлежение за целью может осуществляться тремя способами: а) при помощи PTZ-камеры (самослежение); б) при помощи обзорной камеры (внешнее слежение) и в) гибридными образом. Каждый из способов имеет свои преимущества и недостатки, которые мы сравним в отдельной публикации. Алгоритм самослежения удобен в случае, когда оператор задает цель в ручную, а обзорная камера отсутствуют или не видит цель. Алгоритм внешнего слежения более устойчиво работает при наличии нескольких целей. Для объектов одинокого видимого размера, алгоритмы слежения на подвижной камере работают хуже, чем на неподвижной камере, т.к. в последнем случае алгоритм может лучше адаптироваться к неподвижному фону. В теории, гибридный способ должен обеспечить наиболее устойчивое слежение во всех ситуациях, но в известных нам системах он пока не реализован
Влияние задержки
Слежение за целью при помощи привода PTZ – задача реального масштаба времени, чувствительная к задержке. Если общая задержка видео в IP-сети превышает 500 мс (половина секунды), то эффективно управлять камерой не может ни оператор, ни серверная видеоаналитика. Как правило, около 300 мс вносится передающим устройством (камерой или кодером) и около 100 мс вносится VMS-системой, декодирующей видео.
Качественное слежение за объектом может быть реализовано при локальной обработке видео до компрессии. В этом случае координаты цели могут быть рассчитаны по данным обзорной или PTZ-камеры за 20-40 мс. Такая система может сопровождать быстродвижущиеся цели, такие как бегущий человек и транспортное средство, на хорошем увеличении.
Поддержка стандартов
Начиная с версии 1.02, международный стандарт ONVIF позволяет строить унифицированные решения для автоматического и ручного управления PTZ-камерами. В частности, стандарт описывает команды управления и считывания положения PTZ-камеры, системы координат, а так же формат передачи метаданных о подвижных объектов с обзорной камеры в систему управления видео (VMS) и/или иные устройства для управления PTZ-камерой.
Оживленные сцены
Применение интеллектуальных функций PTZ в общественных местах ограничено возможностями видеоаналитики слежения. Сегодня на рынке не существует видеоаналитики, способной сопровождать человека в толпе без применения детектора лиц на обзорной камере. Если разрешающая способность и угол наблюдения обзорной камеры позволяет использовать детектор лиц, то возможно автоматизация наведения PTZ-камеры для более точного распознавания лиц и записи детализированного изображения. При этом необходима реализация системы слежения по данным детектора лиц, чтобы оптимизировать работу PTZ-камеры для нужного сценария, например, для слежения за одним человеком или для быстрого сканирования всех лиц в поле зрения.
Специальные требования к PTZ-камере
Большинство PTZ-камер, представленных на рынке, с интерфейсами Pelco D (для последовательного интерфейса RS422/485) или ONVIF (для IP-сети) не имеют обратной связи системой управления, в частности, невозможно запросить текущую позицию камеры и установить камеру по абсолютным координатам. Это ограничение не позволяет использовать PTZ-камеру для слежения по координатам обзорной камеры.
Обзор решений на рынке
В модуле Trassir ActiveDome компании DSSL реализована функция PTZ-слежения с аналитическим преобразованием координат. В кадре обзорной камеры задается область, которая путем процедуры калибровки создает связь координат с поворотной видеокамерой. По информации от разработчика, количество обзорных камер в системе видеонаблюдения может быть неограниченно и связано с размером контролируемой зоны. Например, чтобы обеспечить обзор в 360°, рекомендуется установить 4 обзорные и одну поворотную камеру.
В продукте Интеллект компании iTV может быть реализовано PTZ-слежение при помощи многозонного детектора движения обзорной камеры без автоматизации процесса калибровки. Для этого необходимо выполнить шаги: 1) разбить кадр обзорной камеры на множество зон детектирования движения; 2) запрограммировать соответствующие предпозиции на PTZ-камере; 3) написать скрипт, который будет устанавливать PTZ-камеру в предпозицию, соответствующую зоне движения. Для PTZ-слежения в условиях движения двух и более целей, необходима реализация более сложной логики, при помощи скрипта или компонента ActiveX.
Наша компания работает над реализацией PTZ-слежения с многозонным детектором движения и аналитическим преобразованием координат в IP-видеосервере MagicBox. В текущей версии прошивки устройства, передача метаданных с координатами целей и управления приводом PTZ осуществляется в рамках международного стандарта ONVIF, что позволяет реализовать внешнюю логику управления PTZ-камеры. Приложение Менеджер устройств ONVIF, с которым Хабр уже знаком, иллюстрируют взаимодействие клиента ONVIF с PTZ-камерой и видеоаналитическим сервисом (рис. 4).
Рис. 3. Слежение за целью при помощи встроенной видеоаналитики. Передача 2D и 3D координат цели в метаданных ONVIF для автоматического наведения PTZ-камеры. Буква M означает, что цель двигается (moving). Буква S означает, что цель остановилась. Фон цели подвижный (листья деревьев шевелятся).
Рис. 4. Ручное и автоматическое управление PTZ-камерой по протоколу ONVIF через Менеджер устройств ONVIF.
Заключение
Технологии автоматического управления роботизированной PTZ-камерой на основе данных видеоаналитики и других сенсоров находятся на раннем этапе своего развития. На российском рынке представлены VMS-системы компаний DSSL, ITV, а так же автономное устройство MagicBox компаний Агрегатор и Синезис, позволяющие автоматизировать работу PTZ-камеры. Следует отметить перспективные направления для совершенствования этих продуктов: а) реализация алгоритмов для работы с несколькими целям при помощи нескольких PTZ-камер в едином пространстве обзорных камер; б) проработка полуавтоматического режима, например, когда оператор начинает следить за одной целью, система должна использовать свободные PTZ-камеры для слежения за другими целями; в) упрощение процесса первоначальной настройки (калибровки) системы и оптимизация пользовательского интерфейса для работы в автоматическом и полуавтоматическом режимах PTZ-слежения.
Сегодня препарируем PTZ-камеру и детально рассматриваем ее железные составляющие, чтобы понять принцип работы.
Прежде чем резать, давайте немного разберемся
Как сделать общение по видеосвязи достаточно комфортным, чтобы участники воспринимали его как живое? Добиться такого эффекта можно, если камера будет захватывать не только общий план комнаты, но и конкретного участника. Переходы между сценами должны быть быстрыми и плавными, чтобы общение не вызывало дискомфорта и не отвлекало участников от обсуждения рабочих вопросов.
Как этого добиться? Есть пара вариантов:
- программно вырезать (а по не-нашему кропать) из общего плана, который захватывается камерой, нужную часть изображения;
- или установить PTZ-камеру. Они бывают с механическими или магнитными приводами.
Камеру с магнитными приводами я найти не смог. Зато камер с механикой вокруг — пруд пруди. Я также разобрал современную и широко распространенную в РФ модель PTZ FullHD камеры, чтобы понять, как изменилась логика и принцип работы за 10 лет прогресса и развития. Итак, приступим!
Итак, начнем мы с весьма распространенной PTZ-камеры от норвежской компании Tandberg. Именно эта камера перекочевала в линейку Cisco Telepresence без каких-либо значимых изменений и продавалась до начала 2010-х.
В свое время Tandberg делал премиальные PTZ-камеры, и об этом нам говорит строгий, лаконичный дизайн с преобладанием металлических частей корпуса.
Внешне Tandberg выглядит весьма понятно — в серебристом тубусе размещается оптика и матрица, а соединяют камеру с основанием подвижные механизмы.
Разрешение: 1280 х 720 (HD)
Зум: 7-кратный, оптический
Матрица: 1/3" CMOS
Минимальная фокусная дистанция: 0,3 м
Угол обзора: 42 0
Угол поворота по горизонтали: 180 0 (+90 0 ..-90 0 )
Угол наклона по вертикали: 30 0 (+10 0 ..-20 0 )
Массивное металлическое основание добавляет камере устойчивости и надежно защищает от внешних воздействий главную плату с электроникой. Именно на этом основании располагается поворотная платформа.
Ложе камеры перекатывается на специальных роликах, расположенных внутри подвижной платформы. Работа этого механизма напоминает балансирование циркового акробата на металлических цилиндрах.
В движение этот узел приводится обыкновенным электромотором с зубчатым колесом, по которому перекатывается ложе камеры. Чтобы показать работу этого механизма, пришлось расчехлить старый добрый Autodesk Fusion.
Контролировать коллекторный мотор в каждый момент времени призваны оптические датчики, определяющие угол наклона по отраженному свету от меток. Для этого с внутренних сторон зубчатых реек установлены две специальные накладки, которые формируют прерывания отраженного света, по которым определяется угол наклона камеры.
Чтобы маломощный коллекторный мотор справлялся с тяжелой оптикой камеры, объектив сбалансирован так, чтобы центр тяжести совпадал с осью мотора. Массивный груз в задней части камеры и обеспечивает тот самый баланс.
Под куполом располагается еще один приводной мотор, поворачивающий камеру влево и вправо. Однако он конструктивно отличается от коллекторного тем, что вал проворачивается небольшими шагами (1 шаг = 3,750), то есть для одного полного оборота потребуется 3600 / 3,750 = 96 шагов. Также дополнительным бонусом является удержание вала в заданном положении.
Для стабилизации изображения PTZ-камеры имеются механизмы удержания заданной позиции, а это значит, что если направлять камеру в другую сторону при помощи рук и настойчивости, то пластиковые детали внутри камеры очень быстро выйдут из строя (если не сразу).
Это правило справедливо и для выключенной камеры. Если не вдаваться в тонкости теоретической механики, то можно сказать, что пластиковые шестерни могут передавать вращение от мотора к узлам камеры, а не наоборот.
И о самом главном — о камере. Конструктивно она похожа на зеркальный фотоаппарат, только без пентапризмы и зеркала. Фокусное расстояние регулируется коллекторным мотором и механическими передачами: это, конечно, не ультразвуковые моторы современных “зеркалок”, но малый вес и габариты для стационарной камеры — вовсе не ключевые показатели.
Рулит всеми задачами цифровой сигнальный процессор от Texas Instruments с передовой вычислительной мощностью на начало 2000-х, способный выполнять почти 6 миллиардов инструкций в секунду. В те времена это было передовое решение в формате SoC (System on the Chip), в котором был реализован многоуровневый кэш L1/L2, 64-битный интерфейс к внешней оперативной памяти, Ethernet 10/100 Мбит/с, 3 видео порта с поддержкой нескольких разрешений, а также управлением других периферийных устройств.
Следующая передовая микросхема своего времени — Altera Cyclone 2. По сути это обыкновенный ПЛИС (программируемая логическая интегральная схема). Производители устройств могут программировать такие схемы для любых задач от управления сервоприводами до передачи данных памяти.
Интерфейс HDMI версии 1.3 реализован чипом AD9889B, поддерживающим разрешение FullHD (1080p) с защитой передачи медиаконтента по технологии HDCP v. 1.2.
Остальные компоненты — это модули памяти и пассивные радиокомпоненты, предназначенные для работы основных элементов.
Разрешение: 1920 х 1080 (FullHD)
Зум: 12-кратный, оптический
Матрица: 1/2,8″ CMOS HD сенсор
Минимальная фокусная дистанция: 0,3 м
Угол обзора: 72,5 0
Угол поворота по горизонтали: 340 0 (+170 0 ..-170 0 )
Угол наклона по вертикали: 120 0 (+90 0 ..-30 0 )
Корпус камеры целиком выполнен из пластика и обладает широким и устойчивым основанием. Спереди у камеры находятся ИК-приемники для пульта дистанционного управления, а сзади — интерфейсные разъемы. Вес у камеры небольшой: предполагаю, что можно подвесить в армстронг на потолок или закрепить на гипсокартонной перегородке.
Оси перемещения организованы гораздо проще и понятней, чем у Tandberg, в качестве движущей силы трудятся шаговые моторы, передающие крутящий момент приводным шкивам.
Подвижная платформа имеет 2 полые стойки, между которыми закреплена камера, в полости одной из стоек скрывается приводной механизм, за счет которого изменяется угол наклона.
Немного ниже приводного шкива располагается оптический датчик. Этот концевик нужен для определения позиции камеры после включения.
При запуске объектив наклоняется вниз, и когда специальный шип прерывает поток света в оптическом датчике, система понимает, что достигнута крайняя нижняя точка. Все дальнейшее позиционирование производится путем подсчета шагов.
Мотор, поворачивающий камеру влево и вправо, скрывается за сопрягаемым фланцем с 6 винтами, оснащенный таким же концевиком для определения горизонтальной позиции камеры.
Поскольку сопрягаемый фланец неподвижен, в центре находится 2 кабеля: для управления моторами и шлейф с цифровой матрицы.
Как мы видим, система механических передач целиком состоит из мощных шаговых моторов, что делает позиционирование камеры более точным и быстрым, а ременные передачи снижают уровень собственного шума устройства.
Электроника камер во многом похожа, поэтому лучше поговорим о явных различиях. Из новинок появились USB3.0 и RS-232, при помощи которых можно получить видео в сжатом виде, а также собрать целый каскад подобных камер и через UART (RS232) полностью автоматизировать их наведение на участников конференции.
Как видите, современная PTZ-камера более надежна по конструктиву, имеет лучший сенсор и универсальна по способам подключения, но в остальном недалеко ушла от своей предшественницы. Кроме одного — цены, которая стала ниже в 5 раз. Поэтому сегодня мы видим всё больше и больше оборудованных ПК переговорных комнат, где данный PTZ-зверь уже перестал быть экзотикой.
Это наш первый опыт производства видеорегистраторов. Далее будет проведен обзор устройства от внешнего вида и технических характеристик до описания выявленных проблем и предстоящих изменений.
Видеосервер vs видеорегистратор
Объяснять, что такое видеорегистратор на geektimes, — это лишнее. Даже обыватель, никогда ранее не сталкивавшийся с видеонаблюдением, имеет четкую ассоциацию: чтобы подключить камеру, нужен регистратор. Много лет мы предлагали только видеосерверы. Объясняется это просто: качественное железо, возможность замены вышедших из строя комплектующих, потенциал для апгрейда. Но и, разумеется, большая стоимость.
Характеристики устройства
– Операционная система: Linux.
– Сетевой интерфейс: 100 Мбит.
– Видеовыходы: 1xHDMI, 1xVGA.
– Другие разъёмы: 2хUSB2.0, 1хRS-485.
– Диапазон рабочих температур: 0…+55 °С.
– Питание: 12 В / 4 А DC.
– Потребление энергии: до 48 Вт.
– Габариты (В х Ш х Г): 54 х 326 х 250.
– Веc нетто: 1,3 кг.
Комплектация
В процессе производства все видеорегистраторы без исключения проходят три этапа тестирования. Именно поэтому мы можем гарантировать работоспособность каждого экземпляра, отправляемого клиентам.
В комплект поставки входят:
Мы также увеличили объем оперативной памяти, что позволило работать с камерами высокого разрешения. Также пропала необходимость в перезагрузке устройства при изменении конфигурации (настройка камер, переключение режима канала — аналоговый/IP). Применяя флеш-память большего размера, мы заложили потенциал для будущего расширения функционала устройства.
Внутри корпуса отведено место для крепления двух жестких дисков. В данный момент XVR поддерживает работу с двумя HDD по 10 ТБ каждый, что в сумме дает возможность использования до 20 ТБ дискового пространства. Со стороны прошивки никаких ограничений на объем дисков нет, так что новые жесткие диски большего объема, которые будут появляться на рынке, можно будет без проблем использовать с нашим устройством.
На задней панели XVR расположены 16 BNC-разъемов, 1 аудиовыход, HDMI- и VGA-разъемы для подключения мониторов, 4 RCA для микрофонов, один сетевой интерфейс, 2 USB, RS-485 и разъем питания.
Корпус компактный и легкий, изготовлен из металла и пластика.
А теперь расскажем о проблемах, выявленных в процессе первичной эксплуатации. Первый наш промах связан с корпусом. Во-первых, для того чтобы открыть его, требуется определенная сноровка. Если подходить к этому вопросу только лишь со стороны грубой силы, пластиковые защелки могут не выдержать и обломиться. Именно поэтому мы сделали видеоинструкцию о том, как легко и без ущерба корпусу можно открыть XVR.
Второй промах — лицевая панель. Оказалось, что подключать USB-устройства, такие как мышь или внешний USB-накопитель для сохранения на него экспортированного видео, очень неудобно: мешают многочисленные кабели. Поэтому в следующих версиях устройства лицевая панель будет переработана и на ней разместится дополнительный USB-порт.
Третий — крепление HDD. У новых моделей жестких дисков немного по-другому расположены точки крепления, так что пришлось осуществлять монтаж двумя винтами из четырех.
Подводя итог, мы сформировали список изменений, которые намерены произвести в следующих версиях устройства:
- изменим конструкцию верхней крышки, вскрытие корпуса будет проходить без усилий и риска что-либо отломить;
- заменим вентилятор менее шумной моделью;
- добавим кнопку управления питанием на заднюю панель;
- расширим варианты креплений HDD;
- переработаем лицевую панель.
Подключение камер видеонаблюдения
Принимая во внимание ценовую категорию регистратора, влияющую на выбор используемого процессора и его производительность, выделим следующий момент. Объем информации, которую может обработать процессор, конечен. Превышение данного объема ведет к снижению FPS видео, записываемого в архив. Ниже приведена таблица, в которой отражены итоговые параметры видео для архива, в зависимости от количества и разрешения камер, подключенных к регистратору.
*Отображение и запись
Локальный просмотр видео возможен как в режиме реального времени, так и в режиме архива. Переключение режимов осуществляется через всплывающую панель.
Более тонкая настройка происходит удаленно.
- многозонный детектор движения;
- видеоаналитика по детекции, цвету и размеру объекта;
- настройка реакций: записи по расписанию, уведомлений, сохранения отдельных кадров на FTP;
- сервис доменных имен DynamicDNS;
- сервис TURN для простого доступа через интернет без выделенного IP-адреса.
Что дальше?
Любое начинание сопряжено с ошибками. Недочеты в конструкции устройства уже приведены. Что же с программной частью? Кроме локального администрирования, мы планируем доработать/добавить следующий функционал:
- локальное проигрывание звука с аудиовыхода;
- локальное блокирование экрана монитора;
- локальный экспорт архива на USB-носители;
- управление аналоговыми PTZ-камерами;
- использование 3G/4G USB-модемов.
Поделитесь опытом, какую функцию в видеорегистраторе вы считаете наиболее важной. На что нам обратить внимание при развитии данной линейки устройств?
Ваш регистратор является многофункционалным устройством.
Одним из функции является возможность управления PTZ камерами. (смотрите цены)
К сегодняшнему дню, многие покупатели поворотных AHD камер, сталкиваются с проблемой.
Ваш регистратор является многофункционалным устройством.
Одним из функции является возможность управления PTZ камерами.
Как подключить и настроить AHD поворотную PTZ камеру через аналоговый DVR видеорегистратор?
Для сравнения надо учесть то, что IP поворотная PTZ камера, не требует дополнительной настройки.
AHD PTZ камера подключается по RS 485 интерфейсу, а это накладывает определенные трудности.
По этому сегодняшний скетч будет посвящен ответу на этот вопрос.
AHD поворотная PTZ камера при подключении к DVR регистратору требует настройку согласно инструкции к камере.
Поскольку PTZ камер очень много, то универсальную инструкцию дать никто не может.
Но несмотря на эту проблему, мы можем подсказать, на что Вам надо обратить внимание в вашей инструкции, чтобы быстро настроить камеру.
С учетом того что все подключено, а именно PTZ камера показывает изображение на видеорегистраторе, и подключена к разъему RS 485 A/B.
Можно начать ручную настройку DVR регистратора. Заходим в меню видео регистратора, Настройки и нажимаем PTZ.
Д алее подстраиваем настройки управления так, как говорит инструкция вашей PTZ камеры.
Обратите внимание на то, какие пункты требует выставить видеорегистратор.
Ваша инструкция располагает данными для заполнения.
Необходимо выбрать протокол, скорость передачи Бод - Бит рейд.
В случаи потери данных за счет плохой изоляции или наводок скорость бит рейда можно понизить.
Бит дата всегда 8. Стоп бит 1. Четность нет. Все остальное меняется в зависимо от Вашей инструкции.
Будьте внимательны. При нарушении одного из пунктов, регистратор не позволит управлять поворотной PTZ камерой.
Если Вы все выставили правильно, то прошу пройти на канал который ее транслирует. И начать управление PTZ камерой.
Если в Вашей системе видеонаблюдения имеется более одной PTZ камеры, то во избежание синхронных действий нескольких камер. Поскольку порт A/В один.
Требуется поменять номер в настройках самой камеры. Чтобы он не совпадал с другой PTZ камерой.
Некоторые PTZ камеры оборудованы внешним переключением своего канала. Например.
Зная все эти нюансы, Вам не составит труда настроить PTZ - поворотную камеру на свой DVR регистратор.
На этом все. Пользуйтесь системой видеонаблюдения с радостью.
Всегда рады помочь старым и новым клиентам.
Следующею статью мы посветим настройкой круиз контроля и детектора движения у PTZ камер.
Читайте также: