Что такое отравление реактора ксеноном
19.2.1. Суть стационарного отравления реактора ксеноном. В первоначальный момент работы на мощности реактор, как правило, разотравлен, то есть концентрации йода и ксенона в его твэлах - нулевые. Но при работе реактора концентрации того и другого начинают расти, и несложно представить себе, до какого уровня они будут расти. Поскольку скорость убыли ксенона прямо пропорциональна величине его концентрации (взгляните на последние два слагаемых (19.1.1)), то какой бы ни был характер его образования, рано или поздно количество накопленного ксенона достигнет такой величины, что скорость его убыли сравняется со скоростью его образования. В этом случае концентрация накопленного ксенона должна стабилизироваться по величине (то есть достигнуть стационарного значения). И очевидно, что для достижения этого состояния реактор должен работать на постоянном уровне мощности и проработать на этом уровне мощности достаточно длительное время. Какое именно - увидим далее.
Стационарным называется отравление, свойственное реактору, длительно работающему на постоянном уровне мощности, в результате чего устанавливаются постоянные во времени концентрации йода и ксенона.
Таким образом, условиями стационарности отравления реактора ксеноном являются:
причём, последние два условия равносильны условиям:
19.2.2. Величина стационарного отравления ксеноном. Если подставить условия (19.2.1) и (19.2.2) в дифференциальные уравнения отравления реактора (19.1.1)-(19.1.2), последние перестают быть дифференциальными, становясь обычными алгебраическими линейными уравнениями:
Из уравнения (19.2.4) находится величина стационарной концентрации 135 I:
Отметим на будущее: величина стационарной концентрации йода-135 прямо пропорциональна величине уровня мощности, на котором работает реактор (так как величина концентрации 235 U в течение нескольких суток работы реактора на постоянной мощности уменьшается незначительно, величина мощности реактора оказывается пропорциональной величине плотности потока нейтронов в твэлах реактора Фо).
Величину стационарной концентрации ксенона проще всего найти, если почленно сложить уравнения (19.2.3) и (19.2.4):
И, следовательно, величина потерь реактивности при стационарном отравлении реактора ксеноном (в соответствии с формулой (19.2)):
Следовательно, потери запаса реактивности при стационарном отравлении реактора ксеноном определяются:
а) Величиной концентрации урана-235 (или величиной обогащения топлива) - в той мере, в какой эта величина определяет величину коэффициента использования тепловых нейтронов q : чем больше концентрация N5 - тем больше величина q - и тем, следовательно, больше будет абсолютная величина потерь реактивности при стационарном отравлении rXe ст .
б) Величиной уровня мощности, на котором длительно работает реактор Np0 (которая в течение относительно непродолжительного времени отравления прямо пропорциональна величине плотности потока тепловых нейтронов в топливе реактора Фо). Эта зависимость отравления реактора от его мощности настолько важна для эксплуатационника, что есть смысл остановиться на ней подробнее.
Зависимость стационарного отравления ксеноном от мощности реактора. Если подставить в формулу (19.2.7) значения всех известных физических констант, а именно: sa Xe = 2.72 . 10 -18 см 2 , sa 5 = 680.9 барн, sf 5 = 582.3 барн, gI = 0.06, gXe = 0.003 и lXe = 2.1 10 -5 c -1 , то выражение для rXe ст примет более простой вид:
Небольшой расчёт по этой формуле позволяет убедиться, что:
В интервале промежуточных значений Фо (10 11 ¸10 13 нейтр/см 2 с) - свойственных энергетическим реакторам АЭС - зависимость величины стационарного отравления от величины плотности потока нейтронов в твэлах реактора имеет нелинейно возрастающий характер:
Рис.19.3. Качественный вид зависимости величины стационарного отравления реакторов ксеноном от величины средней плотности потока тепловых нейтронов в топливе твэлов.
Эксплуатационника в большей степени интересует не эта зависимость, имеющая, скорее, академический характер, а практическое приложение её к конкретному реактору, которым он управляет. Но вы, конечно, понимаете, что в любом конкретном реакторе каждому значению мощности реактора соответствует своё значение средней плотности потока тепловых нейтронов, и в любой момент кампании это соответствие - однозначное. А это значит, что участок теоретической кривой, показанной на рис.19.3, можно пересчитать (и перестроить) в график зависимости стационарного отравления конкретного реактора от его уровней мощности (рис.19.4). Этот график практики кратко называют кривой стационарных отравлений. Обычно он строится в натуральном масштабе, то есть величина мощности реактора выражается либо абсолютно (в МВт), либо в относительных единицах (чаще всего в процентах от номинальной мощности реактора).
Кривая стационарных отравлений позволяет быстро оценивать величину потерь реактивности реактора вследствие стационарного отравления ксеноном на любом уровне мощности.
Рис.19.4. Типичный качественный вид кривой стационарных отравлений реактора.
По этой кривой (построенной в удобном масштабе) легко находятся величины стационарного отравления реактора на любом уровне мощности реактора.
19.2.4. Характер роста потерь запаса реактивности из-за отравления 135 Xe первоначально разотравленного реактора в первый период работы на постоянном уровне мощности. Если реактор запускается после достаточно длительной стоянки и работает на постоянном уровне мощности, то величина потерь реактивности с момента начала работы на мощности от нуля через некоторый отрезок времени в соответствии со всем сказанным ранее должна достигнуть стационарного уровня. Практика должны заинтересовать, по крайней мере, два вопроса: каков характер роста потерь реактивности до достижения уровня стационарного отравления и за какое время работающий на постоянном уровне мощности реактор достигает стационарного отравления ?
Характер роста потерь реактивности при выходе реактора на стационарное отравление выясняется из решения системы дифференциальных уравнений отравления реактора при нулевых начальных условиях и условии Ф(t) = idem = Фо. Решение уравнений и переход от концентраций Nxe(t) к потерям реактивности за счёт отравления ксеноном rXe(t) даёт следующее выражение для переходного процесса rXe(t):
Формула (19.2.8), если мысленно подставить в неё все нейтронно-физические константы, обретает существенно более простой вид, который подсказывает, что текущие величины отравлений реактора ксеноном нелинейно зависят от уровня мощности реактора (или Фо). Расчёт по этой формуле для различных величин Фо (в том числе и для Фо = ¥)) качественно иллюстрируется графиком, представленным на рис.19.5. Из него следует, что при малых значениях плотности потока тепловых нейтронов (или на малых уровнях мощности реактора) переходный процесс rXe(t) протекает в несколько более замедленном темпе, чем при больших значениях Фо (на больших уровнях мощности). Предельный случай этих переходных процессов (при Фо ® ¥) вырождается в одну экспоненту:
поскольку при Фо® ¥ первая из экспонент формулы (19.2.8) обращается в нуль, а коэффициент перед второй экспонентой - в единицу
Рис.19.5. Переходные процессы нестационарного выхода первоначально разотравленного реактора на стационарный уровень отравления.
Факт не очень существенной зависимости переходных процессов rXe(t) от плотности потока нейтронов (практически - от мощности реактора) даёт возможность с достаточной для практических целей точностью приближенно оценивать величины текущих значений отравления реактора ксеноном по формуле (19.2.9):
справедливой, строго говоря, только для идеального случая бесконечно больших мощностей реактора.
И оказывается практически неважным, на каком уровне мощности работал реактор эти двое суток, так как после 47 часов все экспоненты практически сливаются в одну. Итак, запомним:
Время практического наступления стационарного отравления реактора, работающего на любом неизменном уровне мощности составляет двое суток.
После этого, если реактор продолжает работать на этом же уровне мощности, величина отравления реактора ксеноном не изменяется. А это значит, что оператору после наступления стационарного отравления не придётся предпринимать действий по компенсации изменений реактивности реактора, необходимых для удержания реактора в критическом состоянии на заданной мощности.
Авария на Чернобыльской АЭС стала самой масштабной катастрофой за всю историю существования ядерной энергетики. До 2011 года, когда землетрясение и цунами спровоцировали аварию на японской АЭС "Фукусима-1", чернобыльская катастрофа оставалась единственной в истории, которой был присвоен максимальный седьмой уровень опасности.
Изучение последствий аварии и всех доступных данных позволило специалистам воспроизвести практически посекундный сценарий произошедшего на четвертом энергоблоке ЧАЭС, хотя в деталях оценки произошедшего эксперты до сих пор расходятся. Ниже приведен сильно упрощенный вариант развития событий в ночь с 25 на 26 апреля 1986 года и разобраны механизмы, послужившие причиной взрыва.
Немного теории
Атомные электростанции извлекают энергию распада нестабильных изотопов тяжелых элементов и переводят ее в электрическую энергию. Топливом для АЭС чаще всего служит изотоп урана-235 (точнее, оксид урана) - при распаде его ядер выделяется тепло, которое нагревает находящуюся в реакторе воду и превращает ее в пар, вращающий турбины. Кинетическая энергия движения турбины при помощи генератора запасается в форме электроэнергии.
"Сердцем" АЭС является реактор - именно в его активной зоне происходит ядерный распад. Тяжелые ядра урана-235 распадаются на ядра более легких элементов, и этот процесс, помимо выделения тепла, сопровождается вылетом свободных нейтронов - элементарных частиц, которые, наряду с протонами, входят в состав атомных ядер. Сталкиваясь с ядрами урана-235, нейтроны стимулируют их распад, при котором также выделяются нейтроны - этот каскад получил название цепной реакции.
Если при распаде ядер число вылетевших нейтронов равно числу нейтронов, вызвавших деление, то в реакторе все время выделяется одно и то же количество энергии. Если нейтронов образуется больше - количество выделяющейся энергии растет, а если меньше - то падает. Для стабильной работы АЭС необходимо, чтобы реализовывался первый из описанных выше вариантов. Если же число образующихся при делении ядер свободных нейтронов растет, то рано или поздно этот процесс закончится взрывом.
При прохождении цепной реакции число свободных нейтронов, по определению, со временем будет расти. Чтобы не допустить катастрофического исхода, интенсивность реакций распада в АЭС регулируется при помощи так называемых управляющих стержней, которые содержат материал, хорошо поглощающий нейтроны (например, кадмий или бор). Когда число свободных нейтронов в реакторе становится опасно большим, стержни погружают в активную зону, и количество распадов в единицу времени уменьшается.
Для того чтобы работа АЭС была безопасной, операторам необходимо принимать во внимание еще один процесс - так называемое ксеноновое отравление реактора и вызываемое им падение в йодную яму. При делении ядер урана-235 в результате цепочки вторичных распадов образуется изотоп ксенона-135, в ядрах которого эффективно "застревают" свободные нейтроны. Когда реактор активно работает, все образующиеся ядра ксенона-135 быстро насыщаются нейтронами до максимума - говорят, что они выгорают. Кроме того, часть ядер распадается на ядра других элементов. Если же мощность работы реактора низка, ксенон не успевает выгорать и накапливается в активной зоне - это и есть ксеноновое отравление.
При отравлении реактора предшественник ксенона-135 по цепочке распадов - изотоп йода-135 - начинает превращаться в ксенон с еще большей активностью (это и есть йодная яма). В таком состоянии реактор становится нестабилен и плохо реагирует на движения управляющих стержней, что может привести к плачевным последствиям.
Ксенон-135 поглощает много нейтронов, количество делящихся ядер урана в единицу времени остается низким, и для того, чтобы поднять мощность реактора, необходимо выдвинуть стержни из активной зоны. Если ксенона накопилось достаточно много, то при небольшой амплитуде движения стержней заметных изменений в реакторе не произойдет и может возникнуть соблазн выдвинуть их посильнее.
В какой-то момент количество ядерных распадов достигает определенного порогового значения, мощность реактора (а заодно и тепловыделение) возрастают скачком, и погасить этот процесс быстрым опусканием стержней удается не всегда. По этой причине при ксеноновом отравлении реактора его необходимо полностью заглушить и дождаться естественной убыли ксенона - период его полураспада равен 9 часам. Когда реактор заглушен, турбина не вращается и электричество не вырабатывается.
Хронология
В ночь с 25 на 26 апреля 1986 года на четвертом энергоблоке Чернобыльской АЭС должны были пройти испытания новой перспективной методики, которая позволила бы в случае аварийной остановки реактора сразу подавать на него электропитание, поступающее от все еще вращающейся по инерции турбины (так называемый режим выбега). Заглушенному реактору необходимо электричество, так как в нем все равно идут реакции распада и, соответственно, растет температура. Для того чтобы охлаждать активную зону, через нее при помощи насосов непрерывно прокачивают воду, и для работы насосов нужна электроэнергия. Предполагалось проверить работу методики при нескольких исходных параметрах системы, поэтому операторам категорически не хотелось глушить реактор - в этом случае эксперимент пришлось бы проводить повторно в какой-нибудь другой день.
Для тестирования новой методики необходимо было снизить мощность реактора до значения около 700 мегаватт - при этом системы аварийного охлаждения (САОР) неизбежно заглушили бы его, так что операторы приняли решение отключить их. Эксперимент был начат около 23 часов 25 апреля - персонал начал постепенно снижать мощность реактора, причем операторы не дали автоматике команду поддерживать мощность на приемлемом уровне. В итоге она снизилась до 30 мегаватт, и началось ксеноновое отравление реактора. Чтобы поднять мощность, операторы вывели из активной зоны все управляющие стержни, и им удалось разогнать реактор до 200 мегаватт, хотя процесс ксенонового отравления продолжился.
Изначально планировалось, что эксперимент пройдет при мощности реактора от 700 до 1000 мегаватт, но, несмотря на то, что довести реактор до этого значения не удалось, персонал принял решение продолжить апробацию методики. Около часу ночи операторы для проведения необходимых тестов включили все главные циркуляционные насосы (ГЦН) энергоблока, при помощи которых вода прокачивается через реактор. Эта нагрузка оказалась чрезмерной - на работу всех насосов стало не хватать воды, в реакторе, омываемом огромными объемами H2O, снизилось парообразование, и автоматика полностью вывела управляющие стержни из активной зоны.
Более того, чтобы избежать аварийной остановки реактора при проведении опытов, операторы заблокировали систему его отключения в случае прекращения подачи пара на вторую турбину, если до этого уже была выключена первая, что строго запрещено. Одну из турбин предполагалось отключить для того, чтобы протестировать изучаемую методику. После того как это было сделано, ГЦН резко снизили активность, и поток воды через активную зону также стал менее интенсивным. В результате в реакторе стало расти парообразование.
Часть управляющих стержней автоматически начали вдвигаться в активную зону, но их емкости было недостаточно для снижения мощности реактора. Так как подача пара на турбину была отключена, она вращалась все медленнее, и, соответственно, в реакторе сокращалось количество воды, так как вся H2O в системе является "общей". В 01:23:40 начальник смены приказал нажать кнопку АЗ-5, которая заставляет управляющие стержни максимально быстро вдвигаться в активную зону.
Этот приказ стал роковым из-за так называемого концевого эффекта стержней. Вещество-поглотитель занимает не весь объем стержня - в самом низу находится вытеснитель (в случае ЧАЭС это был графит), который должен "убрать" воду с пути движения поглотителя. При нажатии кнопки АЗ-5 первыми в активную зону вошли вытеснители, которые как поршни вытолкнули оттуда часть воды. Парообразование в реакторе еще подскочило, и стержни "зависли" на слое пара, так и не погрузив поглотитель в активную зону. Операторы прибегли к последнему средству и отключили электромагниты, которые удерживают стержни на арматуре, но это не помогло - пар был слишком плотным. В 01:23:43 реактор "пошел вразнос" (еще несколько аварийных систем успели сработать, но все они давали команду АЗ-5), и в 01:23:44 произошел тепловой взрыв ядерной природы, разрушивший активную зону реактора.
Циркониевая оболочка топливных стержней начала реагировать с паром, в итоге стал выделяться водород (так называемая пароциркониевая реакция), образовавший с кислородом воздуха "гремучую смесь", которая в 01:23:46 взорвалась. С реактора сорвало тяжеленную бетонную крышку, которая взлетела в воздух и упала рядом с четвертым энергоблоком. В атмосферу было выброшено огромное количество радиоактивных веществ из активной зоны реактора, а "загрязненные" раскаленные обломки разбросало по территории станции. Начались многочисленные пожары. Первый пожарный расчет под командованием лейтенанта Правика выехал к ЧАЭС в 01:30 и во многом благодаря его действиям удалось предотвратить широкое распространение огня.
Кто виноват
Сразу после аварии в СССР была сформирована специальная комиссия по расследованию причин произошедшего. Она восстановила хронологию событий и пришла к выводу, что причиной катастрофы стали действия операторов станции. Позже (но также в 1986 году) это мнение на основании данных, предоставленных советской стороной, поддержала экспертная группа МАГАТЭ под названием INSAG (International Nuclear Safety Advisory Group - Консультативный комитет по вопросам ядерной безопасности).
В 1991 году комиссия Госатомнадзора СССР заново изучила имеющуюся информацию и заключила, что авария стала результатом действий персонала, но их последствия приобрели столь катастрофические масштабы из-за некоторых конструктивных недостатков реактора ЧАЭС. К таким недостаткам, в частности, относятся концевой эффект стержней и так называемую положительную реактивность при некоторых режимах работы. Положительной реактивностью называют свойство реактора увеличивать мощность в ответ на некоторые условия, и при проведении эксперимента на ЧАЭС 26 апреля 1986 года создалась ситуация, когда эти условия постоянно поддерживались и даже усиливались, вызывая быстрый и в конечном итоге неконтролируемый рост мощности. INSAG также пересмотрела свои выводы и опять согласилась с коллегами из СССР.
В настоящее время большинство специалистов придерживаются именно такой точки зрения. Авария на ЧАЭС стала результатом необдуманных и безграмотных действий операторов, которые последовательно делали все возможное, чтобы привести ситуацию к катастрофе, но, во-первых, некоторые их решения, которые сейчас кажутся безумными, тогда не считались опасными (просто не было соответствующих данных) и не были запрещены регламентом, а, во-вторых, катастрофический итог стал возможным из-за несовершенства конструкции станции и систем ее безопасности (в частности, они допускали полное отключение защит).
После Чернобыльской аварии во многих странах были заморожены программы развития атомной энергетики, но постепенно такая реакция отторжения ослабла. Анализ произошедшего позволил специалистам выявить многие недостатки реакторов и других систем АЭС, которые, как оказалось, могут сыграть фатальную роль, и устранить их при конструировании новых типов реакторов.
Авария на Чернобыльской АЭС произошла 26 апреля 1986 года. Катастрофа поставила под угрозу развитие ядерной энергетики во всем мире. Вокруг станции была создана 30-километровая зона отчуждения. Радиоактивные осадки выпадали даже в Ленинградской области, а изотопы цезия обнаруживали в повышенных концентрациях в лишайнике и мясе оленей в арктических областях России.
Существуют различные версии причин катастрофы. Чаще всего указывают на неправильные действия персонала ЧАЭС, повлекшие за собой возгорание водорода и разрушение реактора. Однако некоторые ученые полагают, что произошел настоящий ядерный взрыв.
Кипящий ад
В атомном реакторе поддерживается цепная ядерная реакция. Ядро тяжелого атома, например, урана, сталкивается с нейтроном, становится нестабильным и распадается на два более мелких ядра — продукты распада. В процессе деления выделяется энергия и два-три быстрых свободных нейтрона, которые в свою очередь вызывают распад других ядер урана в ядерном топливе. Количество распадов, таким образом, увеличивается в геометрической прогрессии, однако цепная реакция внутри реактора находится под контролем, что предотвращает ядерный взрыв.
В тепловых ядерных реакторах быстрые нейтроны не годятся для возбуждения тяжелых атомов, поэтому их кинетическую энергию уменьшают с помощью замедлителя. Медленные нейтроны, именуемые тепловыми, с большей вероятностью вызывают распад атомов урана-235, используемого в качестве топлива. В таких случаях говорят о высоком сечении взаимодействия ядер урана с нейтронами. Сами тепловые нейтроны называются так, поскольку находятся в термодинамическом равновесии с окружающей средой.
Сердцем Чернобыльской АЭС был реактор РБМК-1000 (реактор большой мощности канальный мощностью 1000 мегаватт). По сути, это графитовый цилиндр с множеством отверстий (каналов). Графит выполняет роль замедлителя, а через технологические каналы загружается ядерное топливо в тепловыделяющих элементах (ТВЭЛах). ТВЭЛы сделаны из циркония, металла с очень маленьким сечением захвата нейтронов. Они пропускают нейтроны и тепло, которое нагревает теплоноситель, препятствуя утечке продуктов распада. ТВЭЛы могут объединяться в тепловыделяющие сборки (ТВС). Тепловыделяющие элементы характерны для гетерогенных ядерных реакторов, в которых замедлитель отделен от горючего.
РБМК — одноконтурный реактор. В качестве теплоносителя используется вода, которая частично превращается в пар. Пароводяная смесь поступает в сепараторы, где пар отделяется от воды и направляется на турбогенераторы. Отработанный пар конденсируется и вновь поступает в реактор.
Крышка реактора РБМК
В конструкции РБМК имелся недостаток, сыгравший роковую роль в катастрофе на Чернобыльской АЭС. Дело в том, что расстояние между каналами было слишком большим и слишком много быстрых нейтронов тормозилось графитом, превращаясь в тепловые нейтроны. Они хорошо поглощаются водой, но там постоянно образуются пузырьки пара, что снижает абсорбционные характеристики теплоносителя. В результате повышается реактивность, вода еще сильнее нагревается. То есть РБМК отличается достаточно высоким паровым коэффициентом реактивности, что осложняет контроль за протеканием ядерной реакции. Реактор должен оснащаться дополнительными системами безопасности, работать на нем должен только высококвалифицированный персонал.
Наломали дров
Схема реактора ЧАЭС
Ввод дополнительных насосов усилил нагрузку на выбегающий турбогенератор, что снизило объемы воды, поступающей в активную зону реактора. Вместе с высоким паровым коэффициентом реактивности это быстро увеличило мощность реактора. Попытка внедрения поглощающих стержней из-за их неудачной конструкции лишь усугубила ситуацию. Всего лишь через 43 секунды после начала эксперимента реактор разрушился в результате одного-двух мощных взрывов.
Концы в воду
Очевидцы утверждают, что четвертый энергоблок АЭС был разрушен двумя взрывами: второй, самый мощный, случился через несколько секунд после первого. Считается, что аварийная ситуация возникла из-за разрыва труб в системе охлаждения, вызванного быстрым испарением воды. Вода или пар вступили в реакцию с цирконием в тепловыделяющих элементах, что привело к образованию большого количества водорода и его взрыву.
Шведские ученые полагают, что к взрывам, один из которых был ядерным, привели два различных механизма. Во-первых, высокий паровой коэффициент реактивности способствовал увеличению объема перегретого пара внутри реактора. В результате реактор лопнул, и его 2000-тонная верхняя крышка взлетела на несколько десятков метров. Поскольку к ней были прикреплены тепловыделяющие элементы, возникла первичная утечка ядерного топлива.
Разрушенный 4-й энергоблок ЧАЭС
Впервые о ядерной природе взрыва специалисты заговорили еще в 1986 году. Тогда ученые из Радиевого института Хлопина провели анализ фракций благородных газов, полученных на череповецкой фабрике, где производились жидкий азот и кислород. Череповец находится в тысяче километров к северу от Чернобыля, и радиоактивное облако прошло над городом 29 апреля. Советские исследователи выявили, что соотношение активностей изотопов 133 Xe и 133m Xe равнялось 44,5 ± 5,5. Эти изотопы — короткоживущие продукты ядерного распада, что указывает на слабый ядерный взрыв.
Шведские ученые рассчитали, сколько ксенона образовалось в реакторе до взрыва, во время взрыва, и как менялись соотношения радиоактивных изотопов вплоть до их выпадения в Череповце. Оказалось, что наблюдавшееся на заводе соотношение реактивностей могло возникнуть в случае ядерного взрыва мощностью 75 тонн в тротиловом эквиваленте. Согласно анализу метеорологических условий на период 25 апреля — 5 мая 1986 года, изотопы ксенона поднялись на высоту до трех километров, что предотвратило его смешение с тем ксеноном, который образовался в реакторе еще до аварии.
Эта часть и без меня понятна атомщикам, но я как гуманитарий очень старался определить простым языком несколько важных терминов, понимание которых необходимо в дальнейшем. Плюс внутри ещё парочка вводных, которые позволят углубиться в понимание процессов, которые привели к аварии на ЧАЭС. Ну и расскажу в двух словах о программе рокового эксперимента.
Несколько важных терминов
При разговоре об авариях на реакторах РБМК часто упоминается ряд профессиональных терминов, которые ни о чём не говорят человеку, далёкому как минимум от ядерной физики. Однако без их понимания невозможно и объяснение произошедшего в 1975 (!!) и 1986 годах выше уровня обывателя.
Итак, первый термин – реактивность. Реактивность – это величина, характеризующая поведение цепной реакции. Попросту говоря, это степень отклонения реактора от его критического состояния. При реактивности равной нулю реакция идёт с постоянной скоростью (критическое состояние), при реактивности большей нуля реакция ускоряется (надкритическое состояние), а при реактивности меньшей нуля – замедляется (подкритическое состояние). Выражаться она, будучи безразмерной величиной, может в различных относительных и условных единицах, чаще всего в процентах.
С реактивностью связано ещё несколько важных терминов – оперативный запас реактивности (ОЗР), паровой и мощностной коэффициенты реактивности (ПКР и МКР), а также йодная яма. Для начала определимся с ОЗР.
Итак, при выводе из активной зоны реактора стержней управления и защиты реакция начинает развиваться, высвобождается некая положительная реактивность, то есть, попросту говоря, энергия. Если из реактора вывести сразу все стержни, то высвободившаяся при этом величина положительной реактивности называется общим запасом реактивности. При работе реактора на постоянной мощности изменения реактивности должны нарастать медленно, однако на деле это не так вследствие быстрого развития ряда процессов. Поэтому необходимо, чтобы хотя бы какую-то часть общего запаса реактивности операторы реактора могли контролировать. Собственно говоря, эта часть, компенсируемая подвижными поглотителями нейтронов, и называется оперативным запасом реактивности (ОЗР).
ОЗР – тоже безразмерная величина, однако для удобства работы её могут измерять в неких условных единицах. В нашем случае (так принято делать в работе с реакторами РБМК) такой величиной является эффективное количество полностью погруженных стержней ручного регулирования системы управления и защиты. Выраженный в стержнях ОЗР показывает запас, имеющийся у оператора для увеличения мощности, то есть, грубо говоря, количество стержней, которое можно вывести из активной зоны. Однако тут нужно понимать, что ОЗР в стержнях – показатель относительный, потому что если вывести половину стержней наполовину, а вторую половину – на четверть, то результат может равняться, например, 15 выведенным полностью стержням, в то время как остальные полностью введены (значения взяты с потолка, в реальности они абсолютно иные – прим. А.С.). Для реакторов благоприятным является низкий ОЗР. Во-первых, снижается количество поглощённых нейтронов, которые можно было бы использовать для производства энергии. Во-вторых, при низком ОЗР уменьшается вносимая за раз при случайном (или специальном) извлечении стержня СУЗ положительная реактивность, что не позволяет реактору мгновенно развить очень высокую мощность.
Паровой коэффициент реактивности (ПКР) – это величина, обозначающая степень влияния паросодержания на реактивность. Вода, проходя через активную зону, греется и частично испаряется, образовывая пузырьки (с точки зрения терминологии - пустоты). Доля пустот в теплоносителе называется паросодержанием. В зависимости от ряда условий пар может служить как для замедления реактора (тогда ПКР отрицательный), так и для разгона (ПКР положительный).
Мощностной коэффициент реактивности (МКР) – это величина, которая характеризует изменение реактивности реактора при изменении мощности. Соответственно МКР может быть как положительным (реактивность повышается при повышении мощности реактора), так и отрицательным (реактивность снижается). В правильно спроектированном реакторе МКР отрицательный, то есть реактор не может саморазогнаться.
Состояние, при котором йод-135 или ксенон-135 образуются в реакторе в большом количестве, в результате чего операторы вынуждены снижать ОЗР (то есть увеличивать количество извлечённых стержней) для поддержки реакции, а выход реактора на проектную мощность на протяжении 1-2 суток делается практически невозможным, называется йодной ямой или ксеноновым отравлением реактора. Своё название явление получило из-за графика зависимости реактивности от концентрации ксенона-135 в реакторе, представляющего из себя яму с минимальным значением реактивности при максимальной концентрации изотопа.
Вот поэтому она и яма (см. красную линию)
При работе атомного реактора в активной зоне происходит множество различных событий и реакций, распадаются и появляются различные элементы. Одним из таких элементов является короткоживущий изотоп йода – 135I. Период полураспада этого элемента – примерно шесть с половиной часов, при этом одним из его продуктов является изотоп ксенона 135Xe, период полураспада которого больше – девять с небольшим часов. При работе реактора на полной мощности проблем с этим нет, так как оба эти изотопа как бы выгорают в плотном потоке нейтронов. А вот на малых мощностях, например при снижении или при выходе на мощность после пуска, нейтронный поток ещё не столь силён, а значит, не способен препятствовать обильному образованию йода-135 и, как следствие, ксенона-135.
Вспомним конструкцию стержней СУЗ. Они состоят из графитового вытеснителя длиной 4.5 метра, соединённого с семиметровым поглотителем из карбида бора. Под и над вытеснителем находился столб воды, которая, в отличие от графита, хорошо поглощает нейтроны. При поступлении команды на ввод поглотителя, вытеснитель начинает идти вниз, вытесняя воду и вводя тем самым положительную реактивность в этой зоне. Ведь графит поглощает нейтроны куда хуже, а значит, они начинают работать на разгон реактора. Такой ввод положительной реактивности называют концевым эффектом или положительным выбегом реактивности.
Игналинская АЭС
Впервые его обнаружили при физических пусках (то есть первых пусках после постройки реакторов) на Игналинской АЭС и на второй очереди ЧАЭС. Тогда выяснилось, что сам по себе положительный выбег реактивности невелик и легко компенсируется наличием достаточно большого количества введённых хотя бы наполовину стержней СУЗ. Тем не менее, на ЧАЭС было принято решение отделить вытеснители от стержней автоматического регулирования, оставив их лишь на стержнях ручного регулирования. Кроме того, на все АЭС были разосланы два письма. Одно от НИКИЭТ – конструкторов реактора, другое от Научного руководителя (ИАЭ им. Курчатова). Тем не менее, письма, хоть и содержавшие определённые предложения по исправлению ситуации (отрезание вытеснителей, например), были положены руководствами станций под сукно до востребования и получения дальнейших инструкций, так как их тон был в целом благостный, не дающий серьёзных причин для беспокойства. Никаких упоминаний (кроме нижнего ограничения ОЗР в 15 стержней ручного регулирования) в регламентах об эффекте не было. Запомните этот момент, он нам понадобится дальше.
Предвестники
Авария 1986 года была не первым серьёзным инцидентом с реакторами РБМК. До неё произошло ещё две крупных аварии, закончившихся выбросом радиоактивных веществ за пределы предназначенных для этого зон. Однако вторая – авария 1982 года на ЧАЭС - была следствием брака при изготовлении канальной трубы. В результате был разрушен один из технологических каналов. Она нам малоинтересна.
А вот первая – авария на Ленинградской АЭС 30 ноября 1975 года. Тогда фактически шли ещё натурные испытания первого реактора типа РБМК, хотя первый (и пока ещё единственный официально введённый в эксплуатацию) энергоблок уже работал год.
В тот день на плановый ремонт выводился один из турбогенераторов. Его разгрузили, но по ошибке старший инженер управления реактором отключает не его, а второй, оставленный в работе ТГ. Сработала система защиты, реактор был заглушен. При этом реактор был отравлен йодом-135. Реактор и турбогенератор необходимо было быстро вернуть в работу. В условиях резко снизившегося из-за йодной ямы ОЗР операторам пришлось пойти на нарушение регламента и извлечь практически все стержни ручного регулирования, дабы как можно скорее вывести мощность на минимально контролируемый уровень. Тем не менее, первая попытка персонала не удалась – сработала автоматическая защита, обнаружившая несимметричность мощности в разных частях реактора. Персонал начал снова выводить реактор на минимально контролируемый уровень мощности. И вот тут началась авария.
Результат - разрушено 32 тепловыделяющих сборки и один технологический канал. В контур многократной принудительной циркуляции (КМПЦ – трубы, по которым вода проходила по замкнутому маршруту реактор-турбина-реактор) и графитовую кладку попало большое количество радиоактивных веществ. Система фильтрации не справилась с количеством этих веществ во время очистки оборудования, а потому они были выброшены за пределы станции. Загрязнение коснулось Ленинградской области, а также стран Скандинавского полуострова. Оценки общей активности, выброшенной за пределы ЛАЭС колеблются от 137 тысяч до 1.5 миллиона Кюри. Авария была мгновенно засекречена, так как проходила в ведомости лишь одного министерства – среднего машиностроения, отвечавшего за всю советскую атомную программу, а также эксплуатацию ЛАЭС. По итогам расследования аварии была произведена серьёзная модернизация изначального проекта реактора РБМК – увеличили количество стержней СУЗ, ввели системы локального автоматического регулирования (ЛАР) и локальной автоматической защиты (ЛАЗ), ограничили минимальный ОЗР 15 стержнями, закрепив это регламентом.
В статье инженера-физика Виталия Абакумова, присутствовавшего при аварии на ЛАЭС и являвшегося непосредственным участником событий, хорошо описаны причины, толкнувшие персонал на нарушение регламента, приведшее в итоге к аварии.
В конечном итоге Карраск и его коллеги получили выговор
Молодой Карраск. Питерцы, запомните это лицо — он спас вас от Чернобыля в Ленобласти
Именно такая порочная практика позже сыграла свою роль и на ЧАЭС, да и вообще много где.
Рабочая программа испытаний турбогенератора № 8 Чернобыльской АЭС в режимах совместного выбега с нагрузкой собственных нужд
За сложным названием скрывается простая в принципе идея. Если в результате аварии станция будет отключена от сети, а реактор нужно будет заглушить, то необходимо будет обеспечить электроснабжение защитных систем на самом опасном этапе расхолаживания (охлаждения) реактора, когда он ещё на высокой мощности. Энергию предполагалось брать из выбегающего генератора. Дело в том, что вращение турбины, а значит, генерация энергии прекращается не сразу после отключения реактора, ведь у турбины большая инерция. Это называется выбегом. Соответственно, предполагалось, что обеспечиваться системы охлаждения реактора будут от выбегающего генератора. Идея выдвигалась в том числе и главным конструктором, и научным руководителем. Формально эксперимент проводился по заявке предприятия Донтехэнерго.
Впервые эксперимент был проведён в 1982 году на третьем энергоблоке ЧАЭС. Тогда потребовалось доработать ряд систем турбогенератора. В 1984 и 1985 годах снова проводились такие испытания, их не смогли завершить по техническим причинам. Нужно отметить, что постепенно эксперименты усложнялись. Так, начиная с 1984 года, для проведения эксперимента выводилась из работы система аварийного охлаждения реактора (САОР), а начиная с 1985 – к сети подключали два главных циркуляционных насоса (ГЦН). 26 апреля 1986 года эксперимент до конца довести смогли и записали все необходимые параметры. После этого была отдана роковая команда глушить реактор.
Нужно отметить, что очень часто блокировку САОР ставят в вину персоналу, в том числе и первая советская комиссия. Однако все последующие комиссии, а в частности, комиссия Госпроматомэнергонадзора 1991 года во главе с Н.А. Штейнбергом, прямо заявляли:
…отключение САОР не повлияло на возникновение и развитие аварии, поскольку хронология основных событий, предшествовавших аварии, и хронология развития самой аварии, показали, что не было зафиксировано сигналов на автоматическое включение САОР. Таким образом, "возможность снижения масштаба аварии" из-за отключения САОР была не потеряна, а в принципе отсутствовала в конкретных условиях 26 апреля 1986 г.
Всё, декорации расставлены, пролог закончен, со следующей части приступаем к первому акту чернобыльской драмы.
Отравление реактора - это процесс накопления в нём короткоживущих продуктов деления, участвующих в непроизводительном захвате нейтронов и тем самым снижающих запас реактивности реактора при их образовании и, наоборот, высвобождающих его при их b-распаде.
Особенностями процесса отравления по сравнению с другими ранее рассмотренными процессами, приводящими к потерям запаса реактивности, является то, что:
Процесс отравления, как принято предполагать, вызывается накоплением только одного b-активного продукта деления - ксенона-135, - который характеризуется величиной стандартного микросечения поглощенияsa0 Xe = 2720000 барн, величинами удельного выходаgXe= 0.003 и периода полураспада Т1/2 Xe = 9.2 часа (или величиной постояннойb-распадаlXe= 2.09 . 10 -5 c -1 ).
Отравление - протекает существенно быстрее, чем процессы выгорания, шлакования и воспроизводства. Процессы отравления и переотравлений реактора ксеноном длятся не более трёх суток.
В отличие от указанных выше процессов, отравление - процесс обратимый: при возрастании концентрации ксенона-135 реактор отравляется(и теряет запас реактивности), при снижении концентрации ксенона - онразотравляется(что приводит к высвобождению положительной реактивности).
Если посмотреть на совмещённый график энергетических спектров для теплового, промежуточного и быстрого реакторов вместе с зависимостью сечения поглощения 135 Xe от энергии нейтронов Е (рис.19.1), то станет ясно, что отравление ксеноном существенно для тепловых реакторов, малосущественно - для промежуточных и несущественно - для быстрых реакторов.
Рис.19.1. Различия в поглощении нейтронов ксеноном-135 в тепловом, быстром и промежуточном реакторах.
Количественными мерамиотравления реактора ксеноном, подобно мерам оценки рассмотренных ранее процессов, являются:
относительная доля поглощаемых ксеноном нейтронов, равная отношению скоростей поглощения тепловых нейтронов ядрами ксенона и ядрами 235 U:
потери реактивности от отравления ксеноном, связанные с величиной доли поглощения нейтронов ксеноном (в любой момент времени) зависимостью:
где q- коэффициент использования тепловых нейтронов в неотравленном реакторе.
Схема образования и убыли 135 Xe и уравнения отравления реактора ксеноном
Схематически наиболее важные процессы, приводящие к изменениям количества накапливаемого ксенона-135, выглядят так:
on 1 + 235 U 135 Xe * + on 1 sa0 Xe = 2720000 барн 136 Xe *
bb
135 Te * 135 I * +оn 1 136 Ba 135 Cs *
Рис.19.2. Схема образования и убыли йода и ксенона и её упрощение.
Красным цветом на схеме выделены некоторые коррекции её, к которым обычно прибегают для упрощения описания процессов отравления реактора. Суть первого упрощающего допущения состоит в том, что, поскольку период полураспада теллура-135 во много раз меньше периода полураспада йода-135, можно приближенно считать, что йод-135 является непосредственным осколком реакции деления с фиктивным удельным выходом, равным величине истинного удельного выхода теллура-135. (В самом деле, если период полураспада теллура столь мал, что он распадается практически сразу после своего образования, то без особого ущерба для точности можно считать, что непосредственным продуктом реакции деления является не теллур, а его дочерний продукт - йод-135).
Второе упрощение состоит в том, что из-за малости микросечения поглощения йода-135 убылью его вследствие поглощения пренебрегаем.
На основании такой упрощённой схемы дифференциальное уравнение скорости изменения концентрации 135 Xe запишется как разность двух скоростей прибыли и двух скоростей убыли его:
Скорости прибыли Xe Скорости убыли Xe
dNXe/dt = gXe sf 5 N5 Ф(t) + lINI(t) - sa Xe NXe(t) Ф(t) - lXeNXe(t) (19.1.1)
как прямого как результат за счёт поглощения в результате его
продукта деления распада йода тепловых нейтронов распада
Полученное уравнение содержит две неизвестных функции (Nxeи NI), а потому для получения однозначного решения оно должно быть дополнено ещё одним уравнением с независимо фигурирующей в нём концентрацией NI(t). Скорость изменения концентрации 135 I является разницей скоростей образования 135 I (как непосредственного продукта деления) и убыли его (за счётb-распада):
Полученная система двух дифференциальных уравнений (19.1.1)¸(19.1.2) называетсясистемой дифференциальных уравнений отравления реактора ксеноном.
Стационарное отравление реактора ксеноном.
19.2.1.Суть стационарного отравления реактора ксеноном. В первоначальный момент работы на мощности реактор, как правило, разотравлен, то есть концентрации йода и ксенона в его твэлах - нулевые. Но при работе реактора концентрации того и другого начинают расти, и несложно представить себе, до какого уровня они будут расти. Поскольку скорость убыли ксенона прямо пропорциональна величине его концентрации (взгляните на последние два слагаемых (19.1.1)), то какой бы ни был характер его образования, рано или поздно количество накопленного ксенона достигнет такой величины, что скорость его убыли сравняется со скоростью его образования. В этом случае концентрация накопленного ксенона должна стабилизироваться по величине (то есть достигнутьстационарногозначения). И очевидно, что для достижения этого состояния реактор должен работать на постоянном уровне мощности и проработать на этом уровне мощности достаточно длительное время. Какое именно - увидим далее.
Стационарным называется отравление, свойственное реактору, длительно работающему на постоянном уровне мощности, в результате чего устанавливаются постоянные во времени концентрации йода и ксенона.
Таким образом, условиями стационарности отравления реактора ксеноном являются:
причём, последние два условия равносильны условиям:
19.2.2. Величина стационарного отравления ксеноном.Если подставить условия (19.2.1) и (19.2.2) в дифференциальные уравнения отравления реактора (19.1.1)-(19.1.2), последние перестают быть дифференциальными, становясь обычными алгебраическими линейными уравнениями:
Из уравнения (19.2.4) находится величина стационарной концентрации 135 I:
Отметим на будущее: величина стационарной концентрации йода-135 прямо пропорциональнавеличине уровня мощности, на котором работает реактор (так как величина концентрации 235 U в течение нескольких суток работы реактора на постоянной мощности уменьшается незначительно, величина мощности реактора оказывается пропорциональной величине плотности потока нейтронов в твэлах реактора Фо).
Величину стационарной концентрации ксенона проще всего найти, если почленно сложить уравнения (19.2.3) и (19.2.4):
И, следовательно, величина потерь реактивности при стационарном отравлении реактора ксеноном (в соответствии с формулой (19.2)):
Следовательно, потери запаса реактивности при стационарном отравлении реактора ксеноном определяются:
а) Величиной концентрации урана-235(иливеличиной обогащения топлива) - в той мере, в какой эта величина определяет величину коэффициента использования тепловых нейтроновq: чем больше концентрация N5- тем больше величинаq- и тем, следовательно, больше будет абсолютная величина потерь реактивности при стационарном отравленииrXe ст .
б) Величиной уровня мощности,на котором длительно работает реактор Np0(которая в течение относительно непродолжительного времени отравления прямо пропорциональна величине плотности потока тепловых нейтронов в топливе реактора Фо). Эта зависимость отравления реактора от его мощности настолько важна для эксплуатационника, что есть смысл остановиться на ней подробнее.
Зависимость стационарного отравления ксеноном от мощности реактора. Если подставить в формулу (19.2.7) значения всех известных физических констант, а именно:sa Xe = 2.72 . 10 -18 см 2 ,sa 5 = 680.9барн,sf 5 = 582.3барн,gI= 0.06,gXe= 0.003 иlXe= 2.1 10 -5 c -1 , то выражение дляrXe ст примет более простой вид:
Небольшой расчёт по этой формуле позволяет убедиться, что:
В интервале промежуточных значений Фо(10 11 ¸10 13 нейтр/см 2 с) -свойственных энергетическим реакторам АЭС - зависимость величины стационарного отравления от величины плотности потока нейтронов в твэлах реактора имеет нелинейно возрастающий характер:
Рис.19.3. Качественный вид зависимости величины стационарного отравления реакторов ксеноном от величины средней плотности потока тепловых нейтронов в топливе твэлов.
Эксплуатационника в большей степени интересует не эта зависимость, имеющая, скорее, академический характер, а практическое приложение её к конкретному реактору, которым он управляет. Но вы, конечно, понимаете, что в любом конкретном реакторе каждому значению мощности реактора соответствует своё значение средней плотности потока тепловых нейтронов, и в любой момент кампании это соответствие - однозначное. А это значит, что участок теоретической кривой, показанной на рис.19.3, можно пересчитать (и перестроить) в график зависимости стационарного отравления конкретного реактора от его уровней мощности (рис.19.4). Этот график практики кратко называют кривой стационарных отравлений.Обычно он строится в натуральном масштабе, то есть величина мощности реактора выражается либо абсолютно (в МВт), либо в относительных единицах (чаще всего в процентах от номинальной мощности реактора).
Кривая стационарных отравлений позволяет быстро оценивать величину потерь реактивности реактора вследствие стационарного отравления ксеноном на любом уровне мощности.
Рис.19.4. Типичный качественный вид кривой стационарных отравлений реактора.
По этой кривой (построенной в удобном масштабе) легко находятся величины стационарного отравления реактора на любом уровне мощности реактора.
19.2.4. Характер роста потерь запаса реактивности из-за отравления 135 Xe первоначально разотравленного реактора в первый период работы на постоянном уровне мощности. Если реактор запускается после достаточно длительной стоянки и работает на постоянном уровне мощности, то величина потерь реактивности с момента начала работы на мощности от нуля через некоторый отрезок времени в соответствии со всем сказанным ранее должна достигнуть стационарного уровня. Практика должны заинтересовать, по крайней мере, два вопроса: каков характер роста потерь реактивности до достижения уровня стационарного отравления и за какое время работающий на постоянном уровне мощности реактор достигает стационарного отравления ?
Характер роста потерь реактивности при выходе реактора на стационарное отравление выясняется из решения системы дифференциальных уравнений отравления реактора при нулевых начальных условиях и условии Ф(t) = idem = Фо. Решение уравнений и переход от концентраций Nxe(t) к потерям реактивности за счёт отравления ксенономrXe(t) даёт следующее выражение для переходного процессаrXe(t):
Формула (19.2.8), если мысленно подставить в неё все нейтронно-физические константы, обретает существенно более простой вид, который подсказывает, что текущие величины отравлений реактора ксеноном нелинейно зависят от уровня мощности реактора (или Фо). Расчёт по этой формуле для различных величин Фо(в том числе и для Фо=¥)) качественно иллюстрируется графиком, представленным на рис.19.5. Из него следует, что при малых значениях плотности потока тепловых нейтронов (или на малых уровнях мощности реактора) переходный процессrXe(t) протекает в несколько более замедленном темпе, чем при больших значениях Фо(на больших уровнях мощности). Предельный случай этих переходных процессов (при Фо®¥) вырождается в одну экспоненту:
поскольку при Фо®¥первая из экспонент формулы (19.2.8) обращается в нуль, а коэффициент перед второй экспонентой - в единицу
Рис.19.5. Переходные процессы нестационарного выхода первоначально разотравленного реактора на стационарный уровень отравления.
Факт не очень существенной зависимости переходных процессов rXe(t) от плотности потока нейтронов (практически - от мощности реактора) даёт возможность с достаточной для практических целей точностью приближенно оценивать величины текущих значений отравления реактора ксеноном по формуле (19.2.9):
справедливой, строго говоря, только для идеального случая бесконечно больших мощностей реактора.
И оказывается практически неважным, на каком уровне мощности работал реактор эти двое суток, так как после 47 часов все экспоненты практически сливаются в одну. Итак, запомним:
Время практического наступления стационарного отравления реактора, работающего на любом неизменном уровне мощности составляет двое суток.
После этого, если реактор продолжает работать на этом же уровне мощности, величина отравления реактора ксеноном не изменяется. А это значит, что оператору после наступления стационарного отравления не придётся предпринимать действий по компенсации изменений реактивности реактора, необходимых для удержания реактора в критическом состоянии на заданной мощности.
Читайте также: