Что такое механическая характеристика стартера
Система пуска состоит из стартера, аккумуляторной батареи, цепи стартера и средств облегчения пуска.
Особенностью системы пуска автомобильных двигателей является то, что мощности аккумуляторной батареи и стартера близки между собой. Поэтому при пуске двигателя напряжение аккумуляторной батареи значительно изменяется в зависимости от тока, потребляемого стартером. В таких условиях на пуск двигателя большое влияние оказывают состояние аккумуляторной батареи (ее температура, степень заряженности, износ), состояние цепи стартера и применяемые средства облегчения пуска двигателя.
В качестве стартера применяют электродвигатели постоянного тока последовательного или смешанного возбуждения. На рис.147 изображены электромеханические характеристики стартера. С ростом тока, потребляемого стартером, его крутящий момент растет, а частота вращения якоря уменьшается. Кривая мощности стартера имеет вид параболы. Якорь стартера при холостом ходе будет иметь максимальную частоту вращения. Крутящий момент стартера в этот момент будет равен нулю. При снижении напряжения аккумуляторной батареи снижается частота вращения якоря стартера и его мощность (штриховые линии на рис.147).
В момент пуска стартер связан с двигателем зубчатой передачей, основными параметрами которой являются передаточное число привода iдс=zmax/zc — число зубьев венца маховика, zc — число зубьев шестерни стартера, а также модуль зуба и коэффициент полезного действия зубчатой передачи (равен 0,85—0,9). Передаточное число iдс в зависимости от типа двигателя находится в пределах 10—16.
Чтобы пустить двигатель, стартер должен преодолеть его момент сопротивления, который представляет собой сумму моментов сил трения, сжатия, привода вспомогательных механизмов, установленных на двигателе (воздушный компрессор, масляный насос, топливный насос на дизелях и т.д.), а также преодоления сил инерции вращающихся и поступательно движущихся масс двигателя.
Минимальной пусковой частотой вращения коленчатого вала (рис.148) называют частоту, при которой обеспечивается пуск двигателя за две попытки с продолжительностью попыток 10 с для карбюраторных двигателей и интервалом между попытками в одну минуту.
Для всех двигателей характерно увеличение минимальной пусковой частоты вращения с понижением температуры пуска. Чем больше число цилиндров, тем ниже пусковая частота вращения двигателя. У дизельных двигателей пусковая частота вращения значительно выше, чем у карбюраторных двигателей.
Применение средств облегчения пуска двигателя (см. §19.3) значительно снижает минимальную пусковую частоту вращения и облегчает пуск холодных двигателей. Для пуска двигателя необходимо не только сообщить коленчатому валу скорость, превышающую минимальную пусковую, но и повернуть вал определенное число раз (2—3), чтобы в цилиндрах двигателя образовалась рабочая смесь, которую может воспламенить искра.
Стартер во время эксплуатации автомобиля работает со значительной нагрузкой. Так, средняя частота его включений на 100 км пробега составляет для легковых автомобилей в условиях города 28, а для грузовых — 22 (город и пригороды). С увеличением суточного пробега автомобиля частота включений снижается. Средняя продолжительность горячих пусков 0,7—1,5 с, а холодных— 3—10 с.
Если совместить механическую характеристику двигателя (зависимость момента сопротивления от частоты прокручивания) и механическую характеристику стартера, то точка их пересечения определит частоту, с которой будет прокручиваться вал двигателя при пуске (рис.149). Чем ниже температура двигателя, тем больше момент сопротивления двигателя прокручиванию и хуже механическая характеристика стартера за счет снижения температуры аккумуляторной батареи, а следовательно, и меньше частота прокручивания вала двигателя при его пуске.
Повышение частоты вращения коленчатого вала двигателя при его холодном пуске может быть достигнуто снижением момента сопротивления и повышением температуры аккумуляторной батареи. Момент сопротивления двигателя снижают применением зимних марок моторных масел и подогревом двигателя, а повышение пусковых качеств батареи — хранением ее в теплом помещении в период стоянки автомобиля на улице при низких температурах.
Устройство стартера.
Стартер (рис.150) состоит из корпуса 15, якоря 16, крышек 9 (со стороны привода) и 19 (со стороны коллектора), привода стартера, включающего муфту свободного хода 12, шестерню 11 и поводковую муфту 14. На корпусе стартера укреплено тяговое реле.
Корпус стартера изготовляют из стали 10. Он может быть сварным или выполненным из цельнотянутой трубы. Полюса 21 получают горячей штамповкой из стали 10. Крышка 9 отливается из чугуна или алюминиевого сплава. Крышка 19 отливается из алюминиевого сплава. На задней крышке укреплены щеткодержатели 23 коробчатого типа. На стартерах большой мощности применяют щеткодержатели, в которых устанавливают по две щетки в один ряд.
Обмотка возбуждения 20 изготовляется из медной шины с небольшим числом витков. В небольших стартерах обмотки возбуждения включаются последовательно, в стартерах средней и большой мощности — параллельно-последовательно. В этом случае сопротивление четырех катушек (на четырех полюсах) будет равно сопротивлению одной катушки. Якорь стартера набран из пластин электротехнической стали с целью снижения его нагрева вихревыми токами.
Муфта свободного хода (рис.151, а, г) роликового типа может перемещаться по спиральным шлицам вала стартера. На втулке 1, имеющей внутренние шлицы, укреплена обойма 8. В ней имеются четыре клиновидных паза, в которых установлены ролики 10, ролики отжимаются в сторону узкой части паза плунжером 13 с пружиной 14. Шестерня 12 выполнена заодно со ступицей 11.
При включении стартера крутящий момент от втулки 7 передается роликами 10 на ступицу шестерни. В этом случае ролики заклинены (рис.151, б) между ступицей шестерни и обоймой 8. Как только двигатель будет запущен, ступица шестерни станет ведомой (ведущим будет зубчатый венец маховика), ролики 10 расклиниваются и муфта начинает пробуксовывать (рис.151, в). На рис.151, г показана конструкция бесплунжерной муфты свободного хода, применяемой на новых типах стартеров (СТ-230 и др.). Бесплунжерная конструкция обеспечивает более надежную работу муфты. В стартерах большой мощности муфты свободного хода не применяются, так как в этих условиях они работают ненадежно.
На рис.152 изображены механизмы привода стартеров дизельных двигателей. На стартере СТ-142 применен храповой механизм привода (рис.152, а, в). Детали привода расположены на направляющей втулке 1, имеющей прямые внутренние шлицы и многозаходную ленточную наружную резьбу. Втулка вместе с приводом может перемещаться по шлицам вала стартера. На наружной резьбе втулки 7 расположена ведущая полумуфта 8. Ведомая полумуфта 13 выполнена за одно целое с шестерней и может свободно вращаться на втулке 7 в бронзовых графитированных подшипниках. Торцы полумуфт снабжены зубцами и прижимаются один к другому пружиной 7. Ведомая полумуфта 13 заперта в корпусе 5 замковым кольцом 10. Замковое кольцо 2 удерживает корпус 5 от перемещения на втулке 7. Для амортизации ударов при включении стартера под пружиной 7 размещены стальная шайба 6 и кольцо 4.
Для предотвращения изнашивания зубьев храповой муфты и снижения шума в момент, когда двигатель пущен и стартер еще не выключен, предусмотрен механизм блокировки. Внутри ведомой полумуфты 13 находятся три пластмассовых сухаря 12 с радиальными отверстиями, в которые входят направляющие штифты 11. Наружная поверхность сухарей имеет коническую фаску, прилегающую к выточке стального кольца 9, установленного в ведущей полумуфте 8. Кольцо 9 прижимает сухари 12 к направляющей втулке 7.
При передаче крутящего момента к венцу маховика двигателя возникает осевое усилие, прижимающее ведущую полумуфту к ведомой. Как только двигатель будет пущен, произойдет пробуксовка храповой муфты. Во время пробуксовки ведущая полумуфта 8 отодвигается от ведомой полумуфты 13, сжимая пружину 7. Вместе с ведущей полумуфтой 8 отодвигается кольцо 9, освобождая сухари 12, которые под действием центробежных сил перемещаются вдоль штифтов 11 и блокируют муфту в расцепленном состоянии. После выключения стартера ведущая полумуфты 8 под действием пружины 7 прижимается к ведомой полумуфте 13 и кольцо 9 устанавливает сухари 12 в исходное положение.
При упоре шестерни стартера в зубья венца маховика корпус 5 привода вместе с направляющей втулкой 7 продолжает перемещаться вдоль шлицев вала стартера, сжимая пружину 7. При этом ленточная резьба втулки 7 заставляет поворачиваться ведущую полумуфту 8 и шестерню стартера (до 30°), что обеспечивает ее зацепление с венцом маховика. Храповичный привод допускает до 5% упоров шестерни стартера в венец маховика от общего числа включений.
Достоинством описанного привода является то, что при отдельных вспышках в цилиндрах двигателя муфта не выходит из зацепления, тем самым обеспечивая надежность пуска холодного двигателя.
Стартер СТ-103 для дизельных двигателей ЯМЗ имеет принудительно-инерционную конструкцию приводного механизма, изображенную на рис.152, в. На спиральных шлицах вала 14 якоря стартера установлены гайка 18 и шестерня 19. Между гайкой и хвостовиком шестерни помещена пружина 7. На вал якоря свободно надет стакан, имеющий спиральный паз 21. На опорной втулке стакана размещены буферная пружина 17 и шайба 6.
Ход шестерни на валу ограничивает упорное кольцо 20. При включении стартера тяговое реле, действуя на рычаг, перемещает ведущую гайку 18 вместе с шестерней до упорного кольца 20. Если происходит упор зубьев шестерни в венец маховика, то ведущая гайка 18 сжимает пружину 7 и поворачивает шестерню 19, так как шлицевые пазы в шестерне шире шлицев вала.
В первый момент пуска двигателя стакан 15 повертывается благодаря трению и по спиральному пазу 21 отводится назад в исходное положение, освобождая место для отхода шестерни. Как только двигатель будет пущен, венец маховика начнет вращать шестерню стартера и она по спиральным шлицам отойдет в первоначальное положение.
При наличии на стартере тягового реле стартер включается подключением обмоток тягового реле к аккумуляторной батарее. Это подключение на автомобилях с дизельными двигателями осуществляется с помощью выключателя стартера, контакты которого рассчитаны на ток, потребляемый тяговым реле. На автомобилях с карбюраторными двигателями, у которых мощность стартера значительно ниже, тяговое реле включается через выключатель зажигания. Однако контакты выключателя зажигания не рассчитаны на силу тока, потребляемую тяговым реле в момент включения (30—40 А), поэтому приходится ставить реле стартера, контакты которого включают обмотки тягового реле, а обмотки реле стартера включаются через выключатель зажигания.
На рис.153, а, б приведены электрические схемы включения стартера СТ-130 на автомобиле ЗИЛ-130, когда система электрооборудования имеет генератор постоянного и переменного тока. Если система электрооборудования имеет генератор постоянного тока, то обмотка реле стартера (PC) включается в цепь, через якорь генератора (см. стрелки на рис.150, а). В этом случае обмотка реле стартера находится под разностью напряжений батареи и ЭДС генератора. Такое включение обмотки реле стартера обеспечивает автоматическое отключение стартера, как только двигатель завелся, и невозможность его включения при работающем двигателе.
При повороте вправо ключа в выключателе S появляется ток в обмотке реле стартера и замыкается его контакт PC, включая ток в обмотке тягового реле ТР. Сердечник тягового реле перемещается и замыкает его главные контакты, включая стартер. Одновременно замыкаются дополнительные контакты тягового реле, шунтирующие добавочное сопротивление R катушки зажигания.
Главные контакты тягового реле, замыкаясь, шунтируют втягивающую обмотку ВО реле, чем значительно снижается ток, потребляемый тяговым реле, так как якорь реле удерживается только удерживающей обмоткой УО. Если в схеме с генератором переменного тока отсутствует блокировка стартера, необходимо сразу после запуска двигателя отпустить ключ выключателя зажигания, чтобы быстрее вывести шестерню стартера из зацепления с венцом маховика. Дальнейшее развитие конструкции стартеров с целью повышения их электротехнических характеристик, экономии меди и снижения массы идет в следующих направлениях:
ü применяют торцовые коллекторы с целью улучшения коммутации и повышения срока службы щеток, снижения расхода меди и сокращения осевой длины стартера;
ü заменяют обмотки возбуждения постоянными магнитами, что улучшает электрические характеристики стартера, значительно сокращает расход меди, снижает диаметр корпуса при той же мощности стартера, снижает частоту вращения стартера в режиме холостого хода;
ü применяют стартеры с встроенным в его корпус редуктором, что позволяет снизить массу стартера и увеличить передаточное число от стартера к двигателю и, следовательно, улучшить характеристики системы пуска двигателя.
В стартерах применяются электродвигатели постоянного тока. Для анализа особенностей их работы в системе пуска рассмотрим основные характеристики электродвигателей постоянного тока, которые подразделяются на двигатели последовательного, параллельного, смешанного и независимого возбуждения. Тип возбуждения определяется схемой включения обмоток возбуждения по отношению к якорной пени. Электромеханические параметры электродвигателя определяются выражениями:
где U—напряжение, подводимое к электродвигателю от источника питания; RЯ — активное сопротивление цепи якоря; Е— противо-ЭДС якоря; Ф — магнитный поток; п — частота вращения якоря; М— момент электродвигателя; Iя —ток якоря; Се. См —конструктивные постоянные;
р — число пар полюсов; а — число пар параллельных ветвей обмотки якоря; N — число проводников обмотки якоря.
Из выражений (1) - (3) можно получить формулы для определения частоты вращения:
В электродвигателях, с последовательным возбуждением обмотка возбуждения включается последовательно с обмоткой якоря, и поэтому Iя = IВ (рис. 2, а).
Рисунок 2 Схема двигателя с последовательным возбуждением (а) и его электромеханические (б) и механическая (в) характеристики
Следовательно, магнитный поток двигателя Ф является некоторой функцией тока якоря IЯ. Характер этой функции изменяется в зависимости от нагрузки двигателя. При токе якоря IВ < (0,8 - 0,9) Iном (Iном — номинальный ток якоря), когда магнитная система машины насыщена, можно считать, что поток линейно зависит от IЯ :
где кф — коэффициент пропорциональности, имеющий размерность индуктивности (Гн), остается практически постоянным в значительном диапазоне нагрузок. Подставляя (6) в уравнения (3) и (4), получим токоскоростную и моментную характеристики , в этом диапазоне в виде:
- постоянные, т.е. в диапазоне от 0 до Іном зависимость имеет гиперболический характер (при ), а зависимость - параболический (рис.2, б).
При дальнейшем возрастании тока якоря поток Ф растет медленнее, чем , и при больших нагрузках ( > Іном) можно считать Ф = const.
В этом случае скоростная и моментная характеристики становятся линейными аналогично характеристикам двигателя с независимым возбуждением.
Механическая характеристика (рис. 2, в) может быть построена на основании уравнений (7) и (8). При токе якоря, меньшем (0,8 . 0,9) Іном, частота вращения изменяется по закону
При токе якоря, большем Іном, зависимость становится линейной.
Поэтому при изменении нагрузочного момента в широких пределах, что характерно для пуска ДВС, мощность Рс, а следовательно, и электрическая мощность , и ток у двигателей с последовательным возбуждением изменяются в меньших пределах, чем у двигателей с параллельным возбуждением. Кроме того, они лучше переносят перегрузки. Двигатель с последовательным возбуждением развивает больший пусковой момент, чем двигатель с параллельным возбуждением.
Таким образом, в стартерах используются двигатели постоянного тока с последовательным возбуждением. В отдельных случаях, рассмотренных ниже, используются двигатели со смешанным возбуждением. В последние годы на стартерах стали применяться электродвигатели с возбуждением от постоянных магнитов, которые имеют пониженное энергопотребление вследствие отсутствия тока возбуждения. Однако такие стартеры имеют недостатки, характерные для электродвигателей независимого (параллельного) возбуждения. Кроме того, материал для изготовления постоянных магнитов еще очень дорог. Постоянные магниты используются только в маломощных стартерах.
Свойства электродвигателей оценивают по рабочим и механическим характеристикам. Рабочие характеристики - совокупность зависимостей напряжения на выводах стартера Uct; полезной мощности Р2; полезного момента на валу стартера М2; частоты вращения n; угловой скорости w; КПД n от тока якоря Iя. Эти характеристики строятся на одном графике. Механические характеристики - n =f(М2);
Скоростная, моментная и механическая характеристики зависят от магнитного потока и его изменения с изменением режима работы электродвигателя, то есть от способа возбуждения электродвигателя.
Магнитный поток в рабочем воздушном зазоре зависит от МДС на пару полюсов, т.е. от силы тока возбуждения IВ и числа витков в обмотке возбуждения.
|
26. Особенности конструкции и преимущества стартеров с постоянными магнитами и встроенным редуктором
При использовании постоянных магнитов исключается сопротивление обмотки возбуждения, которое составляет 0.3..0.5 суммарного сопротивления стартера. Как выше отмечалось мощность стартера определяется величиной суммарного сопротивления всех элементов цепи пусковой системы. Исключение обмотки возбуждения позволяет применить АКБ с большим внутренним сопротивлением и соответственно меньшей емкости при сохранении той же мощности. В результате можно сделать вывод, что применение постоянных магнитов в стартере позволяет снизить потребную емкость аккумуляторной батареи.
Еще одним положительным свойством стартеров с постоянными магнитами является меньшее проявление действия реакции якоря. Как выше отмечалось за счет анизотропных свойств магнита поток реакции якоря замыкается через корпус и поэтому получается значительно меньшим по величине по сравнению с аналогичной конструкцией с электромагнитным возбуждением. В стартерах с постоянными магнитами этот поток может быть еще больше ослаблен за счет выполнения прорезей вдоль корпуса по центру магнита, что еще больше увеличит магнитное сопротивление потоку поперечной реакции якоря. Уменьшение потока реакции якоря благотворно сказывается на коммутации.
Преимуществом стартеров с редуктором является возможность сделать электродвигатель стартера более высокооборотным, а следовательно и меньших габаритов, чем стартер той же мощности без редуктора. При этом резко снижается расход дефицитной и дорогостоящей меди. Еще большая экономия меди возможна благодаря применению постоянных магнитов вместо обмоток возбуждения.
Повышение быстроходности электродвигателя и применение редуктора требует для обеспечения надежной работы стартера:
· более высокого уровня технологии изготовления деталей стартера;
· применения новых конструктивных решений в конструкции стартера;
· применения новых материалов и новых технологий их получения.
Все это делает изготовление узлов стартера более дорогостоящим. Однако, затраты на производства окупаются за счет снижения металлоемкости и улучшения эксплуатационных качеств стартера. Стартер меньших габаритов и меньшей массы более удобен при компоновке его на ДВС. Решение задач связанных с производством стартеров с редуктором требует больших капитальных затрат, но несмотря на это производство стартеров со встроенным редуктором экономически выгодно.
Анализ конструкции и технологии стартеров с редукторами показывают, что для зарубежных фирм, решивших указанные выше конструкторские, материаловедческие и технологические проблемы, их производство не только дает экономию металла, но и является более выгодным, чем современное производство стартеров классической конструкции.
При одинаковой мощности масса стартера со встроенным редуктором на 25 40 % ниже массы стартера классической конструкции.
Стартеры с редуктором использовались на автомобиле уже давно, но до последнего времени встречались очень редко. Повышение мощностей двигателей, устанавливаемых на автомобилях, требовало использовать более мощные стартеры, а повышение компактности ДВС требует и более компактные стартеры. Дополнительно возникли проблемы с материальными ресурсами, в частности дефицит меди. В то же время возросший уровень технологии производства сделал возможным реализовать в массовом производстве конструкции стартеров с редукторами. Все эти причины привели к широкому использованию в настоящее время стартеров с редуктором.
Передаточное отношение редуктора, как правило, лежит в пределах 2,5. 4, в среднем 3,3.
Для стартеров с возбуждением от постоянных магнитов передаточное отношение выполняют более высоким (5 – 6).
В ряде случаев применение встроенного в стартер редуктора позволяет применить приводную шестерню с увеличенным числом зубьев до z=12, против обычного для стартеров без редуктора z =9. 10. Это улучшает условия зацепления шестерни стартера с зубчатым венцом маховика ДВС за счет увеличения степени перекрытия передачи и, в некоторой степени, КПД этой передачи.
Основные схемы редукторов стартера
Разработаны и серийно выпускаются стартеры с редукторами следующих типов:
Тип I цилиндрический редуктор с внешним зацеплением;
Тип II цилиндрический редуктор с внутренним зацеплением;
Тип III планетарный редуктор;
Тип IV Цилиндрический редуктор с паразитной шестерней.
Все редукторы этих типов выполняются одноступенчатыми, с прямозубыми шестернями. Схематическое изображение редукторов различных типов и их кинематические схемы показано на Рис. Помимо этого встречаются конструкции стартеров с двухступенчатыми редукторами.
За счет большого смещения шестерен стартер с редуктором типа I имеет значительный поперечный габарит, который возрастает с увеличением передаточного отношения. Преимуществом редуктора такого типа является технологичность изготовления его шестерен.
К недостаткам относится:
· значительное увеличение поперечного габарита по сравнению со стартерами без редуктора;
· радиальная нагрузка на якорь стартерного электродвигателя, что требует обязательного применения подшипников качения.
Стартер с редуктором типа II цилиндрический с внутренним зацеплением имеет несколько меньший поперечный габарит, чем стартер с редуктором типа I. Редуктор типа II несколько сложнее в изготовлении за счет наличия шестерни с внутренним зубом.
Стартер с планетарным редуктором (тип III) не имеет смещения оси корпуса относительно крышки со стороны привода, что позволяет наиболее просто компоновать стартер на двигателе и исключает сложности в его применении взамен стартеров без редуктора.
Внешне стартер с планетарным редуктором практически идентичен стартеру без редуктора. Габариты и масса стартера с планетарным редуктором значительно меньше стартеров без редуктора при тех же характеристиках. Планетарный редуктор имеет более высокий коэффициент полезного действия, чем редукторы типа I и II. Кроме того, он значительно снижает радиальные нагрузки на вал якоря стартерного электродвигателя, что улучшает условия работы подшипников якоря и дает возможность применить для вала подшипники скольжения. Технологически этот редуктор несколько сложнее редукторов типа I и II, однако, его сборка несколько проще по сравнению с ними за счет соосности основных деталей стартера. Коронная шестерня выполняется как правило из пластмассы.
Стартеры в редуктором типа IV цилиндрический с паразитной шестерней имеют продольный габарит близкий к габариту стартера без редуктора. Это достигается тем, что реле стартера расположено соосно приводной шестерне. КПД редуктора несколько ниже, чем у редукторов типа I и II. Отличительной особенностью редуктора является применение паразитной шестерни, расположенной между ведущей шестерней, закрепленной на наружной обойме роликовой муфты свободного хода. Все шестерни выполняются прямозубыми, с наружными зубьями. Паразитная шестерня установлена на роликовом подшипнике на оси, закрепленной в корпусе редуктора, в котором также размещен привод.
Типовая конструкции планетарного редуктора.
Основной конструктивной особенностью стартеров является их компоновка, отличающаяся от классической конструкции соосным расположением привода тягового реле стартера. При этом оси стартерного электродвигателя и привода не совпадают. Кинематически вал стартерного электродвигателя связан с выходным валом стартера посредством цилиндрического прямозубого редуктора с внешним зацеплением. По компоновочной необходимости в редуктор введена промежуточная паразитная шестерня. Ведущая шестерня редуктора выполнена заодно целое с валом стартерного электродвигателя. Ведомая шестерня расположена на приводе и выполнена заодно целое с наружной обоймой муфты свободного хода. Промежуточная шестерня вращается на роликовом подшипнике состоящем из пяти роликов установленных в пластмассовом сепараторе. Ось промежуточной шестерни запрессована в крышку редуктора.
С целью повышения компактности, ось промежуточной шестерни не лежит в плоскости осей электродвигателя и привода.
Ведущая шестерня редуктора съемная, соединяется с валом электродвигателя с помощью прямых накатных шлицев.
Подавляющие большинство современных стартеров с редуктором, разработанных и выпускаемых или подготавливаемых к выпуску зарубежными фирмами, имеют ПЛАНЕТАРНЫЙ РЕДУКТОР, что может быть объяснено хорошими компоновочными свойствами и достаточной надежностью и долговечностью стартеров с таким типом редуктора.
Электромеханическими характеристиками называется зависимость основных параметров стартерного электродвигателя (напряжения, частоты вращения, момента, КПД, мощности) от тока стартера Iс. Удобство использования электромеханических характеристик для анализа работы системы электростартерного пуска объясняется возможностью совмещать их с вольтамперными характеристиками аккумуляторных батарей.
Принципиальная электрическая схема включения стартера представлена на рисунке 3.
Рисунок 3 Принципиальная электрическая схема включения стартера
На рисунке 4 изображены зависимости падений напряжений на различных участках схемы в функции тока Iс. (баланс напряжений системы пуска).
Рисунок 4 Баланс напряжений
Ток Iст соответствует полностью заторможенному якорю стартера; при этом частота вращения пс = 0. В этом режиме все напряжение, Uст, подведенное к стартеру, равно падению напряжения на его внутреннем сопротивлении:
где — сопротивление обмоток возбуждения, — сопротивление обмотки якоря; 2 — сопротивление щеток и щеточного контакта.
Сопротивление зависит от частоты вращения, плотности тока под щеткой и материала щеток. В отличие от обмоток стартерного электродвигателя сопротивление является нелинейным. При нагрузках, в которых работает стартер, падение напряжения под щетками не превышает 1 . 2 В и мало изменяется от силы тока и частоты вращения. В этом случае можно принять, что падение напряжения на внутреннем сопротивлении стартера изменяется линейно от силы тока, потребляемого стартером (прямая UТ (/с) на рис. 4. Величину UТ называют тормозным напряжением.
Потери мощности на отдельных участках цепи при токе пропорциональны заштрихованной площади на рисунке 4, так как площадь графика в координатах напряжение – ток есть мощность. Площадь 3', 3, 4, 4' соответствует электромагнитной мощности, подведенной к якорю стартера, которая при изменении тока от 0 до Iст изменяется по параболе
имеющей корни Iс1 = 0 и
Выражение (1) имеет максимум при
Кривая РЭМ (/с) изображена на рисунке 4.
Электромеханические характеристики стартера показаны на рисунке 5.
Зависимости частоты вращения пс (Iс) и момента Мс(Iс)можно разбить на два участка: первый, когда магнитная система стартера не насыщена и магнитный поток Ф с ростом тока Iс резко увеличивается [до Iс < (0,8 . 0,9) Iсн, где Iсн — номинальный ток стартера], и второй, когда магнитная система насыщена и магнитный поток Ф почти не изменяется (Iс > (0,8 . 0,9) Iсн ). Характеристики пс (Iс) и Мс(Iс) на втором участке имеют почти линейный характер.
Рисунок 5 Электромеханические характеристики стартера
Механическая мощность на валу стартера:
меньше электромагнитной мощности РЭМ на величину потерь на трение и подшипниках и щеточном контакте, вентиляционных и магнитных потерь (перемагничивание и вихревые токи). Стартер потребляет электрическую мощность
преобразовывая ее в механическую с КПД
Максимум КПД электродвигателя стартера не превышает значений 0,5 . 0,6. Максимум мощности Рс не совпадает с максимумом КПД. На электромеханических характеристиках стартера можно выделить следующие режимы:
холостого хода, характеризуемый частотой вращения nгх, силой тока Iсх;
режим при максимуме КПД (характеризуется током Iсη шах).
Стартер автомобильный: запуск двигателя без рук
Чуть больше ста лет назад автомобили стали комплектоваться специальным устройством для запуска двигателя без применения мускульной силы — электрическим стартером. О том, что представляет собой современный автомобильный стартер, как он устроен и работает, а также об основных его неисправностях — читайте в этой статье.
История автомобильного стартера
У первых автомобилей был серьезный недостаток — сложность запуска двигателя. Долгое время машины заводились вручную, с помощью знаменитой кривой рукоятки, которая нанесла травмы и увечья очень и очень многим водителям. Уже в 1899 году была предложена идея электрического стартера, но в то время она не получила развития из-за недостаточного развития технологий.
Первый нормально работающий электрический стартер был установлен в 1912 году на серийном автомобиле Cadillac Model Thirty. Это был стартер, созданный еще в 1911 году американским изобретателем Чарльзом Кеттерингом (который за долгие годы своей деятельности создал немало изобретений, легших в основу современной автомобильной промышленности). В то время к электрическим стартерам относились с недоверием, и даже Генри Форд стал оснащать ими свои машины только с 1920 года!
Несмотря на распространение электрических стартеров, вплоть до 1980-х годов многие легковые (и практически все грузовые) автомобили предусматривали возможность запуска мотора с помощью рукоятки. Сейчас выпускаются очень надежные и качественные стартеры, поэтому запуск двигателя рукояткой — явление крайне редкое.
Устройство стартера
Большинство стартеров автомобилей — и легковых, и грузовых, и отечественного производства, и зарубежного — имеют примерно одинаковое устройство.
Основу стартера составляет электродвигатель постоянного тока, который, собственно, и проворачивает коленчатый вал двигателя при запуске. На валу электромотора находится шестерня и обгонная муфта (муфта свободного хода, или бендикс), причем шестерня может свободно перемещаться вдоль вала — это необходимо для соединения и разъединения шестерни с венцом маховика.
На корпусе стартера расположено тяговое реле, сердечник (якорь) которого посредством рычажного механизма соединен с шестерней электродвигателя. Тяговое реле необходимо для подключения и отключения стартера от маховика двигателя. На обратной стороне сердечника находится контактная пластина (тарельчатый контакт) реле стартера — с помощью этого реле на электродвигатель стартера подается напряжение от аккумуляторной батареи. Сердечник тягового реле при выключенном стартере пружиной выталкивается из соленоида и втягивается при пропускании тока через реле.
Конструктивно стартер состоит из трех блоков: цилиндрического корпуса электродвигателя, меньшего по диаметру цилиндрического корпуса тягового реле (с его обратной стороны расположены контакты реле стартера — обычно это два болта с гайками), и корпуса механизма привода — в нем расположен рычажный механизм и шестерня с обгонной муфтой.
Шестерня стартера и венец маховика образуют редуктор, передаточное число которого зависит от типа двигателя. Электродвигатель стартера различных автомобилей вращается с частотой 1500–5000 об/мин, однако для запуска бензиновых двигателей их коленвал необходимо два-три раза провернуть с частотой 40–50 об/мин, а дизельных — 80–250 об/мин. При запуске двигателя его коленвал вращается с частотой свыше 1000 об/мин, поэтому мотор стартера может получить избыточный крутящий момент (до 30 тысяч об/мин и более) и выйти из строя. Для предотвращения этого служит обгонная муфта (бендикс), которая отсоединяет шестерню от вала электродвигателя при ее слишком быстром вращении.
Работа стартера
В общем случае работа стартера сводится к следующему.
При запуске двигателя (ключом зажигания, кнопкой или по команде сигнализации) реле стартера (не путать это реле с тем, что установлено на стартере) замыкается и подает напряжение на тяговое реле. При втягивании сердечника тягового реле рычажный механизм толкает шестерню (и муфту) вперед по валу, приводя ее в зацеплении с венцом маховика. Интересно, что при этом шестерня не только движется вперед, но и немного прокручивается вдоль оси, что обеспечивает попадание ее зубьев между зубьями венца.
Одновременно с этим закрепленная на обратной стороне сердечника контактная пластина замыкает реле стартера — через него напряжение от аккумулятора подается на электромотор стартера, который несколько раз проворачивает коленчатый вал двигателя. Если все нормально, то не более чем через 2–5 секунд произойдет пуск двигателя.
При запуске двигателя стартер отключается (это производится или просто переводом ключа зажигания из крайнего положения в среднее, или автоматикой), пружина, установленная в тяговом реле, отводит шестерню от венца маховика. Также при запуске двигателя, пока шестерня не отошла от венца, обгонная муфта предотвращает передачу крутящего момента от маховика к стартеру.
При выключении стартера происходит включение реле блокировки — оно предотвращает возможность запуска стартера при работающем двигателе. Реле блокировки срабатывает при достижении определенного напряжения на выходных клеммах генератора.
Основные технические характеристики стартера
Стартер характеризуется несколькими основными параметрами:
- Напряжение питания (обычно соответствует напряжению бортовой сети автомобиля);
- Частота вращения;
- Потребляемый ток;
- Мощность.
Особо нужно отметить потребляемый ток стартера и его мощность. При запуске двигателя электромотор стартера испытывает колоссальные нагрузки, и за несколько секунд через него проходит ток от 500 до 1000 ампер в зависимости от типа двигателя. Мощность, отдаваемая стартером за это время, может варьироваться от 1 (легковые автомобили) до 9 (грузовики и спецтехника) кВт. А так как питается стартер от аккумуляторной батареи, то она должна обеспечивать необходимую силу тока — эту способность отображает такой параметр АКБ, как ток холодной прокрутки (или пусковой ток), и он должен быть не меньше рекомендуемого для данной модели автомобиля. В противном случае двигатель просто-напросто не заведется.
Основные неисправности стартера
Неисправности стартера сразу обращают на себя внимание — все они в итоге приводят или к затруднительному пуску двигателя, или вовсе к невозможности его завести. Есть несколько основных типов неисправностей, которые можно узнать по внешним проявлениям, в первую очередь, по скорости вращения стартера. Эти неисправности приведены в таблице:
Неисправности можно определить и по силе тока, протекающего в момент запуска по стартеру:
Другие статьи
В любом поршневом двигателе внутреннего сгорания присутствует деталь, соединяющая поршень с верхней головкой шатуна — поршневой палец. Все о поршневых пальцах, их конструктивных особенностях и способах установки, а также о верном подборе и замене пальцев различных типов подробно рассказано в статье.
На прицепах и полуприцепах иностранного производство широко применяются компоненты ходовой части от немецкого концерна BPW. Для монтажа колес на ходовой используется специализированный крепеж — шпильки BPW. Все об этом крепеже, его существующих типах, параметрах и применяемости читайте в материале.
Для монтажа автомобильных стекол в кузовные элементы используются специальные детали, обеспечивающие уплотнение, фиксацию и демпфирование — уплотнители. Все об уплотнителях стекол, их типах, конструктивных особенностях и характеристиках, а также о подборе и замене этих элементов — читайте в статье.
В практике авторемонта и при выполнении слесарно-монтажных работ возникает необходимость работы с резьбовым крепежом, имеющим неудобное положение или наклон. В этих ситуациях на помощь приходят карданные переходники для ключей — об этих приспособлениях, их конструкции и применении читайте в статье.
Читайте также: