Что происходит когда нажимаешь педаль газа в машине
В этом разделе рассказывается о педали газа, как о самом возбуждающем устройстве автомобиля. Скорость манит всегда, но этот зов должен уравновешиваться опасностями реального мира - вроде заполненных машинами улиц или знаков, ограничивающих скорость движения. Скорее всего, когда вы освоите приемы, изложенные этой книге, цифры на спидометре будут вас волновать меньше: предметами вашего обожания станут идеальная траектория в повороте, точное торможение и меньшее время прохождения любимого маршрута.
Неправильное использование педали газа является причиной большинства неспровоцированных аварий. Ничего удивительного: если подержать педаль газа открытой всего несколько секунд, цифры на спидометре большинства современных автомобилей станут трехзначными: они способны разгоняться до 100 километров в час за 4-8 секунд, и заметьте - это автомобили, которые продаются в магазинах.
Подержите педаль газа открытой подольше, и скорость перевалит за 150 километров в час. Возможно, вы тоже знаете участок дороги, позволяющий положить стрелку тахометра в красную зону на высшей передаче, хотя большинство российских дорог для таких опытов не годится.
Давайте не будем питать иллюзий - любой малограмотный водитель, сумеет максимально нажать на педаль газа. Это происходит каждый день, пополняя списки жертв неспровоцированных аварий, вызванных превышением скорости. Об этом говорят черные полосы на асфальте, начинающиеся прямо перед поворотом и упирающиеся в отбойник или дерево на обочине.
От включения к включению.
Обращайтесь с газом аккуратно. Плавно открывайте его. Прикрывайте его потихоньку. Медленно переходите от отрытого к закрытому газу. Всегда помните о том, что когда вы резко отпускаете педаль газа, автомобиль присаживается на переднюю ось, а когда резко нажимаете на педаль газа - он присаживается назад.
Почему большинство водителей неправильно пользуются педалью газа? Ответ кроется не только в отсутствии знаний, но и в психологии человека. Как только вы закроете газ, вы рефлекторно передвинете ногу в направлении педали тормоза. Тут-то и начинаются вещи пострашнее, чем приближающийся поворот или перекресток.
Когда вы слишком резко нажмете на тормоз, скорее всего, это приведет к блокировке колес. Вы, естественно, испугаетесь и нажмете на педаль тормоза еще сильнее. В результате ваш тормозной путь возрастет, часто с последствиями.
Итак, возвращаясь к истокам проблемы: старайтесь закрывать газ мягко и контролируемо, потому что это успокоит ваши нервы, даст возможность лучше почувствовать усилие, которое вы прикладываете к педалям. Закройте газ резко на низких оборотах и ничего страшного не произойдет. Сделайте ту же ошибку у ограничителя оборотов, и ваши колеса сорвутся в скольжение. Учитесь при любых обстоятельствах плавно, мягко и обдуманно пользоваться педалью газа - именно в ней спрятана ваша судьба.
Не отжигайте.
Агрессивный стиль вождения делает поездки по улицам опасными. Относитесь к педали газа уважительно, старайтесь нажимать на нее только плавными, мягкими движениями. Получая меньшие нагрузки при плавном движении автомобиля, ваш мозг лучше сможет воспринимать истинную скорость входа в поворот или оценить тормозной путь, потому что теперь ему не надо отвлекаться на панику. Ваш мозг может подумать о таких важных вещах, как скорость прохождения поворота, угол поворота, скорость вращения рулевого колеса, траектория.
Тренировка: делайте это медленно.
Довольно непросто научиться плавно обращаться с педалью газа, когда это необходимо, поэтому не рекомендую начинать с тренировок на большой скорости. Начните с малого - с первой передачи. Найдите пустую парковку или заброшенную дорогу и начинайте ускоряться и замедляться на разных оборотах. Поначалу нажимайте на педаль газа медленно, очень плавно, попеременно открывая и закрывая газ. Сконцентрируйтесь на движении правой ноги, оттачивайте ловкость в обращении с педалью. Когда у вас начнет получаться, увеличьте обороты и постарайтесь работать с газом так же плавно, но уже побыстрее. Найдите предел, когда вы можете максимально быстро закрывать и открывать газ, сохраняя плавность. Этот прием нужно особенно настойчиво тренировать тем, кто участвует в соревнованиях, потому что в условиях соперничества все действия инстинктивно становятся агрессивными. Применяйте этот прием при вождении автомобиля, карта, мотоцикла - всего, что имеет дроссель. Обратите внимание, как вы нажимаете педаль газа в машине. Заведи те привычку никогда не делать этого слишком резко. Вам обязательно нужно научиться плавной работе с газом, потому что иначе, когда вы начнете ездить быстрее, на грани возможностей вашего автомобиля любое резкое обращение с педалью газа, может закончиться трагически.
Прикрыт, но не закрыт - помните о ровном газе.
Тут главное - не перестараться. Любая неправильная работа с педалью газа грозит двумя неприятностями. Во-первых, мы знаем, что на дуге поворота при нажатии на педаль газа автомобиль стремится распрямить траекторию движения, поэтому можно промахнуться мимо апекса. Во-вторых, на переднеприводном и полноприводном автомобилях сброс газа может привести к заносу задней оси автомобиля (избыточной поворачиваемости). Ровный газ стабилизирует автомобиль, немного разгружая переднюю ось, слегка загружая заднюю, что дает водителю восхитительное чувство устойчивости. Запомните, цель ровного газа не ускорение, а стабилизация автомобиля в повороте.
Главное преимущество плавной работы газом - возросшая скорость, не больше и не меньше. Если автомобиль не раскачивается и не рыскает, спортсмен может спокойно думать о выборе передачи, скорости входа в поворот, сцеплении шин с дорогой и траектории. На самом деле, оценить сцепление с дорогой гораздо проще, если подвески ведут себя стабильно, а не сжимаются и разжимаются все время. Чем более плавно вы работаете с педалью газа, тем быстрее и комфортнее будете ездить.
Шины автомобиля и 100 единиц сцепления.
На какие сцепные свойства своих шин можно рассчитывать? Этот вопрос не имеет простого и однозначного ответа. Однако ответ всегда зависит от множества конкретных условий, именно это и развивает ваш интеллект при вождении автомобиля.
Хорошие гоночные шины цепляются за дорогу на 100 единиц. Жесткие шины, рассчитанные на большие пробеги, имеют те же 100 единиц. Самое главное - вы можете рассчитывать только на 100 единиц, больше просто не бывает.
Рассмотрим заднюю шину, заднеприводного автомобиля. Она расходует свои 100 единиц на обеспечение тяги и на уравновешивание центробежной силы. Если угол поворота рулевого колеса равен нулю, все 100 единиц идут на тягу, но как только автомобиль направлен в поворот, задним шинам придется отдать часть единиц на сопротивление центробежной силе. Если повернуть рулевое колесо до упора, почти все единицы пойдут на поворот и лишь немного останется на разгон. Если водитель повернет рулевое колесо в поворот так, что его автомобилю потребуется 97 единиц сцепления шин на борьбу с центробежной силой, а потом ускорится так, что ему понадобится еще 5 единиц на тягу, то это может привести либо к сравнительно безобидному сносу (недостаточной поворачи-ваемости), либо к заносу. Если резко нажать на педаль газа, ведущие колеса перегрузятся почти наверняка. Если же добавлять газ плавно, можно подобраться к 100 единицам вплотную и делать это абсолютно уверенно и предсказуемо в каждом повороте. Плавная работа правой ногой помогает выигрывать соревнования и безопаснее ездить по улицам. Обе цели стоят того, чтобы за них побороться.
Перебрать единицы можно многими способами. Мы рассмотрели ситуацию с автомобилем, который начинает ускоряться на дуге поворота. Ситуация может быть другой, но результат один - вы запрашиваете сцепления больше, чем есть у шины, поэтому она начинает скользить. Движение автомобиля на большой скорости в управляемом заносе - зрелище не для слабонервных, особенно если за рулем новичок. Он хочет ехать быстро и думает, что это означает больше газа. Он ошибается. А все потому, что не очень хорошо представляет себе возможности своего автомобиля. Итак, не важно, ускоряетесь ли вы или замедляетесь - от перемены мест слагаемых сумма не меняется. Как только требуемые единицы сцепления зашкаливают за 100, шина начинает скользить.
После того как вы вошли в поворот, нужно переходить от закрытого к ровному газу. Представьте себе легкое нажатие на педаль газа. Представьте лишь слегка натянувшийся трос газа. Представьте заслонку, открывшуюся на долю миллиметра. Представьте лишний миллиграмм топлива в цилиндрах двигателя. Представили? Это и есть тот самый ровный газ, который лучшие гонщики тренируют всю жизнь, это очень важное понятие.
Но в какой-то момент автомобиль нужно выводить из поворота. По мере того как уменьшается угол поворота передних колес, все больше единиц становится доступными для тяги. Вы можете плавно и равномерно добавлять газ по мере распрямления рулевого колеса. Вот вам и ответ на вопрос, когда можно ускоряться - как только вы видите выход из поворота и имеете возможность уменьшать угол поворота рулевого колеса. Представьте себе, что ступня вашей правой ноги соединена струной с пятном контакта заднего колеса. Когда автомобиль едет с максимальным углом поворота передних колес, вы не можете осуществить нажатие на педаль газа. Но как только начинаете распрямлять рулевое колесо, струна провисает и вы уже можете потихоньку добавлять газ. Именно так нужно разменивать "угловые" единицы на единицы тяги.
Главное - не открыть газ слишком рано. Автомобиль должен войти в поворот до того, как вы начнете нажимать на педаль газа. Яркий симптом слишком раннего открытия газа - широкое прохождение медленных поворотов: водитель нетерпеливо добавляет газ, передняя подвеска распрямляется и автомобиль увеличивает радиус. Итак, держите газ закрытым, пока автомобиль не повернет, и только потом переходите к ровному газу.
100 единиц под дождем.
Дождь, песок, разметка уменьшают не количество единиц, а величину единицы. Вы по-прежнему распределяете 100 единиц на борьбу с центробежной силой и на обеспечение тяги, только теперь сами единицы меньше, чем на сухом асфальте. Уменьшение сцепных свойств поверхности означает, что теперь предела можно достичь на меньшем газу и при меньшем угле поворота передних колес, однако вы по-прежнему должны уважительно относиться к их комбинации. При дожде правая нога должна быть еще медленнее и еще более плавным – руление.
Тренируйте правую ногу.
Когда в следующий раз поедете на автомобиле, попытайтесь закрывать газ максимально медленно. Обеспечьте себе достаточное время и дистанцию и полностью сфокусируйтесь на медленном отпускании педали газа. Обратите внимание, насколько быстро двигается правая нога. Постарайтесь закрывать газ мягко и сосредоточьтесь на мягком переходе к торможению.
При езде по автостраде попробуйте сбрасывать газ на разных оборотах. Обратите внимание, насколько труднее достичь плавности на высоких оборотах. При высшей передаче и небольших оборотах сбросить газ нетрудно, но попробуйте замедлиться с той же скорости на третьей передаче!
Перегазовка.
Перегазовка используется для более мягкого переключения передач, вниз и даже вверх. Перегазовка происходит, когда сцепление выжато и передача переключена.
В этот момент двигатель отсоединен от трансмиссии и может легко раскрутиться. Благодаря перегазовке он не выходит на обороты холостого хода во время переключения.
Перегазовка требует практики, зато вы не только станете мягче переключать передачи, но и продлите жизнь сцеплению. Каждое переключение вниз желательно сопровождать перегазовкой, это касается и автомобиля, и мотоцикла. Помимо того, что перегазовка бережет сцепление и сделает поездку более комфортабельной для пассажиров.
Уроки гоночной трассы.
Сцепные свойства шин меняются во время гонки.
Раннее и плавное прибавление газа.
Гонщик, который начинает добавлять газ в каждом повороте на 10 сантиметров раньше соперника, на эти же сантиметры увеличивает длину прямой следующей за поворотом. Ранний газ означает большее ускорение, и такой гонщик показывает при замерах максимальную скорость на прямой. Однако наиболее показательной является скорость сразу после апекса.
Относительно безболезненная тренировка.
Профессиональные пилоты постоянно ищут возможности совершенствовать навык управления газом. Большим подспорьем в этом являются зимние соревнования. Несколько часов, проведенные на льду, - что может быть лучше? Вдобавок это помогает научиться лучше почувствовать педаль газа, что полезно, особенно спортсменам, участвующим в кольцевых гонках.
Не переборщи с газом.
На кольцевых соревнованиях постоянно слышны жалобы гонщиков на плохое сцепление с асфальтом в том или ином повороте. Причем всегда жалуются медленные гонщики. Почему? Все очень просто - такой гонщик подходит к повороту медленнее, чем мог бы, осознает это и добавляет газ. Поскольку он делает это в повороте (используя, к примеру, 80 единиц в качестве "угловых") и добавляет газ слишком резко (затребовав, допустим, 25 единиц на тягу), он просто ггревышает предел сцепления задних колес. Быстрые гонщики мягче добавляют газ, плавно доводя количество очков до 100.
Перегазовка и еще раз перегазовка.
Гонщики, автомобили которых не имеют проскальзывающего сцепления, постоянно тренируют перегазовку, потому что не могут позволить себе заблокировать ведущие колеса перед поворотом. У тех, кто ездит по улицам, цена ошибки еще выше. Поэтому тренируйте перегазовку до тех пор, пока она не войдет в привычку, а привычка не станет рефлексом.
Автоматическая коробка передач существенно упрощает процесс управления автомобилем. Однако некоторые начинают путаться и в ней. Социальные сети пестрят роликами про то, как водители вместо тормоза жмут на газ. Иногда это заканчивается дорогостоящим ремонтом. Однако опытные водители, умеющие обращаться с педалями, иногда специально выжимают их одновременно. Действительно ли в этом есть хоть какой-то смысл?
Раньше (в доэлектронную эпоху) использование левой ноги при управлении машиной было очень актуально. Ее применяли не только для выжима сцепления, но и для попеременного задействования тормоза. Если давить на газ правой ногой, а левой чуть притормаживать, то автомобиль проявляет очень интересные особенности поведения. Он становится намного стабильнее на скользкой трассе и способен проходить повороты с меньшим риском.
Что делать, когда на переднеприводном автомобиле на скользкой дороге вдруг не рассчитал со скоростью и входишь в закрытый поворот на пределе сцепных свойств колес? Вираж неожиданно оказывается намного круче, чем виделось, и приходится резко тормозить. Но ведь каждый драйвер знает, что бросать газ в повороте нельзя из-за риска развития сноса. Как же гасить скорость?
В общем, в таких случаях и приходилось осаживать машину второй ногой, в то время как правая продолжала газовать. При одновременном нажатии на газ и на тормоз автомобиль все равно получал тягу на колеса, которые цеплялись за поверхность и тянули машину вперед, к выходу из виража. Ну а тормоз при этом позволял сбавить темп и регулировать ускорение. И все это без потери сцепления колес с поверхностью.
Выползти из грязи
Одновременное нажатие газа и тормоза было полезно и при поездках в грязи. Когда на бездорожье колеса вставали на поверхность с неоднородными сцепными свойствами и начинали проворачиваться, то дифференциал перебрасывал всю тягу на колесо с минимальным зацепом. В итоге начиналась пробуксовка. Чтобы победить эту особенность дифференциала, опытные водители сами подтормаживали колеса. При легком торможении одновременно с газом они имитировали однородный зацеп на всех колесах и не позволяли тем самым включиться дифференциалу. Тяга оставалась на всех ведущих колесах, и машина выползала на твердую поверхность дороги.
Неудивительно, что эти приемы взяли на вооружение раллийные пилоты. Во время гонок порой они даже не сбрасывают газ при торможении, а всегда держат педаль акселератора ровно правой ногой и левой дозируют ускорение за счет ослабевания хватки тормоза.
Естественно, тормозные колодки при этом истираются гораздо сильнее, чем в обычном щадящем режиме, и после дня активных заездов по скоростным участкам у спортивных машин меняются колодки и диски.
Жать на две педали небезопасно
Сейчас же, в эпоху повсеместного использования электроники, прием с одновременным нажатием педалей газа и тормоза теряет актуальность. На кроссоверах электроника умеет распределять усилия между осями самостоятельно, без вмешательства водителя. А в случае пробуксовки она сама поджимает колодки, чтобы не дать дифференциалу полностью перебросить момент на малозагруженное колесо. Электроника делает то, что раньше выполнял водитель.
Однако некоторые спортивные бренды все еще позволяют водителям воспользоваться сразу двумя педалями. К примеру, BMW, Subaru и другие дают возможность газовать одновременно с торможением. Отчасти так можно выгадать несколько приятных моментов во время активного прохождения виражей. Автомобиль выполняет перестроения быстрее. Но делать хорошо это могут лишь подготовленные пилоты, имеющие опыт спортивного вождения и знакомые с особенностями раллийных гонок.
Педаль газа — это сложный технический элемент, отвечающий за правильное срабатывание дроссельной заслонки. Если раньше она была напрямую соединена с дросселем механическим тросиком, то теперь преимущественно устанавливаются электронные акселераторы, которые связаны с Блоком управления (ЭБУ). Автомобиль следит за положением педали через два датчика и регулирует дроссель, а также корректирует подачу топлива. Насколько сильно человек может вмешиваться в их работу? И что будет, если водитель банально сломает сложную электронную педаль?
Прямая связь
В карбюраторную эпоху бывалые водители прекрасно знали устройство автомобиля и основных его систем. В итоге машину они могли отремонтировать и отрегулировать самостоятельно в собственном гараже. Ремонт дроссельной заслонки, настройка карбюратора и педали газа были привычным делом. Некоторые занимались этими процедурами еженедельно, чтобы оптимизировать работу мотора и улучшить динамику своего транспортного средства.
Дело в том, что металлическая педаль газа была соединена через систему рычагов с впускным клапаном при помощи тросика. Когда акселератор находился в неактивном положении, заслонка возвращалась в нейтральное положение и мотор работал на холостых оборотах. На многих машинах имелось и ручное управление дросселем при помощи специальной ручки.
При активных разгонах крепеж мог ослабнуть, тросик сместиться, в итоге клапан закрывался не полностью, подтравливал воздух, обороты росли. В некоторых случаях на старых машинах тросик и вовсе закисал, отчего машина стартовала неровно, с рывками. Подобные дергания ощущались при любых перегазовках.
Такие рывки вредили мотору, так как при резком изменении режима работы дросселя, возникали перебои в приготовлении оптимальной смеси. Нормальная работа впуска прерывалась и возникали кратковременные неоптимальные режимы, когда бензин мог сгорать в цилиндрах не полностью и частично стекал по поршню, смывая часть масла. Начиналось увеличение сил трения, рос износ деталей, образовывался нагар. В общем, удары по педали газа приводили к опасным для двигателя последствиям.
Сглаживание резких нагрузок
Сейчас на все новые автомобили устанавливаются электронные педали акселератора. Это уже готовый технический узел, который не имеет прямой связи с дросселем. Управление идет через провода и центральный блок управления двигателем (ЭБУ). Внутри электронной педали тоже есть микросхемы и бегунок, скользящий по дорожкам и помогающий менять напряжение электрического тока, вследствие чего происходит регулирование открытия дросселя.
Дроссельная заслонка тоже электронная и открывается за счет небольшого электромоторчика. Оба узла очень надежны и могут работать годами без вмешательства водителя.
С помощью электронной педали удается достигнуть наиболее оптимального соотношения бензина и воздуха в топливной смеси, которая, как правило, состоит из 14,7 г воздуха и 1 г бензина. Такая смесь называется стехиометрической, так как при ней бензин сгорает без остатка с выделением необходимого количества энергии.
Система управления электронной дроссельной заслонкой принимает во внимание сигналы от датчиков положения педали газа и данные от коробки передач, а также от датчиков положения педали тормоза и круиз-контроля.
Тем самым электроника регулирует работу впуска и не дает водителю наделать ошибок.
При спортивном стиле вождения электроника демпфирует резкие нажатия педали и игнорирует их, заставляя дроссель открываться плавно, чтобы не испортить процесс приготовления идеальной стехиометрической смеси.
Поэтому при езде на впрысковых машинах с электронной педалью водителям часто кажется, что старые карбюраторные модели были мощнее и резвее. На самом деле, они просто чаще дергались при резком открытии дросселя, что рождало ассоциации с избытком тяги.
Педаль сломалась
Дело в том, что педаль теперь изготавливается из пластика, и если ездить, как в автоспорте, то ножка не выдерживает ударов ногой. Часто повреждения происходят при резком переносе ноги с тормоза на газ. Нога давит на педаль вбок, против расположения распорок жесткости, и пластик не выдерживает.
Меняется блок педали в сборе и стоит немалых денег. Чтобы сэкономить, некоторые склеивают поломавшиеся части, подкладывают под них металлические пластины, что выглядит смешно.
Из-за электронных акселераторов многие драйверские приемы из мира автоспорта сейчас неприменимы на обычных машинах. К примеру, уже нельзя одновременно жать на газ и тормоз, чтобы улучшить управляемость в поворотах. Так же невозможно выжимать акселератор пяткой правой ноги, когда мыском давишь на педаль тормоза. Такой прием применялся для перегазовок, чтобы перед сложным поворотом одновременно затормозить и включить пониженную передачу. Перегазовка позволяла раскрутить валы коробки передач и снизить ударные нагрузки на синхронизаторы.
Если проделать аналогичные приемы с электронной педалью, то блок управления просто отключит газ, и мотор сбросит обороты до холостых. Такой аварийный режим позволяет снизить нагрузку на тормозную систему и часто предотвращает аварии, если неопытный водитель в неудобной обуви случайно нажал сразу на две педали.
Замена карбюратора на инжектор, широкое использование электронных систем управления и контроля всех рабочих параметров стали причиной отказа от классической системы акселератора с тросовым приводом. На смену ему пришла электронная педаль газа, обеспечивающая повышенную чувствительность и точность срабатывания. Для того, чтобы такой механизм служил вам как можно дольше, следует понимать принцип действия электронного акселератора, возможные проблемы с ним и возможности их диагностики.
Что такое электронная педаль газа
Традиционная механическая педаль управляет дроссельным механизмом посредством троса – при нажатии на нее тросик натягивается и открывает заслонку дросселя. Наиболее эффективны такие педали были на карбюраторных двигателях, однако с появлением и распространением инжекторных двигателей возникла потребность в более эффективном способе управления подачей топлива. Таковым стала электронная педаль газа.
По своей сути педаль, в данном случае, выступает в качестве кнопки, изменение положения которой через специальную плату трансформируется в электрический сигнал, который подается на блок управления двигателем. Далее в зависимости от положения педали изменяется интенсивность подачи топлива в двигатель.
Принцип работы электронной педали газа
В общих чертах можно описать принцип функционирования такой педали следующим образом:
- Водитель нажимает на электронную педаль газа, изменяя ее положение.
- Специальные датчики анализируют угол отклонения педали от изначального положения.
- Полученная информация пересылается от датчиков в электронный блок управления.
- ЭБУ на основе этих сведений формирует ту или иную команду дроссельной заслонке.
- Заслонка открывается на требуемый угол.
Как видно из приведенной информации, принцип действия электронной педали существенно сложнее, чем механической. Это не просто рычаг, натягивающий и ослабляющий трос, а полноценный электронный модуль, связанный с датчиками и прочими компонентами.
К другим особенностям функционирования педалей газа этого типа можно отнести следующие моменты:
- В качестве основы электронных педалей самых разных производитель используется реостат.
- Для передачи сигнала с педали на ЭБУ используются специальные дорожки с группой проводящих контактов.
- Для обеспечения высокой точности передающие контакты во многих случаях дублируются.
Неисправности электронной педали газа
В работе электронной педали газа могут возникать те или иные поломки и неисправности, которые окажут негативное влияние на интенсивность набора оборотов, стабильность работы двигателя, а также на саму возможность движения. Для своевременного выявления таких неполадок следует уметь распознавать их симптомы.
Если не проходит сигнал с 1 датчика положения педали:
- после регистрации неполадки загорается сигнальная лампа на панели приборов;
- двигатель работает в холостом режиме, пока не будет завершена проверка второго датчика;
- при работоспособности только второго датчика набор оборотов происходит медленно;
- дополнительные системы, оказывающие воздействие на режим работы двигателя, в частности, круиз-контроль, будут деактивированы.
Если отсутствует сигнал с обоих датчиков положения педали:
- загорается лампа EPC;
- автомобиль не откликается на нажатия педали газа;
- холостые обороты достигают 1500.
Возможно также возникновение неполадок в работе датчиков дроссельной заслонки. Если не проходит сигнал по одному такому датчику, то автомобиль реагирует следующим образом:
- загорается лампа EPC;
- отключаются дополнительные системы, влияющие на работу двигателя;
- на педаль акселератора автомобиль реагирует в штатном режиме.
В ситуации, если не проходят сигналы одновременно с 2 датчиков заслонки, проявляются следующие неполадки:
- отсутствует реакция на педаль газа;
- отключается привод дроссельной заслонки;
- холостые обороты увеличиваются до 1500.
На СТО считают информацию с ЭБУ, расшифруют код ошибки, зафиксированной системой самодиагностики, и на основании этого определят точную причину поломки. Это не только сократит общие затраты времени, но и обеспечит более высокое качество и точность ремонта.
Что лучше электронная педаль газа или тросиковая
На этот вопрос по-прежнему нет единого ответа. Многие предпочитают машины с механическим педалями, утверждая, что такая система гораздо надежнее и долговечнее. Некоторая доля истины в этих словах есть, однако нужно учитывать, что и тросиковый механизм не работает вечно. Со временем тросик может растянуться, что сделает работу педали менее эффективной. Также, в результате износа тросик может разорваться.
В целом же, статистика показывает, что ресурс электронных педалей существенно выше. Кроме того, они более удобны – владельцам автомобилей, оборудованных такими педалями, не требуется использовать подсос при холодном запуске, электроника сама все отрегулирует и настроит. Кроме того, залить свечи на таком автомобиле значительно сложнее.
Современные ТС оснащаются акселератором с электрическим приводом. Механическая педаль газа становится редкостью. В плане облегчения процесса управления автомобилем такое технологическое замещение дало положительный эффект. Езда стала безопаснее. Но знатоки вождения жалуются – электроника лишает возможности корректировать поведение двигателя. Последняя самостоятельно корректирует потребности мотора.
Что такое акселератор в автомобиле
Акселератор – это специальная заслонка, регулирующая подачу топлива и воздуха в камеры сгорания цилиндров двигателя машины. Ширина открытия заслонки влияет на значение давления внутри цилиндров и скорость перемещения поршней. Усилие от поршней передается на коленчатый вал, далее – на трансмиссию. Переключением передач водитель контролирует скорость вращения колес.
Где находится педаль акселератора
Акселератор – это не отдельный элемент, а целая система, отвечающая за ускорение авто при нажатии педали газа. Основные части электронной педали газа:
- Педальный модуль;
- БУ двигателя;
- Модуль управления дросселем;
- Контрольная лампа привода заслонки.
Элементы обеспечивают точность функционирования системы в целом.
Что такое электронная педаль газа
Для понимания сложных процессов сначала разберемся в особенности механической активации акселератора. Нажатие педали газа сопровождается смещением дроссельной заслонки. Процесс происходит механически:
- Водитель нажимает педаль газа в салоне ТС;
- Тяга акселератора улавливает усилие;
- Дроссельная заслонка открывается на соответствующий угол.
На положение дросселя не влияют другие системы, в том числе электронная. Разогнать машину поможет изменение крутящего момента. Это повлечет корректировку других параметров: впрыска топлива, момента зажигания. Электронный контроль за двигателем возможен на холостом ходу и в режиме круиз-контроля.
Работа электронной педали акселератора основана на тех же принципах с единственным дополнением: в промежутке между педалью и дроссельной заслонкой внедрен блок управления. Его задача регулировать поведение двигателя. Выделим следующие этапы:
- Водитель давит на педаль газа;
- Специальные датчики, находящиеся прямо на педали, передают информацию о степени надавливания на электронный блок управления (ЭБУ);
- ЭБУ рассчитывает угол открытия дроссельной заслонки на данный момент времени;
- Электронный привод выполняет команду.
Возможности блока управления широки. При необходимости он переходит на экономичный режим, увеличивает безопасность работы мотора. Это влияет на угол открытия дросселя.
ЭБУ контролирует поведение систем (увеличивает, уменьшает крутящий момент) в условиях, когда водитель не изменяет положение педали акселератора. Физически человек, управляющий ТС, не ощущает перемещения заслонки.
Разница работы акселератора в карбюраторных и инжекторных двигателях
Принцип действия акселератора на разных типах двигателей не отличается существенно. Различие заключается в способе подачи топливной смеси.
Карбюратор – узел топливной системы, в который поступают воздух и бензин. Образуется горячая смесь. При нажатии педали газа контролируется подача созданной горючей смеси в блок цилиндров. Для нормальной работы карбюраторного двигателя нельзя сильно нажимать на газ, чтобы избежать образования провалов. Сильное нажатие приводит к подаче большого количества воздуха в камеру сгорания. Для стабилизации процесса ускорительный насос увеличивает или уменьшает подачу топлива. Двигатель авто начинает работать интенсивнее. Частое злоупотребление форсирования мотора скажется на его эксплуатации в худшую сторону.
Инжектор – система впрыска. Форсунки регулируют подачу топлива в камеру сгорания поршней. Благодаря этому процесс проходит точнее. Стоит помнить, что существуют два вида инжекторной системы – с распределенным и непосредственным впрыском.
В процессе использования автомобилей у автолюбителей могут возникать самые разные проблемы. Особенно неприятно, если из-за этих неполадок теряется возможность ездить на авто. Иногда серьезные трудности доставляет акселератор. Это устройство, которое отвечает за подачу горючей смеси в камеру сгорания. Очень важно знать его устройство, а также принцип действия. Различают механические акселераторы и системы с электронным приводом.
Современные автомобили уже давно не комплектуются механическими системами. Все они заменены на электроприводные акселераторы. Что это дает автовладельцам? Электронный акселератор – это более легкое управление автомобилем. Это большой плюс. Есть и минус – владелец автомобиля уже не может принимать решений, а если точнее, то постоянно самостоятельно корректирует характеристики под свои требования. Получается, что далеко не всегда можно получить желаемый режим работы двигателя.
Для неопытных водителей такая система предоставляет огромное количество преимуществ. Это более безопасная езда. Однако для более опытных автолюбителей возможностей электроники не хватает для комфортной езды.
Принцип работы акселератора
Механический акселератор – это привод, который смещает дроссельную заслонку. Так автомобиль прибавляет в скорости. Так как привод механический, то процесс происходит в несколько этапов. Водитель автомобиля жмет на педаль, находясь в салоне своего авто. Через тягу усилие с педали отдается прямо на дроссельную заслонку. Затем заслонка перемещается.
Ни механическая система, ни электронная не может вмешиваться и как угодно влиять на положение дроссельной заслонки. Для того чтобы оказать влияние на разгон и динамические характеристики, требуется изменить крутящий момент двигателя. Но идет воздействие на процесс впрыска топлива и зажигания. Так, электронные системы могут регулировать режимы работы двигателя лишь на холостом ходу или в режиме круиз-контроля.
Что касается электронного акселератора, то принцип работы все тот же. Один нюанс – между педалью газа и непосредственно заслонкой находится блок управления, который регулирует поведение двигателя.
Рабочий процесс здесь также происходит поэтапно. Водитель автомобиля нажимает на педаль. В это время датчик педали акселератора собирает и передает информацию об угле и силе нажатия на ЭБУ. Далее компьютер рассчитывает, какой же угол в этот момент будет являться оптимальным для открытия дроссельной заслонки, и отдает эту информацию приводу. Привод также полностью электронный, и он просто выполняет указания.
Электронный блок может принимать решения о переходе на более экономичные режимы или же увеличить характеристики безопасности движения. Это учитывается, рассчитывается и включается компьютером в силу открытия заслонки. Водитель полностью на свою машину влиять не может, так как большую часть взял на себя ЭБУ и датчик акселератора. Даже если водитель не трогает педаль, блок все равно может изменять характеристики работы мотора при помощи открытия или закрытия дроссельной заслонки.
Как устроен акселератор
Многие начинающие интересуются, почему это устройство называют акселератором, ведь это педаль газа. Все просто. Педаль акселератора – это только часть большого механизма. Само слово переводится как "ускорение". И необходимо понимать, что имеется в виду специальная заслонка, которая отвечает за подачу топливовоздушной смеси в цилиндры двигателя. Чем шире будет открыта дроссельная заслонка, тем большее давление будет в камерах сгорания и тем быстрее станут двигаться поршни. Поршни передают усилие на коленвал, а затем энергия вращения его идет на трансмиссию. Когда водитель переключается передачу, то он контролирует скорость вращения колес автомобиля. Все эти процессы вместе приводят автомобиль в движение.
Карбюратор и инжектор
И на инжекторном двигателе, и на карбюраторном акселератор работает практически одинаково. Разница совсем небольшая. И разница эта — в способе подачи топливной смеси. Карбюратор – это не что иное, как один из узлов топливной системы, где готовится горючая смесь. Водитель, нажимая на педаль акселератора, контролирует, а также регулирует объем подачи смеси в блок цилиндров.
На инжекторных моторах отличия в том, что это целая система впрыска. Объемы подачи топлива в каждый цилиндр здесь регулируются с помощью форсунок. Смесь подается более точно. Следует знать, что инжекторная система может быть с распределенным или же с непосредственным впрыском.
Дизельные агрегаты
Здесь отдельная система впрыска. Горючая смесь впрыскивается в блок цилиндров постоянно. При этом контролю поддается только количество, которое подается в каждую из камер.
Конструкция электронного привода дроссельной заслонки
Совершенные системы состоят из большого количества различных комплектующих. Совершенная система обладает большей точностью. Это можно сказать про современные приводы дроссельных заслонок. Устройство состоит из нескольких систем.
Педальный модуль
Это непосредственно педаль и датчик положения педали акселератора. Именно он определяет положение педали и отдает эти данные в ЭБУ. Этот датчик представляет собой два переменных резистора, которые измеряют сопротивление в зависимости от положения акселератора. Он постоянно следит за частотой и амплитудой нажатия на педаль и не только следит за подачей топлива, но и является датчиком холостого хода двигателя.
Датчик положения акселератора
Потенциометр состоит из переменного и постоянного резистора с сопротивлением около 8 кОм. Один из выводов находится под напряжением в 5 В. Средний вывод сообщает датчику, в каком положении находится педаль. Если напряжение этого сигнала меньше 0,7 В, то заслонка считается закрытой, если же больше 4 В, то ЭБУ считает заслонку открытой.
Блок управления
Электронный блок управления получает сигналы от датчиков и на основании этих данных узнает желание водителя относительно скорости машины. Для реализации этого подается управляющий сигнал на привод заслонки, которая в зависимости от сигнала закрывается или открывается.
Модуль управления заслонкой
Эта система обеспечивает необходимый объем воздуха для цилиндров. Кроме этого она также отдает информацию на ЭБУ о положении заслонки в данный момент. Система включает в себя угловые датчики.
Механический привод дроссельной заслонки
Эти конструкции применяются в отечественных авто, а также в недорогих иномарках.
Типичные неисправности
Это может быть ограниченная максимальная мощность силового агрегата, неравномерные обороты на холостом ходу. Также не исключена остановка мотора при резком отпускании ноги с педали. Все это частые неисправности любого акселератора.
Грамотная эксплуатация
Электронный акселератор – это интеллектуальное устройство. Существуют правила его использования.
Вплоть до конца 1980-х годов у большинства автомобилей было довольно простое управление дроссельной заслонкой. Вы нажали на педаль акселератора, дроссельная заслонка открылась, воздух поступил в двигатель, где он смешался с бензином и сгорел.
Педаль газа с тросиком
Сгорающий газ приводил в движение колеса автомобиля. Если вы хотели ехать быстрее, всё, что вам нужно было сделать, это нажать педаль сильнее — дроссельная заслонка открывалась шире, давая автомобилю больше мощности.
Но электронное управление дроссельной заслонкой, которое называют электронная педаль газа, использует электрические, а не механические сигналы управления.
Электронная педаль газа
Давайте разберёмся, для чего это сделали. Из каких элементов состоит электронный дроссель (ЭД), как он работает, какие у него есть преимущества, какие бывают признаки неисправности.
Из чего состоит электронное управление дросселем?
Когда вы нажимаете педаль газа, вместо открытия дроссельной заслонки задействуется модуль педали акселератора, который преобразует силу, с которой вы нажимаете на педаль, в электрический сигнал.
Затем этот сигнал отправляется в электронный блок управления (ЭБУ), который учитывает его, а также внешние сигналы, чтобы открыть дроссельную заслонку для оптимальной эффективности и производительности.
Это сложная система, но она дает много преимуществ с точки зрения износа двигателя, производительности, эффективности и экологии. Однако, как и любая сложная система, она несовершенна, и у водителей много вопросов по ней.
Типичная электронная система управления дроссельной заслонкой обычно состоит из трёх основных частей:
- модуль педали акселератора;
- привод (электрический моторчик) заслонки;
- блок управления двигателем.
При использовании электронной педали акселератора пропадает необходимость в регуляторе холостого хода (РХХ). Теперь обороты ХХ устанавливаются поворотом заслонки тем же моторчиком.
Блок управления двигателем выбирает правильное программное обеспечение на основе информации от датчиков положения педали акселератора, оборотов двигателя, датчика скорости и переключателей круиз-контроля.
Датчик положения педали акселератора
Как работает электронное управление дроссельной заслонкой
По сравнению с тросиковым дросселем в Е-газ добавили две детали:
- моторчик вращения заслонки;
- второй (контрольный) датчик положения дроссельной заслонки (ДПДЗ №2).
Электронные дроссельные заслонки могут отличаться процентом открытия в обесточенном состоянии и типом ДПДЗ.
- Полностью закрытые в обесточенном состоянии — одна пружина на полное закрытие.
- Приоткрытые на 5-7% — две пружины, точка равновесия в зоне приоткрытия. Это позволяет двигателю работать на малых оборотах в случае
полного выхода из строя электроники дросселя. Такие заслонки являются более современными, чем полностью закрытые, с которыми, в случае поломки, двигатель не будет работать совсем. - С контактными ДПДЗ — внутри ползунковые переменные резисторы.
- С бесконтактными ДПДЗ — внутри нет трущихся подвижных контактов, сигнал на выходе формируется электроникой.
Принцип работы Е-газа:
- Водитель нажимает на педаль акселератора. Степень нажатия через датчики переводится в электрический сигнал и по проводам передаётся в ЭБУ.
- ЭБУ управляет закрытием/открытием заслонки ШИМ-питанием через моторчик. Меняется как скважность ШИМа, так и полярность.
- По сигналам с ДПДЗ анализируется положение заслонки и меняется управляющий сигнал при необходимости.
- Контролируются ошибки в работе дроссельной заслонки.
Преимущества электронного управления дроссельной заслонкой
Электронные системы управления дроссельной заслонкой могут показаться немного бессмысленными. В конце концов, если механическая система работает, зачем её усложнять?
Надежность
Механические дроссельные системы, поскольку они состоят из множества движущихся частей, подвержены значительному износу. В течение срока службы автомобиля различные компоненты могут изнашиваться.
Электронная система управления дроссельной заслонкой имеет сравнительно немного движущихся частей — она посылает сигналы с помощью электрического импульса, а не движущихся частей. Это снижает износ и объём технического обслуживания.
Безопасность
Е-газ добавляет ряд преимуществ безопасности по сравнению с механическими системами. При механическом управлении степень открытия или закрытия дроссельной заслонки зависит только от действий водителя.
Другими словами, E-GAS может учесть несколько факторов, которые влияют на скорость и управление автомобиля, а не только ногу на педали.
Электронное управление дроссельной заслонкой позволяет интегрировать передовые функций безопасности водителя, такие как адаптивный круиз-контроль, системы блокировки тормозов и электронный контроль устойчивости, делая автомобиль более безопасным в сложных погодных условиях (дождь, снег, гололед и др.).
Кроме того, электронный дроссель реагирует быстрее, чем водитель в ситуации, когда шины не обладают достаточным сцеплением с дорогой, обеспечивая вам безопасность и удерживая машину на дороге.
Экологичность и экономичность
Управление дроссельной заслонкой через ЭБУ позволяет снизить вредные выбросы в атмосферу и повысить экономичность автомобиля. Это достигается благодаря тому, что блок управления учитывает не только нажатие на педаль, но и данные от многих датчиков: скорости, кислорода, температуры и др.
Симптомы неисправности электронного дросселя
Как и любая другая деталь автомобиля, система управления дроссельной заслонкой также может подвергаться повреждениям и износу. Есть признаки и симптомы, на которые следует обращать внимание, чтобы защитить автомобиль от дальнейших повреждений.
- У машины могут быть рывки и провалы при ускорении, она может дергаться при разгоне. Возможны пропуски зажигания. Если вы заметили какие-либо из этих симптомов или резкое переключение передач, то возможно есть проблема с электронным дросселем.
- Неисправности электронного управления дроссельной заслонкой могут вызывать проблемы при переключении передач. Это может быть ощущение залипания или медленное переключение между передачами. Возможна проблема с выходом из определенной передачи, как будто она застряла.
- Ещё одним признаком неисправности ЭД являются проблемы с отображением силовых характеристик. Это означает, что автомобиль будет отображать неправильные данные или данные, которые невозможны в текущей ситуации.
- Двигатель может глохнуть без какой-либо видимой причины. Это может быть признаком серьезной проблемы и даже привести к повреждению двигателя, поэтому эту проблему необходимо устранить как можно скорее.
- Дополнительным признаком, который может указывать на необходимость проверки Е-газ, является то, что у вас появляются быстрые и непреднамеренные скачки скорости во время вождения. Это большая проблема безопасности, поскольку это может произойти, когда вы позади другой машины или на повороте.
- На приборной панели может гореть лампочка Check Engine. Это является признаком какой-то неисправности, обнаруженной ЭБУ. Узнать ошибку и причину неисправности можно с помощью диагностического сканера или адаптера ELM327 с программой Torque.
- И последний симптом неисправности электронного управления дроссельной заслонкой — это резкое увеличение расхода топлива. Если вы понимаете, что не можете проехать так же много километров на таком же объёме топлива как раньше, это явный признак того, что нужно сделать диагностику автомобиля.
Аварийный (отказоустойчивый) режим ЭД
Как и большинство сложных систем, электронные системы управления дроссельной заслонкой имеют ряд аварийных режимов (Failsafe Mode). Они предназначены для того, чтобы поддерживать работу системы или обеспечивать безопасное завершение работы, если что-то пойдет не так.
Вообще говоря, при первых признаках проблемы большинство электронных средств управления дроссельной заслонкой закрывают дроссельную заслонку и возвращаются в режим холостого хода.
Так, например, если блок управления двигателем обнаруживает проблему с датчиком, система переходит на холостой ход, предотвращая открытие дроссельной заслонки.
Также в ЭД встроено несколько резервов. Например, датчиков положения используется по две штуки. Если датчик неисправен или два датчика в одном положении передают разные показания, система закрывает дроссельную заслонку, оставляя двигатель на холостом ходу.
Всё это не означает, что в электронных системах управления дроссельной заслонкой нет проблем. Скорее, они были разработаны с рядом аварийных режимов, которые при правильной работе должны предотвратить неожиданное ускорение автомобиля.
В последнее время автопроизводители добавляют еще один аварийный режим: отключение тормозами. Такие ЭД уже доступны на некоторых немецких автомобилях. Они позволяют водителю вмешиваться и блокировать систему дроссельной заслонки. Если Е-газ каким-то образом неисправен и дроссельная заслонка открывается сама по себе, то нажатие на тормоз закроет её.
Читайте также: