Схема подключения бактерицидной лампы с дросселем и стартером
11 августа 2012 k-igor
При проектировании лечебных учреждений и различных помещений приготовления пищи приходится подключать бактерицидные облучатели. Бактерицидный облучатель представляет из себя обычный светильник, но требует к себе особого внимания при подключении.
В бактерицидном светильнике установлены ультрафиолетовые лампы, которые испускают ультрафиолетовые лучи. Применяют данные облучатели для обеззараживания помещений.
В основном распространены одноламповые и двухламповые бактерицидные облучатели. Ламы могут быть экранированные и открытые.
В этой статье я рассмотрю подключение бактерицидного облучателя ОБН-150. Он имеет две лампы: одна открытая, вторая с защитным экраном. Экранированную лампу можно включать в присутствии людей, она облучает лишь верхние слои воздуха. Открытую лампу включать в присутствии людей запрещается.
Схема включения бактерицидного облучателя представлена ниже. Здесь соблюдены все требования нормативных документов.
Схема подключения бактерицидного облучателя ОБН-150
Выключатели для управления бактерицидными лампами должны устанавливаться со стороны противоположной выключателя освещения, по-видимому, для исключения случайного включения бактерицидных ламп. При этом выключатели должны иметь соответствующие надписи либо отличительную окраску.
Бактерицидные светильники допускается подключать от щитков освещения. Я всегда стараюсь их подключать от силовых щитков.
Если у вас бактерицидный светильник с защищенной лампой, например ОБН-75, то я считаю данные требования можно не выполнять. Достаточно выключатель облучателя выделить от выключателя освещения. При такой эксплуатации бактерицидного светильника нижние слои обеззараживаются за счет конвенции воздуха.
На рис. П.1 приведена наиболее распространенная одноламповая стартерная схема включения бактерицидной лампы Л с токоограничивающим электромагнитным элементом в виде дросселя L. В этой схеме стартер Ст, подключенный параллельно лампе, обеспечивает ее зажигание. Стартер представляет собой малогабаритную неоновую лампу тлеющего разряда с двумя электродами, один из которых выполнен из биметаллической ленты. Выпускаются стартеры, у которых оба электрода выполнены из биметаллической пластины.
Рисунки не приводятся.
На рис. П.2 приведена одноламповая бесстартерная схема включения. В этой схеме для предварительного нагрева электродов лампы применен маломощный трансформатор с двумя вторичными накальными обмотками Тн. Напряжение сети, приложенное к электродам (при холодных электродах), является недостаточным для пробоя и зажигания лампы. Трансформатор Тн обеспечивает предварительный нагрев электродов, и после того, когда их температура достигнет необходимого значения, происходит зажигание лампы. При работающей лампе напряжение на первичной обмотке уменьшается и соответственно уменьшается нагрев электродов, что исключает их перегрев.
Использование дросселя в виде токоограничивающего элемента приводит к снижению коэффициента мощности сети (cos фи о ), численно равному:
Применение ПРА с низким значением cos фио вызывает почти двухкратное увеличение потребляемого тока из сети и, следовательно, рост потерь мощности в питающих линиях.
Увеличение значения cos фи достигается двумя путями: либо подключением компенсирующего конденсатора Ск параллельно сети для одноламповых схем, либо использованием двухламповой схемы, в которой в цепи одной лампы включен дроссель, а в другой последовательно с дросселем включен балластный конденсатор Сб, как это изображено на рис. П.5.
При одноламповых схемах включения компенсация коэффициента мощности может быть осуществлена для группы ламп. В этом случае емкость компенсирующего конденсатора Ск, необходимая для достижения cos фи к = 0,9, определяется из соотношения:
фи о = arccos , град.
Для подавления электромагнитных колебаний, создающих помехи радиоприему, применяются специальные конденсаторы Ср, включаемые параллельно лампе и сети (см. рис. П.1, П.2, П.3). Емкость таких конденсаторов примерно равна 0,05 мкф. Обычно они входят в комплект ПРА.
Основные технические параметры ПРА приведены в таблице.
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ПРА ДЛЯ РТУТНЫХ ЛАМП НИЗКОГО ДАВЛЕНИЯ
При проектировании лечебных учреждений и различных помещений приготовления пищи приходится подключать бактерицидные облучатели. Бактерицидный облучатель представляет из себя обычный светильник, но требует к себе особого внимания при подключении.
В бактерицидном светильнике установлены ультрафиолетовые лампы, которые испускают ультрафиолетовые лучи. Применяют данные облучатели для обеззараживания помещений.
В основном распространены одноламповые и двухламповые бактерицидные облучатели. Ламы могут быть экранированные и открытые.
В этой статье я рассмотрю подключение бактерицидного облучателя ОБН-150. Он имеет две лампы: одна открытая, вторая с защитным экраном. Экранированную лампу можно включать в присутствии людей, она облучает лишь верхние слои воздуха. Открытую лампу включать в присутствии людей запрещается.
Схема включения бактерицидного облучателя представлена ниже. Здесь соблюдены все требования нормативных документов.
Схема подключения бактерицидного облучателя ОБН-150
Согласно ТКП 45-4.04-86-2007 (Здания и помещения лечебно-профилактических организаций. Электрические системы. Правила проектирования) выключатель верхней (экранированной) лампы SF1 должен быть установлен в облучаемом помещении, выключатель нижней (незащищенной) ламы SF2 устанавливается у входа в облучаемое помещение и блокируется со световым указателем «Не входить».
Выключатели для управления бактерицидными лампами должны устанавливаться со стороны противоположной выключателя освещения, по-видимому, для исключения случайного включения бактерицидных ламп. При этом выключатели должны иметь соответствующие надписи либо отличительную окраску.
Бактерицидные светильники допускается подключать от щитков освещения. Я всегда стараюсь их подключать от силовых щитков.
Если у вас бактерицидный светильник с защищенной лампой, например ОБН-75, то я считаю данные требования можно не выполнять. Достаточно выключатель облучателя выделить от выключателя освещения. При такой эксплуатации бактерицидного светильника нижние слои обеззараживаются за счет конвенции воздуха.
Часто радиолюбители ищут паспорт и схему включения на мощную УФ лампу для стирания ПЗУ или изготовления плат фотоспособом. Я скопировал с оригинала все материалы по данному типу лампы, т.е. по включению в сеть
220B и рекомендации по ее применению.
1. НАЗНАЧЕНИЕ ЛАМП
Ртутно-кварцевые лампы являются мощным источниками ультрафиолетового излучения и применяются в медицине (для целей физиотерапии), биологии и технике фотохимические процессы, люминесцентный анализ и т. д.
2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЛАМП
Ртутно-кварцевые лампы предназначены для эксплуатации в сетях переменного тока с напряжением 220В, частотой 50Гц, пускорегулирующей аппаратурой по ГОСТ 16809-71.
В течение первых 10—15 мин. после включения лампы, электрические параметры ее изменяются (неустановившейся режим), а затем остаются постоянными (установившийся режим) при неизменном напряжении сети (см. табл. 1). Размеры ламп приведены на черт. 1 (ДРТ230), черт 2 (ДРТ400) и черт 3 (ДРТ1000).
Электрические параметры ламп при эксплуатации в сети переменного тока.
Обозначение типа ламп
Напряжение сети, В
Пусковой ток лампы, А**
Продол. неустан. режима, мин**
Напряжен, на лампе, В
3. ВКЛЮЧЕНИЕ ЛАМП В СЕТЬ ПЕРЕМЕННОГО ТОКА.
Световые потоки ламп типа ДРТ в диапазоне волн 240-320 НМ приведены в таблице 2.
Чистый поток, Вт
Лучистый поток, Вт
Государст. знак. кач.
Государст. знак. кач.
Верхнее значение лучистого потока не ограничивается.
- Л — лампа ДРТ
- ДБ — дроссель
- К — кнопка
- С1 —конденсатор ёмк. 2—3 мкф. на напр. 300—600В
- С2 — конденсатор емк. 0,0003 —0,0005 мкф.
3. УКАЗАНИЕ ПО ЭКСПЛУАТАЦИИ ЛАМП.
Перед установкой лампы в аппаратуру рекомендуется протереть ее ватой, смоченной спиртом. При эксплуатации ламп в закрытых аппаратах необходимо предусмотреть соответствующую вентиляцию.
4. МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ РАБОТЕ С ЛАМПАМИ
Для предохранения глаз от действия ультрафиолетового излучения надо надевать защитные очки. Пользоваться лампами для целей физиотерапии следует под наблюдением медицинского персонала. При использовании ламп для других целей следует принимать меры предосторожности во избежании ожогов от действия ультрафиолетовых лучей лампы.
Лампы, вышедшие из строя или прогоревшие срок службы, разбить в закрытом объеме, обработать 1% раствором марганцево-кислого калия, вывезти за пределы населенного пункта и закопать в землю на глубину не менее 0,3 м.
Возникла проблемка.
Необходимо подключить бактерицидную лампу; схемку собрал (дроссель, стартер), а она разжигаться не желает. Видно, что напряжение на анод/катод подаётся, начинается ионизация, но дальше дело не идёт. Приехал в магазин со стендиком, всё при продавце подключил - та же песня. Все комплектующие меняли - не помогает. Поставили вместо бактерицидки обычную люминесцентку - та же беда. Что это может быть? Как вылечить?
Лампа Филлипс, саму лампу тоже меняли. При подключении стартёра большей мощности, начинается пробой, но лампа всё-равно не загорается.
А очень нужно, чтобы загорелась!
Fmaster написал :
При подключении стартёра большей мощности, начинается пробой, но лампа всё-равно не загорается.
На рис.п.1. приведена наиболее распространенная одноламповая стартерная схема включения бактерицидной лампы Л с токоограничивающим электромагнитным элементом в виде дросселя L . В этой схеме стартер Ст, подключенный параллельно лампе, обеспечивает ее зажигание. Стартер представляет собой малогабаритную неоновую лампу тлеющего разряда с двумя электродами, один из которых выполнен из биметаллической ленты. Выпускаются стартеры, у которых оба электрода выполнены из биметаллической пластины.
На рис.п.2. Приведена одноламповая бесстартерная схема включения. В этой схеме для предварительного нагрева электродов лампы применен маломощный трансформатор с двумя вторичными накальными обмотками Тн. Напряжение сети, приложенное к электродам (при холодных электродах) является недостаточным для пробоя и зажигания лампы. Трансформатор Тн обеспечивает предварительный нагрев электродов и после того, когда их температура достигнет необходимого значения происходит зажигание лампы. При работающей лампе напряжение на первичной обмотке уменьшается и соответственно уменьшается нагрев электродов, что исключает их перегрев.
Встречаются ПРА, предназначенные для последовательного включения двух ламп (см. п.З и п.4) с напряжением на каждой из них 50 - 60 В. Непременным условием использования двухламповых ПРА с последовательным включением ламп является соблюдение неравенства 2U_л/U_с<=0,55, а также соответствие рабочего тока лампы номинальному току ПРА.
В качестве токоограничивающих элементов могут применяться управляемые полупроводниковые приборы-транзисторы и тиристоры, на базе которых созданы различные модификации электронных ПРА. Относительная сложность схем таких ПРA во многих случаях применения оправдывается их достоинствами: малая масса ПРА из-за существенного сокращения затрат обмоточной меди и электротехнической стали, небольшие потери мощности, повышение КПД излучения и снижение акустического шума.
Использование дросселя в виде токоограничивающего элемента приводит к снижению коэффициента мощности сети (cos фи_0), численно равному
Применение ПРА с низким значением cos фи_0 вызывает почти двухкратное увеличение потребляемого тока из сети и, следовательно, рост потерь мощности в питающих линиях.
Увеличение значения cos фи_0, достигается двумя путями: либо подключением компенсирующего конденсатора С_к параллельно сети для одноламповых схем, либо использованием двухламповой схемы, в которой в цепи одной лампы включен дроссель, а в другой последовательно с дросселем включен балластный конденсатор С_б, как это изображено на рис.П5.
При одноламповых схемах включения компенсация коэффициента мощности может быть осуществлена для группы ламп. В этом случае емкость компенсирующего конденсатора С_к, необходимая для достижения cos фи_0 = 0,9, определяется из соотношения:
Для подавления электромагнитных колебаний, создающих помехи радиоприему, применяются специальные конденсаторы Ср, включаемые параллельно лампе и сети (см.рис.П1,П2,П3). Емкость таких конденсаторов примерно равна 0,05 мкФ. Обычно они входят в комплект ПРА.
При работающей лампе ПРА является источником акустического шума. Основной причиной возникновения шума является вибрация металлических деталей (пластин магнитопровода, корпуса ПРА и деталей облучателя). Шумы излучаются в широком диапазоне частот от десятков Гц до десятков кГц, охватывающий область частот, воспринимаемых ухом человека. При некоторых обстоятельствах наличие постороннего шума в помещении может создать существенную помеху. Поэтому выпускаемые ПРА в зависимости от вида помещения разделяется на три класса: Н-3 с нормальным уровнем шума - для промышленных зданий; Н-2 - с пониженным уровнем шума - для административно-служебных помещений; H-1 - с особо низким уровнем шума - для бытовых, учебных и лечебных помещений.
Читайте также: