Пассивный абиогенез ошибка что это
Миллер объединил различные газы, которые должны были существовать на самых ранних стадиях Земли. Эти газы были объединены в камере, и в течение нескольких недель шокировались большим количеством электричества. После суда Миллер анализировал образцы. Он обнаружил, что молекулы начали процесс объединения в более продвинутые молекулы. Миллер предположил, что в течение миллиардов лет эти молекулы могут объединяться в самовоспроизводящиеся версии, такие как РНК и ДНК. Дальнейшие лабораторные эксперименты подтвердили эти результаты в последующие десятилетия. Несколько очень точных экспериментов предоставили достаточные доказательства того, что многие молекулярные структуры клеток могут быть созданы из неорганических растворов с подводом энергии. Полипептиды (белки) и РНК были синтезированы таким образом.
Теория абиогенеза
Так же, как популяции меняются со временем в эволюции организмов, эволюция молекул включает в себя изменение молекул со временем. Ученые предполагают, что первыми самовоспроизводящимися молекулами были, вероятно, молекулы РНК. Некоторые молекулы РНК обладают известной способностью катализировать образование новых молекул РНК, что видно на рибосомах практически всех существ на Земле. Одна из этих ранних молекул РНК сформировалась точно так, что она произвела молекулу РНК, которая была идентична ей. Концентрация этой молекулы в пребиотическом супе резко возросла, и молекула далее взаимодействовала с собой и с некоторыми белками, образовавшимися вокруг нее, также в результате абиогенеза.
В конце концов, молекула РНК приобрела мутации, которые позволили ей синтезировать белок, который будет производить больше РНК. Другие мутации привели к созданию белков, которые синтезировали нити ДНК из РНК. Таким образом, геном современного организм родился. За миллионы лет эволюционной истории в этих молекулах медленно накапливались изменения, порождающие сложность жизни, которую мы видим сегодня. Различные ученые, изучающие теорию абиогенеза, спорят о том, что абиогенез переключается на биогенез. Аналогичные аргументы можно увидеть в случае, если вирусы представляют собой живые организмы. Абиогенез, по определению, это просто создание органических молекул из неорганических источников. Это не обязательно означает, где начинается жизнь.
викторина
Ответ на вопрос № 1
В верно. Одной из причин того, что вирусы не считаются живыми организмами, является то, что они не синтезируют свои собственные новые материалы. Однако живые клетки синтезируют новые материалы. Следовательно, это не случай абиогенеза. Присутствие углерода делает молекулу неорганической или органической только в зависимости от того, где молекулы были синтезированы.
2. Что из нижеперечисленного является действительной критикой теории абиогенеза?A. Уровни энергии, необходимые для производства самовоспроизводящихся молекул, невозможны вне лаборатории.B. Мы не можем знать, как выглядела предземная атмосфера.C. Если бы сначала образовалась РНК, не было бы причин для ДНК.
Ответ на вопрос № 2
В верно. Это часто используется в качестве защиты от теории абиогенеза. В то время как есть несколько методов, которые могут исследовать горные породы и химический состав, который они содержат, чтобы предсказать, на что была похожа атмосфера, это невозможно точно знать. Кроме того, обычно предполагается, что было достаточно времени и энергии от удара молнии, чтобы создать эти молекулы. Между временем образования Земли и датировкой древнейших живых организмов прошло более миллиарда лет. Хотя РНК, вероятно, образовалась первой, ДНК является гораздо более стабильной молекулой, и у организмов есть много преимуществ для использования ДНК для хранения своих генетический код,
3. Почему молекулы естественным образом объединяются в природе?A. Они естественно привлекают друг друга.B. Продукты их реакций более стабильны.C. Все вышеперечисленное.
Ответ на вопрос № 3
С верно. Некоторые молекулы просто имеют тенденцию к объединению. Кислород, например, имеет тенденцию существовать, связанный с другими молекулами кислорода, в парах. Атомы натрия и хлора, как правило, притягиваются друг к другу и образуют в природе матрицу атомов, называемую солью. Большие молекулы подвержены тем же силам. Одним из ключевых моментов в теории абиогенеза является то, что некоторые молекулы будут естественно агрегировать и образовываться просто благодаря физике.
Многовековая история человечества знает множество гипотез о возникновении жизни на Земле. С самых древних веков в этом вопросе существует две абсолютно противоположные точки зрения. Одна из них утверждает, что живое зарождается из неживого – это абиогенез. Вторая придерживается мнения, что живое может возникнуть только от живого – это биогенез. В чем отличие теорий биогенеза от абиогенеза, попробуем разобраться в данной статье.
История воззрений
Представления о происхождении жизни четко коррелируют с уровнем знаний конкретной эпохи. В древние времена, когда уровень знаний был еще мал, теории происхождения живого поражают своей фантастичностью. Приведем некоторые воззрения философов и натуралистов прошлого. Например, Эмпедокл (V в. до н.э.) считал, что деревья несут яйца. Аристотель (IV в. до н.э.) утверждал, что вши происходят из мяса, а клопы – из сока тела животных. Эти воззрения самозарождения жизни как таковой существовали вплоть до середины XVII века, когда английский философ Ф. Бекон (1561-1626) теоретически, а итальянский врач Ф. Реди (1626-1698) и Луи Пастер (1822-1895) практически доказали невозможность самозарождения жизни. Именно тогда начали формироваться эти два противоположных лагеря, две взаимоисключающие теории возникновения жизни - биогенез и абиогенез.
Немного теории
Под абиогенезом (от греческой приставки отрицания – a, bio - жизнь и genesis - возникновение) понимают теорию возникновения органических структур из неорганических и вне живого организма. В широком смысле абиогенез - это теория о происхождении живого из неживого. И тут необходимо уточнение, что считать жизнью и когда неживое становится живым. И поскольку и сегодня определение жизни трактуется по разному и с различных точек зрения, сторонников как абиогенеза, так и биогенеза остается множество.
Жизнь в теории абиогенеза
В данной концепции наиболее важными считаются генетические и эволюционные критерии, определяющие жизнь. Все остальные критерии – термодинамический и экологический – признаются второстепенными. Положения концепции гипотезы абиогенеза следующие:
- Живое и неживое различаются по химическому составу и его особенностям (обмену веществ). Все теории данного направления называют биохимическим абиогенезом.
- Происхождение жизни произошло именно на Земле, естественным путем и с затратами свободной энергии. Это результат появления сложных органических веществ из простых неорганических с появлением новых химических реакций между ними. Все теории происхождения жизни данного направления называются геоцентрическими.
- Главные свойства и признаки живого - это обмен веществ, самовоспроизведение себе подобных, наследственность и изменчивость.
Таким образом, абиогенез - это геоцентрические и химические теории, объясняющие происхождение живого.
Жизнь как результат биогенеза
Биогенез во главу угла ставит термодинамические и экологические свойства, отличающие живое от неживого. При этом генетический, эволюционный и биохимический подходы считаются дополнительными. Концепции биогенеза следующие:
- Живое, как и неживое, – это два взаимосвязанных и неразделимых состояния материи. Эти теории носят название физических.
- Термодинамическая (противостояние энтропии) и системная (соподчинение и устойчивые динамические связи) составляющая – это главные свойства и признаки жизни.
- Жизнь возникла во Вселенной, а биосфера Земли – проявление живой части Космоса. Эти теории называют космическими.
Биогенез, таким образом, это космоцентрические физические теории происхождения жизни.
Современные воззрения
Современная наука придерживается точки зрения, которая объединяет все концепции в единую систему знаний о том, как неживая материя превратилась в живую. Как наиболее вероятный путь происхождения живого современная наука признает, что начальный этап – это абиогенез. И состоит он из 3 начальных этапов:
- Появление биологических мономеров.
- Образование биологических полимеров.
- Появление мембранных структур и первичных простейших организмов – протобионтов.
Дальше развитие жизни на земле шло уже легче – по эволюционным механизмам Ч. Дарвина (наследственность, изменчивость и отбор).
Небиологическое образование органики
Химическая эволюция или добиологический абиогенез - это возникновение органических веществ из неорганических. В 1924 году русский академик А.И. Опарин (1894-1980) предположил, что в насыщенных высокомолекулярными соединениями растворах самопроизвольно образуются зоны повышенных концентраций (коацерваты или коацерватные капли), которые обособлены от окружающей среды, но поддерживают с ней обмен. Теорию Опарина в 1929 году поддержал английский ученый Джон Холдейн (1892-1964), и в науку прочно вошла теория коацерватов, которая предполагает самозарождение органических веществ на ранних этапах развития нашей планеты с уникальными физическими условиями.
Доказательства гипотезы абиогенеза
Поначалу доказать возможность самопроизвольного синтеза органических веществ из неорганических не представлялось возможным. Однако сегодня уже пройдены определенные этапы и получены результаты.
А началось все в 1953 году, когда химики Стенли Миллер и Гарольд К. Юри провели эксперимент с первичным бульоном (среда, похожая на предбиотическую на Земле). Приток энергии (до 60 тысяч В) под давлением и при температуре 80 градусов по Цельсию привел к образованию жирных кислот, мочевины и нескольких аминокислот (мономеров белка). А уже в 2008 году американские биологи создали «протоклетку» с мембраной, в 2011 году японские биологи опубликовали работы по созданию везикулы с оболочкой и способностью к делению.
Шаткость позиций
Не смотря на успехи биологов в экспериментальных попытках подтверждения теории Опарина-Холдейна о зарождении жизни на планете в коацерватах, всё же все полученные структуры далеки от строения живой клетки. Мировое сообщество не признает эти опыты как неоспоримое доказательство именно такого зарождения жизни. Как биогенез, так и абиогенез – это теории на сегодня не подтвержденные экспериментально. Учитывая, что путь от неорганических молекул к живой клетке был долгим, со множеством развилок и остановок, ученым остается пока только строить гипотезы, как мог быть пройден данный путь. Но все эти гипотезы не доказывают, что все именно так и случилось на Земле много миллиардов лет назад.
Вероятность совершенно невероятна
Случайность возникновения живой клетки в первичном бульоне подсчитана математически. Британский математик Фред Холл с использованием современных компьютеров подсчитал вероятность случайного образования белка амебы. И эта вероятность оказалась ничтожно малой – 1/10*40000. Напомним, что это при некоторых идеальных условиях. И это наводит на определенные размышления и дает аргументы сторонникам других теорий и концепций возникновения жизни на нашей планете.
Невероятное вероятно
Но, как известно, все относительно. На нашей планете и в нашем мире – это неоспоримый факт. Вот несколько примеров, которые заставят задуматься – так ли уж невозможна такая случайность, как возникновение жизни в первичном бульоне.
Определение
Как возникла жизнь на Земле? Когда все началось? Эти вопросы оставались загадкой на протяжении тысячелетий человеческой истории. Мы знаем, что возраст Земли составляет около 4,5 миллиардов лет, и что первые бактерии уже обитали на нашей планет более 3,5 миллиард лет назад. Теория эволюции дает нам объяснение того, как жизнь началась с одноклеточных бактерий и распространилась на миллионы видов животных, растений, грибов и бактерий. Но откуда взялась первая живая клетка?
Абиогенез — это научная теория, утверждающая, что жизнь на Земле появилась спонтанным естественным путем благодаря существующим в то время условиям. Другими словами, живая материя возникла из неживой.
Абиогенез предполагает, что первые созданные формы жизни были очень примитивными и постепенно становились все более сложными. Биогенезу, в котором жизнь возникает в результате воспроизводства другой жизни, предположительно предшествовал абиогенез, который стал невозможным, когда атмосфера Земли приняла свой нынешний состав.
Ранняя Земля
Представьте себе безжизненную Землю: постоянные извержения вулканов, мощные грозы, кипящие океаны, частые землетрясения и атмосфера с высоким уровнем токсичных газов.
Так как же и почему возникла жизнь в этих условиях? Эта тема интересовала многих ученых, которые хотели найти достоверный ответ на столь важный вопрос.
Теория Опарина — Холдейна
В 20-х годах прошлого века британский ученый Холдейн, Джон Бёрдон Сандерсон и русский биохимик Александр Опарин независимо друг от друга выдвинули схожие идеи относительно условий, необходимых для возникновения жизни на Земле. Оба считали, что органические молекулы могут быть образованы из абиогенных материалов в присутствии внешнего источника энергии (например, ультрафиолетового излучения), и что примитивная атмосфера была с очень низким количеством свободного кислорода и содержала аммиак, водяной пар, водород и метан.
Оба также подозревали, что первые формы жизни появились в теплом примитивном океане и были гетеротрофными (получая предварительно сформированные питательные вещества из соединений, существовавших на ранней Земле), а не автотрофными (синтезирующими питательные вещества из солнечного света или неорганических веществ).
Опарин считал, что жизнь возникла из коацерватов, микроскопических спонтанно сформированных сферических агрегатов липидных молекул, которые удерживаются вместе за счет электростатических сил и, возможно, были предшественниками клеток. Работа Опарина с коацерватами подтвердила, что ферменты, лежащие в основе биохимических реакций метаболизма, функционируют более эффективно, когда они содержатся в мембраносвязанных сферах, чем когда они свободны в водных растворах.
Холдейн, незнакомый с коацерватами Опарина, полагал, что сначала образуются простые органические молекулы, а в присутствии ультрафиолетового света они становятся все более сложными, в конечном итоге формируя клетки. Идеи Холдейна и Опарина легли в основу многих исследований абиогенеза, проводившихся в последующие десятилетия.
Эксперимент Миллера — Юри
В 1953 году американские химики Гарольд Клейтон Юри и Стэнли Миллер проверили теорию Опарина — Холдейна. В своем эксперименте они использовали аппарат с колбой, наполненной водой и химическими веществами, которые, как считалось, существовали на ранней Земле. Ученые обнаружили, что эти химические вещества при определенных условиях спонтанно образуют органические молекулы. Эксперимент предполагает, что органические молекулы могли самопроизвольно образоваться на молодой Земле, став фундаментом для появления первых живых существ.
Некоторые ученые считают, что условия эксперимента Миллера — Юри не соответствовали реальным, но последующие эксперименты с измененной атмосферой показали аналогичные результаты спонтанного образования аминокислот, липидов и нуклеотидов.
РНК пришла первой
В течение многих лет ученые спорили о том, что важнее — ДНК или РНК. ДНК служит основным средством хранения генетической информации. РНК — это рибонуклеиновая кислота, которая может выступать в качестве генетической библиотеки и катализировать реакции. Эта способность делает РНК идеальным кандидатом для зарождения первой жизни на Земле.
Так откуда же взялась РНК? Может ли РНК самопроизвольно образовываться? Сначала рассмотрим структуру РНК, состоящую из четырех нуклеотидных оснований:
Эти четыре нуклеотида являются строительными блоками РНК. Если они могут быть синтезированы самопроизвольно в условиях ранней Земли, тогда можно будет решить большую часть головоломки о том, как зародилась жизнь. И вот, недавно было обнаружено, что некоторые молекулы действительно могут образовывать все четыре нуклеотида в присутствии ультрафиолетового излучения или солнечного света.
Первые клетки
Итак, если органические молекулы и РНК могут спонтанно образовываться, то как насчет клеток? Как создаются клеточные мембраны?
Другие гипотезы
Хотя научные доказательства абиогенеза являются авторитетной научной теорией, некоторые ученые сформулировали другие гипотезы для объяснения происхождения жизни на Земле. Одной из таких гипотез является панспермия, которая утверждает, что жизнь прибыла на Землю из космоса и, следовательно, возникла в других частях галактики. Это интересная гипотеза, но ее трудно проверить.
Подведение итогов
Пролог: структура и организация носителей информации
Прежде чем перейти к химическим реакциям получения органических соединений, мы изучим молекулы, условия абиогенного синтеза которых будем искать большую часть статьи. Нуклеиновые кислоты делятся на дезоксирибонуклеиновые (ДНК) — находятся в хромосомах, митохондриях, хлоропластах, нуклеоидах и рибонуклеиновые (РНК) — транспортирующие генетическую информацию, обеспечивающие синтез белка, регуляцию генов и сплайсинг. При построении нуклеиновых кислот рибоза связывается с одним азотистым основанием, образуя молекулу нуклеозида. Такое соединение, вместе с фосфатными группами, образует уже молекулы нуклеотидов (рис. 1). Из них и строятся нуклеиновые кислоты присоединением новых нуклеотидов, где две фосфатные группы отделяются, а третья входит в состав цепи [3].
Моносахариды рибоза и дезоксирибоза, как компоненты сахарофосфатного скелета, являются альдозами из-за своей открытой альдегидной группы, с формулами С5H10O5 и С5H10O4. Дезоксирибоза отличается от рибозы лишь отсутствием гидроксильной группы, поэтому у неё она заменена атомом водорода.
Производные пурина:
Пиримидиновые производные:
Таблица 1. Азотистые основания
Фосфатные группы, которые обеспечивают образование фосфодиэфирной связи с другими нуклеотидами, представлены солями фосфорных кислот (P-O-P связь) и метиленом (СН2), связывающим фосфатные группы с сахаридами.
1 | Введение: химический состав архея
В начале своего формирования, около 4 миллиардов лет назад, атмосфера планеты пополнялась лишь газами, исходящими из расплавленных геологических структур. При движении магмы в ядре магнитное поле благоприятствовало осаждению карбонатов и сдерживало целостность атмосферы [1]. Барьер из озона, образовавшийся в процессе реакции действия ультрафиолета (фотолиза), создал нужный тепловой баланс к концу архейского эона [2]. В этот период, в атмосфере содержались:
Диоксид углерода (СО2)
Монооксид углерода (CO)
*В атмосфере соединения серы неустойчивы, но при поступлении из глубин, содержание сохраняется.
2 | Введение: первые алгоритмы синтеза — первые проблемы
В начале XX века А. Опарин и Д. Холдейн работали над концепцией коацервата. Их интересовало то, каким образом синтезируется сложная органика при разрядах молний, ультрафиолета и извержений вулканов [4]. Идея частично подтвердилась Г. Юри и С. Миллером. Смесь соединений, имитирующих древнюю атмосферу, запаивалась в замкнутой установке и в колбу с водой пропускали электрический ток. Спустя две недели, на протяжении которых им периодически приходилось наблюдать за реакциями через стекло, они вскрыли колбу и выяснили, что теперь в ней присутствовали аминокислоты, сахара и органические кислоты [5]. Эксперимент показал реальность синтеза сложной органики из более простых химических веществ.
CO2 → CO + [O] (атомарный кислород)
Полученные в вышеописанных реакциях соединения формальдегида, синильной кислоты и аммиака, синтезируют аминокислоты в процессе реакции Штрекера, а вода и формальдегид — рибозу, в процессе реакции Бутлерова. Последующие эксперименты синтезировали производные пурина (таблица 1) и расширили список получаемых аминокислот. Казалось бы, вот же переход от химической эволюции к биологической. Но как это бывает, бронежилет теории не выдерживает обстрела реальности — концепция коацервата имела серьёзные недостатки. Реакция соединения аминокислот в белок или нуклеотиды происходит с выделением воды, и длинные молекулы подвержены распаду [1]. Ещё одной проблемой стал способ размещения вокруг атома углерода связей, которые являются взаимно-зеркальными — хиральными [6]. Аминокислоты чаще представлены левыми изомерами, а рибозы — правыми. Такая характеристика нуклеотидов придаёт спиральную структуру ДНК и РНК, но в синтезе из простых соединений получается равное количество изомеров, поэтому белки такой смеси не способны функционировать.
3 | Теория условий: источники условий для концентрации
Высокое содержание железа, цинка, марганца и меди — особенность живых клеток. Если железа много в неживой природе, то меди с марганцем и цинком — не особенно. Парадоксально, но все они содержатся в клетках в намного большей концентрации, чем во внешней среде. Перечисленные металлы характерны в обильном количестве для гидротермальных источников, с которых мы начнём поиск условий для абиогенного синтеза органических соединений.
Воды источников имеют чёрный цвет благодаря сульфидам, сероводороду и другими взвесям [10]. После контакта с океаном гидротермальные воды охлаждаются, а соединения железа, меди и никеля выпадают в осадок. При дальнейшем остывании вод сульфиды цинка и марганца осаждаются на уже сформированный рельеф.
Сульфиды цинка способны к фотохимическому восстановлению, поглощая ультрафиолет и фосфоресцируя. В таком состоянии возбуждённый электрон восстанавливает соединения диоксида углерода до муравьиной и других органических кислот, а при ультрафиолете восстанавливает азот до аммиака. При этом он защищает органические молекулы от ультрафиолета эффективней слоя воды в десятки метров. Именно поэтому первые организмы могли укрываться в минеральных осадках, имея доступ к продуктам фотохимических реакций [1].
Осадки образуются из мелких частиц и имеют много пор. Подобные условия являются удобными для репликации органики из-за относительной изоляции. Откладывающиеся сульфидные минералы становятся катализаторами химических реакций для синтеза органических соединений [11]. Градиенты температур разделяют хиральные формы соединений. В таких условиях термодиффузии РНК и белки накапливаются в одной локации, например — в вышеупомянутых порах, где происходит концентрация в миллиарды раз [12].
4 | Теория условий: количественные исследования синтеза
Важным веществом клетки является фосфор, содержащийся в фосфорилированных органических молекулах, входящих в состав нуклеиновых кислот, аденозинтрифосфатов и др. Источниками достаточного количества этого вещества являются вулканы и горячие геотермальные источники. Они содержат фосфиты, пирофосфаты, или оксиды фосфора. При растворении эти соединения дают молекулы в пригодной для сахарофосфатов и нуклеотидов форме. В условиях кипения минеральных вод растворённые соединения разделяются, поэтому часть испаряется с водой и выходит в грязевых котлах. В виду подобной сепарации металлов поднимающийся пар магмы содержит бораты, калий, натрий и соли молибдена в концентрации такой же, как в органической клетке.
Проводились исследования с использованием солей бора, где образовывались комплексы 5/6-углеродных сахаров, выпадающие в осадок, и происходило накопление молекул с двумя соседними гидроксильными группами. При добавлении гидроксиапатита в такую смесь на его поверхности откладывается рибоза [18][19], а соли молибдена превращают разветвлённые сахара в линейные, увеличивая синтез. Почувствуйте, как густые и горячие знания стекают вам на шею, ведь грязевые котлы обогащены всеми вышеописанными ранее элементами [15], потому и представляются одними из самых вероятных мест появления жизни, имея несколько преимуществ сразу:
Условия, богатые необходимыми микроэлементами;
Источник тепла с постоянными условиями;
Пористые минеральные осадки, работающие в качестве катализаторов и локации для репликации органических соединений;
Испарение на местах при концентрации веществ, солей и кислот, где происходит образование цепочек РНК;
Несколько путей получения органических молекул;
Фотохимические реакции и расположенные рядом защищённые поры;
Нагрев пор, где накапливаются нуклеотиды и РНК в высоких концентрациях.
5 | Теория условий: лаборатория Манчестера — анализ системы синтеза
В 2008 году вышло исследование об обнаруженных на дне океана колонн из светлого известняка высотой до 60 метров. Из их недр исходила вода температурой около 80°С и содержала соединение гидроксида магния, выпадающее в осадок. Нагрев происходил за счёт реакций в глубине твёрдых пород, поэтому метан и кислоты этих вод образуются абиогенно, а изотопный состав углерода в них такой же, как в углекислом газе [16]. В атмосфере древнего мира метан реагировал с азотом, водой и углекислым газом, образуя формальдегид. Соединения фотолиза метана не накапливались, а выпадали с дождём (рис. 2). Синильная кислота и формальдегид растворимы в воде, поэтому они вымывались и на поверхность поступали формальдегид, цианамид и цианид — являющиеся прекурсорами для азотистых оснований и РНК [17].
Реакция получения нуклеотидов с помощью таких соединений была получена в 2009 году в Манчестере, во время работы Д. Сазерленда и его коллег [20]. Они синтезировали пиримидиновые нуклеотиды путём смешения в одной установке предшественников сахаров и нуклеотидов с фосфатами (рис. 3).
Сейчас придётся хрустеть коркой головного мозга, но чтобы было проще, обратимся к рисунку 3 ниже, который будет иллюстрировать ход реакций. Как можем видеть, первоначальные соединения представлены: цианоацетиленом, цианамидом, глицеральдегидом и гликольальдегидом.
Фосфат в реакции не только облегчает синтез нуклеотидов, подавляя побочные реакции, но и направляет соединение цианамида с гликольальдегидом в сторону аминооксазола. А уже его соединение с глицеральдегидом образует арабинозо-аминооксазолин. В реакции же аминооксазолина с цианоацетиленом снова фосфат помогает реакции — он поддерживает кислотность и создаёт условия для получения арабинозо-ангидронуклеозида.
После, достаточно подогреть реакционную смесь для получения циклического цитидин-монофосфата. Такой раствор освещается ультрафиолетом, чтобы превратить часть цитозина в урацил и избавиться от побочных продуктов. Аналогичным способом получены пуриновые нуклеотиды при добавлении синильной кислоты вместо цианоацетилена. Всего из четырёх простых соединений получаются все нуклеотиды и десять из двадцати белковых аминокислот. Но главное, в реакциях почти не образуется соединений, не встречающихся в клетках. Этот момент станет сюжетной пружиной повествования.
6 | РНК: эволюция информации с помощью репликаторов
7 | РНК: алгоритм отбора палиндромных молекул
Двигаемся дальше. В условиях липидно-нуклеотидного раствора уже рассмотренных грязевых котлов образуются последовательности РНК в 50-100 нуклеотидов. Липиды, к которым мы вернёмся позже, при высыхании образуют слои и длинные цилиндры, где последовательности РНК упорядоченно накапливаются и сохраняют подвижность. При естественном отборе преимущество получают те последовательности, которые служат фрагментами для создания собственных копий — палиндромные цепи РНК [21]. Эта идея А. Маркова превращает необходимость фрагментов в фактор естественного отбора, который может привести к образованию рибозима среди длинных палиндромных молекул. Это частично подтверждает геноцентричный взгляд на эволюцию Ричарда Докинза [22], ведь палиндромный способ упаковки молекул наблюдается и в последовательностях соединений нынешних транспортных РНК.
8 | РНК: вещественный обмен
Обмен веществ у первых органических структур развивался гетеротрофно, от сложных исходных соединений, как рибоза и азотистые основания, к более простым [1]. На начальных этапах РНК были доступны многие активные одноуглеродные соединения:
Муравьиная кислота образуется при фотосинтезе на сульфиде цинка и выносится геотермальными источниками после реакций воды с базальтами.
Формальдегид опадает с дождями, возникая при фотолизе метана.
Угарный газ выделяется в составе газов вулкана.
Все три случая рассмотрены ранее и внимательный читатель вспомнит их, но именно диоксид углерода стал конечным нужным соединением. Хотя его восстановление без качественных катализаторов медленное, мы помним, что при абиогенном восстановлении реакция происходит под действием ультрафиолета или температуры. Выбор между способами использования углерода в обмене веществ зависит от среды. Рибулозо-монофосфатный цикл питаемый формальдегидом [23] похож на древнейший синтез сахаров, а участие муравьиной кислоты в синтезе пуринов (таблица 1), предполагает формирование этой реакции до появления ферментов фиксации диоксида углерода.
9 | РНК: энергия липидной мембраны
Возвратимся к теме липидов. Электроны связей молекулы воды смещены из-за большей электроотрицательности кислорода. Вследствие этого, одна сторона молекулы несёт положительный заряд, а другая — отрицательный [27]. Поэтому вещества с полярными молекулами (гидрофильные) притягиваются и смешиваются с водой, а неполярные молекулы (гидрофобные) — нет [28]. В живых организмах клетки окружены мембраной из двух слоёв липидов, при смешивании их молекул в воде получается эмульсионная взвесь, а не растворение [29]. Наружная сторона мембраны несёт положительный заряд, а внутренняя — отрицательный. Такой электрический потенциал используется при передаче и хранении энергии, а также транспорта веществ вместе с протонами для компенсации заряда мембраны [30][31].
10 | Эволюция РНК: кластеризация вирусов
Каким всё-таки образом ДНК сменила функцию РНК в хранении генома? Реакция превращения рибозы в дезоксирибозу связана с образованием опасных радикалов, поэтому рибозимы не могут её осуществлять. Реакцию проводят ферменты — большие белки, для кодирования которых нужны минимум тысячи нуклеотидов. Между теперешним способом хранения нуклеиновых кислот и миром РНК, были промежуточные формы более простые в получении чем ДНК, но стабильнее РНК [7]. Эволюция предковых образований клеток тесно связана с вирусами. Так, П. Фортер считает главной стадией жизни вируса — её активную часть в заражённой клетке [24]. Вирусы образуют кластеры сочетающие клеточные и вирусные белки, где клетки синтезируют копии вируса при контроле вирусного генома.
Переход РНК к ДНК снижает частоту нарушений копирования, но ошибки в момент перехода возрастают. При этом, смена геномного материала сопровождается преобразованием фермента отвечающего за копирование — полимеразы. Согласно идее П. Фортера, эти реакции происходили в вирусах, а выгодой стало прохождение защитных систем клетки [25].
11 | Эволюция РНК: увеличение количества информации генома
С появлением белкового синтеза в результате отбора, РНК-полимераза сняла с рибозимов обязанность репликации и позволила увеличить количество генетической информации. Белки стали промежуточным звеном построения липидной оболочки, а эволюция плоских структур РНК, превратила их в трёхмерные скопления покрытые мембраной [26]. Независимость от сульфида цинка была ещё невозможна, но появились пузыревидные структуры напоминающие вирусы не только механизмами репликации, но и размерами геномов.
В ходе естественного отбора, вирусы и плоские первоначальные организмы создавали новые типы нуклеиновых кислот: метил-РНК, урацил-ДНК и современную ДНК с тимином [1]. Эти кислоты использовали протоклетки позволяющие увеличивать размер и стабильность генома. Изобретение ДНК и совершенствование её копирования во множестве линий вирусов, привело к обильному разнообразию ферментов работающих с ней. Углубляясь в опыт прошлых глав, можно подытожить — надёжная репликация ДНК знаменует скорое объединение генетических элементов в большие геномы и последующий исход из источников возникновения не заставит себя ждать.
12 | Дальнейшая эволюция: статистика и происхождение эукариот
Остался неразрешённый вопрос перехода количества в качество — о структуре клетки. Форму эукариота поддерживает цитоскелет из тонких и толстых белковых трубочек, а моторные белки перемещают компоненты клетки и обеспечивают её подвижность. Деление и слияние мембран регулируется специальными белками. Благодаря этому, большинство эукариот способны к фагоцитозу — поглощению частиц внешней среды внутрь.
Ещё одними важными органеллами являются митохондрии, которые имеют собственную генетическую систему. Их сходство с аэробными бактериями и пластидами стало первым этапом понимания происхождения эукариот. Пластиды и митохондрии образуются только в процессе деления, указывающего на происхождение от бактериальных симбионтов попавших в цитоплазму [34].
В 2015 году найдены археи близкие к эукариотам во множестве компонентов (рис. 4). Экспедиция, изучавшая геотермальные поля в Северной Атлантике, после сбора осадков населённых бактериями и археями, провела анализ их ДНК. Он показал преобладание в той локации вида архей относящегося к некультивируемой группе глубоководных архей (deep-sea Archaea group) [35]. После сбора и прочтения генома средствами вычислительной биологии, установленный вид оказался ближе к эукариотам, чем все известные ранее. Вид обладает большим набором сигнальных белков, которые в эукариотах регулируют: перестроение цитоскелета, сигналы между мембраной, цитоплазмой и ядром, деление клеток и другие функции.
В ходе эволюции эукариотам пришлось подчинить себе внутриклеточные симбиотические бактерии, вслед за тем, появился новый биохимический путь. После симбиоза с митохондриями аэробное дыхание повышает эффективность использования пищи. Десятки кластеров глубоководных организмов независимо друг от друга приручили бактерии, окисляющие сероводород или метан [1]. Благодаря этому, эукариоты приобрели функции фиксации азота, разложения целлюлозы, синтеза витаминов и пр. Но не надо захлёбываться серотониновой пеной, ведь такой вектор эволюции кажется эгоистичным. Сложно сказать, существуют ли живые организмы только для пользы репликации генома или нет. Но, в сравнении с короткой жизнью всего организма, часть информации нуклеиновых кислот существует невероятно продолжительное время передаваясь при размножении и создавая новую структуру носителя [22].
Заключение:
Нами были описаны места возможного возникновения абиогенного синтеза органических соединений с содержанием нужных для этого веществ. А также на молекулярном уровне разобраны реакции получения органических соединений из простых микроэлементов на примерах работ А. Опарина и Д. Сазерленда. Дальнейшую же эволюцию полученных биомолекул объясняют рассмотренные теории А. Маркова и П. Фортера, которые позже подтверждаются исследованиями в геотермальных полях Северной Атлантики. На протяжении всего текста можно было наблюдать уникальную биохимическую эволюцию и усложнение переносимой информации, закономерности которой описываются лишь свойствами химических веществ.
Литература:
Читайте также: