Вакуум в двигателе причины опель
Двигатель Z16XEP устанавливался в следующие автомобили Astra-G , Astra-H , Vectra-C / Signum ,
Мотор Z16XEP является представителем семейства ECOTEC и устанавливался на автомобили Astra-G, Astra-H. Vectra-C, Meriva .
Z16XEP - бензиновый, 16 клапанный (DOHC) двигатель с изменяемым сечением впускного коллектора (система Twinport ) .
Мотор Z16XEP является потомком двигателя Z16XE.
Двигатель Z16XEP устанавливался в следующие автомобили Astra-G , Astra-H , Vectra-C / Signum ,
Мотор Z16XEP является представителем семейства ECOTEC и устанавливался на автомобили Astra-G, Astra-H. Vectra-C, Meriva .
Z16XEP - бензиновый, 16 клапанный (DOHC) двигатель с изменяемым сечением впускного коллектора (система Twinport ) .
Мотор Z16XEP является потомком двигателя Z16XE.
Впускной коллектор Z16XE, Z16XEP
Впускной коллектор традиционной конструкции и не стоил бы отдельного упоминания , если бы не имел досадный дефект. По мере эксплуатации мотора, крепление внутренних деталей коллектора разбалтывается и издает цокающий звук, который похож на звуки при неисправности гидрокомпенсаторов. Ситуация осложняется тем, что дилеры обычно предлагают замену впускного коллектора в сборе, а это очень не дешевая деталь.
Переменные нагрузки давления воздуха , которые воздействуют на внутренние детали коллектора способны не только расшатать крепление , но и даже сломать детали коллектора. Поэтому если процесс начался , то есть смысл разобрать коллектор и устранить неисправность.
Highslide JS Highslide JS
Вот как описывает процесс ремонта zahar41 - владелец мотора Z16XE .
Ура. Я нашел причину треска и устранил ее, Двигатель шуршит. Хочу поделиться опытом.
Предыстория.
1. Поменял гидрокомпенсаторы
2. ГРМ и роли ки тоже заменены.
В итоге треск (стук) так и остался и шел из впускного коллектора.
Снял впускной коллектор и разобрал его. Если назвать его грязным - это очень мягко сказано - 3 мм кокса на всех стенках. Коллектор состоит из 4-х частей - две внешние и две внутренние половинки, Вся загвоздка крылась во внутренней части верхней половинки коллектора, она крепиться к верхней части двумя болтами по середине, эти два болта, как-бы, создают ось вращения внутренней части, а так как разрежение воздуха в коллекторе большое то в зависимости от того какой цилиндр воздух засасывает внутренняя часть верхней половинки коллектора притягивается ток одному краю то к другому издавая очень громкий стук. Лечится уплотнением всех соединений и стыков, главное убрать люфт внутренней части верхней половины коллектора.
Откручива ете болты 3 и аккуратно вынимаете внутреннюю часть (она на герметике, надо нагреть), в местах 4 между внутренней и внешней частью, я проложил фторопластовые кольца (что бы внутренняя часть не болталась), в места 2 вырезал и приклеил полоски из паронита, что бы убрать зазор между 2-м и 1-м местом. Вся проблема в том, что внутренняя часть люфтит и если поочередно нажимать на места 1 будет видно, что она шатается и стучит по корпусу.
P.S. Естественно надо все намыть, а вторую половину коллектора (большую) надо очень хорошо нагреть просто так она не вытащится. При сборке старый герметик удаляется, а новый наносится на те же места где был старый.
Highslide JS Highslide JS
Вот фрагмент дискусии с сервера astraclub.ru:
Я решил разобраться до конца в этом вопросе и надыбал этот узел твинпорта живьём.На YH менял заслонки неоднократно,поэтому он не понадобился.Никаких общих заслонок,изменяющих длину коллектора там нет.И там,и там перекрывается один впускной канал на каждый цилиндр.Системы аналогичны по принципу действия.Поскольку речь шла за 16хер,напишу о нём.Сам коллектор состоит из двух частей-верхняя,предполагаю, и называется фланцем.В нём смонтированы:рампа форсунок(можно снять отдельно),заслонки(вот их снять без поломки вряд ли возможно-конструкция на вредных стопорах),пневмоклапан с электроклапаном (смонтированы в один узел,находится сбоку-можно демонтировать),далее соответственно ось привода заслонок и датчик положения(типичный ДПДЗ),стоящий отдельно.Разрежение подводится через вакуумную трубку.Нагара там в коллекторе-мама не горюй,а каналы подвода выхлопных газов от клапана рециркуляции вообще как забетонированные.На YH:заслонки меняются,привод меняется(там он смонтирован вместе с датчиком и электромагнитным клапаном в единый узел,а разрежение подводится прям из коллектора через штуцер корпусе привода),соответственно ось заслонок.Всё.Ну и форсунок соответственно нет(оно и понятно-директор).Коллектор цельный в отличие от ХЕР.Общий принцип один и тот же-как говорится,те же яйца,только вид сбоку.На ХЕР обнаружил интересную вещь.Выработка на оси заслонок самая сильная(яйцо) на ближней к пневмоприводу заслонке,тогда как на самой дальней её практически нет.
© RS-232
Часть впускного коллектора X16XEP
С 2006 года, для двигателей Z 10 XEP, Z 12 XEP и Z 14 XEP, датчик положения вихревых заслонок не устанавливается. Датчик служил для выдачи в систему управления двигателем сигнала обратной связи о положении управляющей заслонки.
Из-за отсутствия датчика определить положение управляющих заслонок с помощью системы TECH 2 становится невозможным. С 2006 года неправильное положение управляющей заслонки может быть установлено только по жалобам клиентов или в ходе пробной поездки следующим образом:
1. Автомоб иль двигается рывками в режиме частичной нагрузки
Управляющая заслонка заблокирована в открытом положении
2. На полном газу перестала развиваться полная мощность
Управляющая заслонка заблокирована в закрытом положении
P.S. Очень часто систем у Twinport путают с системой изменения длинны впускного коллектора. Действительно обе системы относятся к классу систем изменения геометрии впускного тракта. Принципиальная разница состоит в том , что в twinport изменяется сечение канала, а в другом случае длинна. Устройство изменения длинны реализовано например в Z18XER. Так же иногда Twinport путают с системой изменения фаз газораспределения CVCP (Continuous Variable Camshaft Phasing). Это две совершенно разные системы, использующие различные принципы управления смесеобразованием. Система CVCP реализована в двигателях Z18XER и Z16XER. Система Twinport реализована в Z16XEP,Z16XE1,Z14XEP,Z10XEP
Вот фрагмент дискусии с сервера astraclub.ru:
Я решил разобраться до конца в этом вопросе и надыбал этот узел твинпорта живьём.На YH менял заслонки неоднократно,поэтому он не понадобился.Никаких общих заслонок,изменяющих длину коллектора там нет.И там,и там перекрывается один впускной канал на каждый цилиндр.Системы аналогичны по принципу действия.Поскольку речь шла за 16хер,напишу о нём.Сам коллектор состоит из двух частей-верхняя,предполагаю, и называется фланцем.В нём смонтированы:рампа форсунок(можно снять отдельно),заслонки(вот их снять без поломки вряд ли возможно-конструкция на вредных стопорах),пневмоклапан с электроклапаном (смонтированы в один узел,находится сбоку-можно демонтировать),далее соответственно ось привода заслонок и датчик положения(типичный ДПДЗ),стоящий отдельно.Разрежение подводится через вакуумную трубку.Нагара там в коллекторе-мама не горюй,а каналы подвода выхлопных газов от клапана рециркуляции вообще как забетонированные.На YH:заслонки меняются,привод меняется(там он смонтирован вместе с датчиком и электромагнитным клапаном в единый узел,а разрежение подводится прям из коллектора через штуцер корпусе привода),соответственно ось заслонок.Всё.Ну и форсунок соответственно нет(оно и понятно-директор).Коллектор цельный в отличие от ХЕР.Общий принцип один и тот же-как говорится,те же яйца,только вид сбоку.На ХЕР обнаружил интересную вещь.Выработка на оси заслонок самая сильная(яйцо) на ближней к пневмоприводу заслонке,тогда как на самой дальней её практически нет.
© RS-232
Часть впускного коллектора X16XEP
С 2006 года, для двигателей Z 10 XEP, Z 12 XEP и Z 14 XEP, датчик положения вихревых заслонок не устанавливается. Датчик служил для выдачи в систему управления двигателем сигнала обратной связи о положении управляющей заслонки.
Из-за отсутствия датчика определить положение управляющих заслонок с помощью системы TECH 2 становится невозможным. С 2006 года неправильное положение управляющей заслонки может быть установлено только по жалобам клиентов или в ходе пробной поездки следующим образом:
1. Автомоб иль двигается рывками в режиме частичной нагрузки
Управляющая заслонка заблокирована в открытом положении
2. На полном газу перестала развиваться полная мощность
Управляющая заслонка заблокирована в закрытом положении
Вакуумная магистраль двигателя внутреннего сгорания довольно редко фигурирует в списках неисправностей. Многие автомобилисты даже не подозревают о её существовании. Между тем, она может доставить немало неприятностей и стать причиной неуверенной работы мотора и тормозов. Рассказываем о типичных симптомах проблем в вакуумной магистрали ДВС.
Наличие вакуумной системы на автомобилях с двигателями внутреннего сгорания объясняется довольно просто. При работе мотора на такте впуска ДВС работает подобно поршневому насосу, создавая разрежение во впускном коллекторе. В картере мотора давление напротив возрастает (газы в небольшом количестве прорываются сквозь зазоры между поршнями и стенками цилиндров). Для уменьшения давления в картере предусмотрена система вентиляции, соединённая с впускным коллектором герметичным шлангом. Разрежение, возникающее в системе впуска, учитывается специальными датчиками и напрямую влияет на работу зажигания и на смесеобразование. Также возникающее в системе разрежение используется для уменьшения давления на педаль тормоза вакуумным усилителем тормозов. При нарушении работы вакуумной магистрали наблюдается множественные проблемы.
Нетрудно догадаться, что неисправности вакуумной системы связаны либо с сильным загрязнением шлангов, которые теряют способность пропускать воздух, либо напротив с их негерметичностью. Разрушение шлангов происходит по естественным причинам (срок службы резиновых изделий относительно мал) — под воздействием высокой температуры и агрессивной среды они ссыхаются, трескаются и рвутся, а изнутри загрязняются продуктами износа двигателя и распада масла. Негерметичность системы приводит к некорректной работе системы зажигания, неуверенной работе двигателя, проблемам с его пуском, снижению мощности и повышению расхода топлива.
1. Горит значок «Check Engine» на приборке
Работой двигателя любого современного автомобиля заведуют так называемые «мозги», считывающие информацию с множества датчиков. Данные о степени разрежения во впускном коллекторе и о расходе воздуха, поступающем в него извне, являются основополагающими для правильной работы мотора. Превышение или падение давления в системе приводит к переключению работы мотора на так называемый аварийный режим. Пиктограмма «Check Engine» может активироваться, в том числе, из-за неисправности вакуумной магистрали. Однако определить это точно можно лишь, подключив к бортовой системе специальный диагностический сканер. Если вы подозреваете, что проблема может быть связана с неправильной работой вакуумной системы, внимательно осмотрите все её шланги. Возможно, их замена решит проблему без визита к специалистам.
2. Неровно работает двигатель
Ещё одним симптомом неисправности является неустойчивая работа двигателя. Это может проявляться всевозможными троениями и провалами, хлопками в выхлопной трубе и вибрациями, передающимися на кузов. Обычно автомобиль сохраняет возможность самостоятельно перемещаться в пространстве, однако езда на нём перестаёт быть комфортной — машина дёргается на ходу. В большинстве случаев неисправность успешно нивелируется «мозгами» автомобиля. Однако двигатель может уйти в аварийный режим, что скажется, в том числе, на расходе топлива.
3. Падает мощность, мотор глохнет
Нарушение работы вакуумной системы нередко приводит к сильному падению мощности мотора или полной его неработоспособности. При загрязнении шланга вентиляции картера внутри двигателя возникает слишком большое давление, что приводит к выдавливанию прокладок и сальников, сильной детонации. При возникновении такой неисправности система защиты может отключить двигатель — автомобиль будет глохнуть. Падение мощности — ещё один симптом неисправности.
4. Возникают «отстрелы» в воздушный фильтр
Неисправность в вакуумной системе может оказывать критическое влияние на систему зажигания — горючая смесь воспламеняется невпопад и не сгорает полностью, что приводит к детонации прямо во впускном коллекторе или в воздушном фильтре. Это может приводить к механической поломке двигателя или системы впуска (нередко коробку с воздушным фильтром срывает с точек крепления, в особо тяжёлых случаях даже повреждается крышка капота).
5. Плохо работают тормоза
На большинстве современных автомобилей разрежение, возникающее во впускном коллекторе, помогает водителю на торможении. Вакуумный усилитель тормозов подсоединён к двигателю шлангом и значительно уменьшает давление, которое нужно прикладывать к педали тормоза. При негерметичности вакуумной магистрали усилитель тормозов теряет эффективность — давить на педаль тормоза приходится значительно сильнее.
Не стоит пренебрегать проверкой исправности нехитрого, но важного вакуумного контура. Это не требует от больших усилий и в большинстве случаев заключается в тщательном визуальном осмотре. Если вы заметили хотя бы один из названных признаков неисправности, проведите диагностику самостоятельно или обратитесь к специалистам.
Двигатель 2.0 CDTI (A20DTH) – итальянский. Разработан на базе фиатовского силового агрегата 1.9 CDTI, о котором мы вам уже рассказывали. Модернизированный 2-литровый двигатель дебютировал в 2008 году на Lancia Delta. С тех пор его устанавливают на огромное количество автомобилей таких марок как Alfa Romeo, Fiat, Jeep, Opel, Saab и Suzuki. Сегодня мы поговорим об этом двигателе на примере агрегата А20DTH, снятого с Opel Insignia.
На нашем YouTube-канале вы можете посмотреть видео с разборкой двигателя Opel 2.0 (A20DTH)
Поршневая группа у двигателей 1,9 и 2,0 разная, т.к. на модернизированном двигателе диаметр цилиндров больше на 1 мм, а ход поршня остался прежним. Разница в рабочем объеме – всего 46 «кубиков» (см. куб.). Также можем упомянуть, что комплект ремня ГРМ большинства версий этого 2-литрового двигателя такой же как и для мотора 1.9 CDTI.
Вообще модификации обновленного 2-литрового турбодизеля для автомобилей концерна GM и Fiat немного отличаются, т.к. в середине 2000-х оба автопроизводителя прекратили сотрудничество. Например, для Opel Insignia был создан битурбированный вариант этого двигателя мощностью 195 л.с. А итальянские инженеры сделали из данного 2-литрового мотора еще и 1,6-литровый (D Multijet).
Выбрать и купить двигатель Опель Инсигния 2.0 (A20DTH) дизель вы можете в нашем каталоге.
Проблемы и надежность двигателя
Двигатель 2.0 CDTI получился хороший, но есть у него одна неприятная особенность, приводящая к проворачиванию вкладышей и заклиниванию. Вот и наш мотор, который мы будем разбирать, тоже дал клина. Проблема и ее последствия кроются в поддоне, поэтому совсем скоро мы вам все покажем и расскажем в подробностях.
Заслонки впускного коллектора
Во впускном коллекторе двигателя 2.0 CDTI не обошлось без заслонок каналов наполнения. Заслонки доставляют неприятности тогда, когда их ход ограничивает скопившаяся в коллекторе гуталиновая масса из сажи и масла. Если ходу заслонок что-то мешает, то фиксируется ошибка P2015, но на работу двигателя она никак не влияет. Такая же ошибка может возникать и случае неисправности сервопривода заслонок: при разрушении зубъев в приводе или при износе щеток электромоторчика.
Канал антифриза во впускном коллекторе
Кроме того, нередко коллектор просто растрескивается. Трещина может образоваться на его впускной части, так и на канале антифриза. В этом случае приходится покупать коллектор целиком. Кстати, его замена очень трудоемкая.
Турбина
Турбокомпрессор Garret с вакуумным управлением геометрией довольно надежен, хотя случаев выхода из строя ее картриджа хватает. Какие проблемы с наддувом и откликами мотора также могут быть связаны с лопнувшим патрубком подачи наддуваемого воздуха и с клапаном сброса давления наддува.
Свечи накаливания
На двигателе 2.0 CDTI встречаются свечи накала двух видов: обычные и с датчиком давления в камере сгорания. Датчик давления полагается двигателям с технологией ecoFlex. По этому датчику блок управления «видит» отклонения в параметрах сгорания топливовоздушной смеси и включает догрев камер свечами накаливания. Такой подход позволяет бороться с образованием оксидов азота.
Течь уплотнительных колец теплообменника
Из теплообменника двигателя Опель 2.0 CDTI (A20DTH), расположенного под масляным фильтром, уже к пробегу в 50 000 – 70 000 км начиналась течь масла. Для устранения течи необходимо менять пару уплотнительных колец.
Топливная система
Вся топливная система, как и на предшественнике – от Bosch. ТНВД и форсунки достаточно надежные и ресурсные, легко ремонтируются. Форсунки электромагнитные, при замене и после ремонта их желательно устанавливать с пропиской IMA-кода. Впрочем, это не обязательная процедура, т.к. топливная система тут самообучаемая и сможет подстроиться под параметры новых или б/у форсунок без прописки.
Регулятор давления топлива
Если обороты холостого хода двигателя 2.0 CDTI начали плавать, возникли проблемы с давлением топлива в рампе, то стоит очистить и продуть регулятор давления топлива, установленный на ТНВД. Во многих случаях именно он является виновником неровного холостого хода.
Клапан EGR
На 2-литровом моторе клапан EGR сложнее, чем на предшественнике. Клапан имеет свойство подклинивать от скопившейся сажи и маслянистых отложений. Если клапан EGR заклинивает в каком-то из положений, то возникают самые различные неполадки: от невозможности запустить двигатель или сильного «троения», до сильного падения мощности. Обычно такие симптомы возникают внезапно и пропадают после перезапуска двигателя.
Корпус масляного фильтра и охладитель
В группу риска входят все моторы 2.0 CDTI, у которых стоит одноконтактный датчик давления. Двигатели с трехконтактным датчиком пока заклиниванием не страдали. Кроме того, для таких моторов можно «активировать» включение показаний давления масла на бортовом компьютере.
Масляный насос и особенность датчиков
До 2013 года на двигателе 2.0 CDTI применялся роторный масляный насос, особенностью которого является саморегулирование. Т.е. производительность такого насоса не зависит от скорости работы двигателя, он всегда развивает необходимое давление масла. Вероятно, инженеры Opel понадеялись на такое свойство масляного насоса и оснащали ранние варианты двигателя 2.0 CDTI всего лишь аварийным датчиком давления масла. По мере проявления проблемы они внедрили трехконтактный датчик, контролирующий давление масла.
На обновленных Opel Insignia с системой Start-Stop устанавливается лопастной масляный насос, производительность которого регулируется соленоидным клапаном.
Причины клина двигателя Opel 2.0 CDTI
Разумеется, причина проворачивания коренных вкладышей и заклинивания двигателя Opel Insignia кроется в масляном голодании. Но вот почему оно происходит? Тут есть разные версии. Самая распространенная причина масляного голодания, о которой говорят и у нас, и в Европе владельцы не только автомобилей марки Opel, но и также владельцы Fiat и Alfa Romeo c 2-литровыми и 1,6-литровыми турбодизелями выпуска до 2013 года – это проседание или разрушение уплотнительного колечка между корпусом маслонасоса и трубкой маслоприемника. Со временем это колечко начинает пропускать воздух из полости картера. Т.е. масло всасывается насосом вместе с воздухом. Это является предпосылкой для возникновения масляного голодания.
2-литровый турбодизель A20DTH может начать голодать медленно, сообщая водителю о низком давлении масла при холодных стартах. Но может просто внезапно заклинить. В большинстве случаев это происходит в трассовых или шоссейных режимах при движении на высокой скорости и обгонах, когда вкладышам не хватает смазки из-за пузырьков воздуха в масле. Рекомендуется менять эту уплотнительную резинку каждые 100 000 км или 3 года, попутно проверяя состояние вкладышей.
Еще одна версия о причинах масляного голодания говорит о том, что в масляном насосе заклинивает редукционный клапан, из-за чего прекращается сброс избыточного давления масла. Из-за этого масляный насос работает на запредельной производительности и «высасывает» из поддона слишком много масла до тех пор, пока не «вдохнет» воздуха. В этом случае моментально страдают колена. Эта версия объясняет, почему 2-литровый турбодизель проворачивает вкладыши во время движения на высокой скорости или при обгонах.
Третья версия говорит об износе самого масляного насоса. Обычно владельцы Opel Insignia с этим мотором, делая профилактику, меняют и уплотнительное колечко на маслоприемнике, и масляный насос. Эти две меры помогают решить проблему с низким давлением масла в двигателе.
Сегодня поговорим о важной системе автомобиля – вентиляции картерных газов двигателя . Некоторые называют ее «легкими» мотора, по мне – анальное отверстие. Почему? – Потому что если за ней не следить, то силовому агрегату, каким бы он не был современным, будет плохо. Сравнимо с вздутием живота у человек, эта проблема тоже может «делать» мозг, если ее не устранять.
Разберем, что это такое и почему она так важна для машины. Что происходит, если запустить ее, не следить за ее работоспособностью. Подробно расскажу, какую роль играет в системе клапан картерных газов.
Что это такое
Во время работы двигателя внутреннего сгорания в камере образуется большое давление. Часть выхлопных газов «прорывается» в зазоре между поршнем и стенкой цилиндра. Они попадают в картер двигателя.
Многие возразят. На поршнях есть компрессионные и маслосъемные кольца, которые должны препятствовать этому. Но зазоры все равно существуют. По мере износа поршневой группы это расстояние увеличивается. Особенно это сильно проявляется у автомобилей с пробегом.
Кроме выхлопа в картер могут попасть пары бензина или само топливо, если дает сбой топливная система или зажигание. Вентиляция картерных газов служит для выведения продуктов сгорания топливно-воздушной смеси.
Какие проблемы могут возникнуть
- Газы смешиваются с маслом. Оно меняет свои физические свойства. Это негативно скажется на ресурсе мотора;
- Внутри двигателя создается избыточное давление. Это приводит к «выдавливанию» прокладок, сальников. Где есть слабые места в уплотнениях, там будут подтеки масло, масляное запотевание.
Часто на старых авто можно заметить потеки через сальник коленвала, прокладку клапанной крышки. В худших случаях, давление приподнимает масляный щуп.
Поэтому, мы должны удалять эти газы из картера двигателя. Если у вас раздуло живот, вам кажется, что сейчас лопните. Так же и мотор. Ему нужно «пропердеться», извините за выражение. Если он этого не сделает, то вы потратитесь на ремонт и постоянную доливку масла.
Конструкция
В современных автомобилях система вентиляции картерных газов имеет более сложное устройство. Она состоит:
- Патрубков, шланг;
- Маслоотделителя;
- Клапана.
Маслоотделитель
Предназначен для отделения паров масла от газов. Это нужно, чтобы не засорять впускной коллектор, его элементы маслом. Тем более, попадание его в цилиндры во время сгорания топлива ничего хорошего не принесет, нарушается качество топливной смеси и т.д.
Бывают двух типов:
- Тангенциальный или центробежного типа;
- Лабиринтовый.
Первый тип имеет форму конуса или цилиндра. Имеет два патрубка вверху и один внизу. В верхней части к маслоотделителю подсоединяются шланги с картера двигателя к одному входному штуцеру. Второй выходной – это выход, к нему крепится шланг, отводящий газы без масляных паров к клапану вентиляции. Нижний патрубок – слив отделенного масла в маслоприемник (картер).
Принцип работы
Картерные газы поступают в маслоотделитель во входной патрубок. В корпусе им задается тангенциальное движение, они закручиваются по спирали относительно центральной оси отделителя. За счет центробежных сил и того, что масло тяжелее газа, первое оседает на стенках прибора. Газы поднимаются вверх и через выходной штуцер идут дальше по системе. Масло стекает вниз, возвращаясь в мотор.
Клапан вентиляции картерных газов
Он нужен для контроля подачи выхлопных газов из картера во впускной коллектор двигателя. Так как там образуется большое разряжение, то через систему патрубков может создаваться вакуум в картере двигателя. Значит, еще больше газов будут пробиваться в картере. Плюс ко всему, вероятность «засосать» пары топлива в картер увеличивается в разы.
Принцип работы
Клапан, в зависимости от нагрузки двигателя, открывается, при маленьком разряжении в коллекторе и закрывается при большом. Давление в картере мотора повышается, клапан приоткрывается. Газы «высасываются» во впуск, снижая давление. Если создается вакуум, то клапан закрывается, перекрывая отсос газов из картера во впускной коллектор. Так регулируется подача выхлопных газов через систему вентиляции картера двигателя, поддерживается небольшое разряжение. Более подробно смотрите на видео:
Как проверить?
Первый способ простой – визуальный. Если появились подтеки масла, запотевания в местах сальниковых уплотнителей, пора проверять систему вентиляции картера.
Второй способ . Открываем крышку маслозаливной горловины. Запускам двигатель и прикладываем ладонь к ней. Если чувствуется рукой повышенное давление, то система дает сбой. В печальных случаях можно наблюдать сизый дым из горловины. Если клапан вентиляции заклинил в открытом положении, то слышно шипящий звук или присасывается ладонь, то есть через нее засасывается воздух в картер ДВС. Такой же эффект можно наблюдать, если вытянуть щуп проверки уровня масла.
Попробую перевести некоторую информацию, а точнее про вакуумные проблемы. Насколько слыхал, похожая вак. система на Вектрах и Зафирах.
Тут фото использoвал из разных сайтов (надеюсь суть поймёте).
Когда выходит из строя чего-нибудь из вакуумной системы- пропадает тяга (горит лампочка check engine ) .
Конечно, сперва надо диагностику делать, ошибкa в данном случае бывает одна из этих
Если по диагностике не находим точно где причина, то :
1. Проверяем клапан EGR.
снимаем верхнюю пластиковую крышку мотора
снимаем с EGR клапана вакуумную трубочку
откручиваем два болтика которые держит EGR клапан
вынимаем клапан (на фото видно что он загрязнён- так не должно быть, надо очистить его: примерно так (внутренность чистить с химией нельзя)
Проверяем его: нажимаем на металлическую часть клапана и пальцем зажимаем мет. трубку (на которую надевается вакуумная трубочка)- после отпускания мет. части клапана он не должен вернутся в исходное положение (вернутся должен лишь тогда, когда палец снимем с мет. трубки).
Или другой вариант проверки- просто натянуть воздух через мет. трубку (на которой вак. шланг надевается), если воздух проходит, значит EGR клапан испорчен.
У меня "пластиковый" EGR клапан, так я его отреставривовал
Ещё надо обратить внимание, на то что рабочая (верх- в низ) часть клапана может немного шатается в стороны, но были случай, когда писали одноклубники в форуме, что шаталась слишком много, а из того неплотно прижималась к отверстию коллектора (пришлось менять)
----------------------------------------------------------------------------------------------------------------------
2. если с EGR клапаном всё в порядке- очищаем его (внутри клапана очищать с химией нельзя, а то мембрана расплавится) и ставим на место. Ещё надо обратить внимание (почистить если надо) на внутренность коллектора- на который ложится рабочая (верх- в низ) часть EGR клапана.
----------------------------------------------------------------------------------------------------------------------
3. Ещё одна причина: порванные вакуумные трубки, соединение трубок, а также "тройники". Рассказывал уже не один одноклубник, что именно по этим причинам загоралась лампочка "check engine" и пропадала тяга автомобиля.
----------------------------------------------------------------------------------------------------------------------
4. Если причины найти не удалось, может быть проблема в вакуумном насосе. Сколько читал в форумах, показания насоса на дизеле должны быть около 0,8 bar. Как самому проверить не знаю, наверное без сервиза тут не обойтись.
----------------------------------------------------------------------------------------------------------------------
5. Далее, может быть неисправен один из трёх вакуумных соленоидов. В каждый соленоид приходит ел. фишка и по две вакуумные трубки, причём вакуумные трубки приходящий из вак. насоса втыкается ближе к центру соленоида
Нигде не нашёл урока, как проверить этот соленоид и каков принцип действия его (буду благодарен если кто напишет). Читал лишь в форумах, чтобы убедится исправен ли соленоид, можно проверить, меняя их местами (они все одинаковые).
Вот как выглядет на моей машине:
1. соленоид который управляет клапаном турбины
2. клапан который управляет турбиной
3. вакуумный насос
4. соленоид который управляет клапаном заслонки во впускном колекторе
5. соленоид который управляет EGR клапаном
6. клапан, который упровляет заслонкой во впускном колекторе
7. EGR клапан
Внимание , рассказывали одноклубники что у других соленоиды управляет другими клапанами. разобраться что управляет соленоид очень просто- надо лишь проследить, куда идёт вакуумная трубочка (от соленоида до клапана).
----------------------------------------------------------------------------------------------------------------------
] 6. Если с соленоидами всё в порядке, дальше нужно проверить сами клапана (которыми управляет соленоиды). Сколько рассказывали одноклубники проверить их можно потянув воздух в себя (от себя), если воздух проходит, значит неисправен (надо менять)
Подсос воздуха во впускном коллекторе довольно частое явление и симптомы данной неисправности проявляются в нестабильной работе двигателя. Мотор начинает трясти или плавают обороты. В данной статье рассмотрим, как найти подсос воздуха в двигателе и какой инструмент для этого нужен.
Как проверить подсос воздуха в двигателе
Найти подсос воздуха будет затруднительно, если под рукой нет специального прибора, показывающего утечки. Один из таких приборов называется дымогенератором, диагностика им упрощается в разы и стоит не так дорого.
Раньше подсосы воздуха определяли на глаз. Проливали жидкость на впускной коллектор, во время работы мотора и смотрели пузырьки. Если имеется большой опыт работы с данной маркой автомобиля, то можно применять такой способ. Минусом является то, что во время работы мотора жидкость, пролитая на коллектор, будет еще и бурлить от температуры и можно ошибиться. Если в этот момент двс трясет ситуация осложняется. При незначительной потере герметичности данный вариант проверки может не помочь.
На карбюраторе подсос воздуха можно проверить, закрыв рукой или тряпкой сверху, сняв предварительно корпус с фильтром. Если двигатель заглохнет, то утечек нет. Если же продолжает работать, то подсос воздуха есть и его нужно устранить. Как правило, на карбюраторе ведет по плоскости нижнюю пластину, которая затягивается с коллектором. Ее можно шлифануть или заменить на новую. Этой процедуры хватает для определения не герметичности карбюратора.
Вернемся к современным машинам, где проверка подсоса воздуха может затянуться по времени и обнаружить утечку бывает не просто. Основной принцип выявления утечек по воздуху в двигателе — подать дым во впускной коллектор, который и будет выходить там, где есть трещина, не плотно затянутая шпилька или порванная резинка. Проверка двс дымогенератором занимает некоторое время и проходит в несколько этапов:
Дымогенератор можно использовать не только для диагностики авто и воздушных систем. А также для поиска утечек в матрасах, надувных бассейнах и тд.
Таким образом, дымогенератором легко сделать проверку подсоса воздуха. Это очень важная и удобная процедура для поиска неисправностей в двигателе. Многие диагносты задаются вопросом про коррекции топлива при подсосе воздуха. Это один из общих показателей на сканере и может говорить не только об утечке, но и о низкой компрессии, смещённых фазах газораспределения.
Существуют другие способы проверки дымом на подсос воздуха. Один из них с помощью сигареты. Есть даже специальный инструмент для этого. Он представляет собой пистолет для компрессора с внутренней обоймой, в которую заходит сигарета. При нажатии на курок пневмо пистолета папироса раскуривается и выдает обильный дым. Минус такого способа в том, что она очень быстро выгорает и может не хватить времени уловить подсос воздуха в двигателе и инжекторе. Но и такой вариант проверки подсоса воздуха сигаретой имеет место быть.
Определить подсосы воздуха в любом двигателе можно дедовским методом, с помощью пролива жидкости на впускной коллектор и область форсунок. Или вариант с сигаретой, но все эти методы не точны и не удобны.
Сама дым машина стоит не малых средств. Поэтому, если ваш двс трясет или плавают обороты езжайте в сервис, где есть дымогенератор. Там вам точно помогут выявить причину без лишних затрат.
Сколько стоит проверка на подсос воздуха
Средняя цена за проверку 400 рублей. Все зависит от марки автомобиля и соответственно сложности проведения процедуры. Как правило достаточно найти входной штуцер во впускном коллекторе и соединить к нему шланг подачи дымогенератора.
Основные симптомы подсоса воздуха
Разберемся как же влияет подсос воздуха на работу двигателя, и определим признаки и последствия утечек в характерных местах инжектора.
В первую очередь подсос вызывает плавание оборотов двигателя. Система регулирования холостым ходом и смещение угла опережения зажигания не справляется при попадании излишней воздушной смеси. Для стандартного мотора стехиометрический состав смеси должен быть 14,7:1. Соответственно нарушив данный показатель в сторону увеличения воздуха, смесь не сгорит полностью. Это влечет за собой дисбаланс в работе цилиндров и плавание оборотов.
Последствия подсоса заключаются в несбалансированной работе двигателя, что влечет за собой повышенный износ поршней, цилиндров, шатунно-поршневой группы, клапанного механизма. Происходят не равномерные толчки, которые могут разрушить компоненты мотора. Также увеличивается расход топлива на холостом ходу.
Если двигатель трясет, но автомобиль едет нормально и набирает свою мощность, без провалов и рывков, то скорее всего где-то сосет воздух. При нажатии педали газа дроссельная заслонка открывается настолько, что в мотор попадает достаточное количество смеси для поднятия оборотов и маленький свищ из-под резинки форсунки уже не существенен. Поэтому подсос никак не влияет при разгоне и проявляется только на холостом ходу.
Часто бывает так, что сосёт воздух на холодную. Старые изношенные прокладки могут деформироваться в зависимости от температуры.
Симптомы подсоса воздуха во впускном коллекторе
Впускной коллектор предназначен для подготовки топливо – воздушной смеси и доставки ее до камеры сгорания двигателя. Как уже говорилось ранее смесь должная быть 14,7:1. Лишние утечки будут мешать смеси полностью сгореть.
Соответственно впускной коллектор, а вместе с ним ресивер и остальные навесные трубки должны быть герметичны. Как правило нарушение происходит при неправильной затяжке шпилек на коллекторе, прогаре прокладок, трещин в металле. Если автомобиль эксплуатируется на газу происходят хлопки во впуск и прокладки не выдерживают, появляются свищи.
Во многих случаях поиск неисправности, связанной с утечками, вызывает затруднения только лишь из-за отсутствия дымогенератора.
Найти подсос воздуха во впускном коллекторе можно разными методами:
- Проливкой на впускной коллектор жидкостью. Метод имеет много минусов и не точный.
- Дымогенератором для проверки герметичности. Самый действенный способ проверки впуска и имеет 100 % гарантию поиска подсоса воздуха. При данном методе можно проверить все предполагаемые места возможных утечек.
- Косвенно прочитав параметры по сканеру и определить в какую сторону, сместилась топливоподача и показания датчика кислорода.
Признаки подсоса воздуха во впускном коллекторе и влияние на работу мотора
- Проявляется на холостом ходу. Двигатель троит, но хорошо набирает обороты: без провалов и рывков.
- Могут быть зависания и скачки оборотов.
- Частые заглохания.
Признаки подсоса воздуха через патрубок воздушного фильтра (воздуховода)
- Повышенный расхода топлива
- Двигатель глохнет, особенно если стоит ДМРВ
- Плавание оборотов
- Несбалансированная работа двс
Как устранить подсос воздуха во впускном коллекторе
Ремонт впускного тракта сводится как правило к банальной замене резинок или прокладок. Но бывают случаи, когда лопается сам коллектор. Тогда лучше заменить на исправную деталь, так как трещины могут быть внутри.
Частым явлением может быть негерметичность патрубков или самого абсорбера. В этом случае его легче заглушить и полностью убрать. Абсорбер — угольный фильтр, служит для очистки паров бензина с бака.
Негерметичность воздуховода устраняется заменой самого патрубка.
Симптомы подсоса воздуха через форсунки
На бензиновых форсунках есть два сальника — снизу и сверху. Который около сопла вставляется в коллектор, а другой в рампу. Обе резинки очень важны и обязаны быть в исправном состоянии. Быть, как говорится резиной, а не пластмассой. Иначе возможен подсос воздуха или течь бензина через форсунку. Второе намного опаснее, тем более если выпускной коллектор находится под впускным.
Признаки подсоса воздуха через форсунки — это нестабильная работа двигателя. Излишний воздух попадает непосредственно в камеру сгорания. К примеру, если на третьей форсунке задубела или замята нижняя резинка, этот цилиндр и будет троит на холостом.
Проверить подсос желательно также дымогенератором. Будет хорошо виден дымок, исходящий из-под нижней части форсунки.
Уплотнительные кольца форсунок имеют свои особенности для каждой марки автомобиля. Имеется ввиду размер и диаметр. Поэтому внимательно подходите к выбору запчастей.
Такая неисправность очень часто встречается на автомобилях, в которых, выпускной коллектор находится под впускным. Соответственно происходит постоянный нагрев уплотнительных колец, а зимой еще и резкое охлаждение. Резина быстро дубеет и начинает пропускать.
Симптомы подсоса воздуха через вакуумный усилитель тормозов
Признаки утечек в системе шланг – вут в нестабильной работе двигателя, или же он глохнет сразу после запуска. Смотря какой величины, утечка.
Проверить вут — вакуумный усилитель тормозов на подсос воздуха очень просто. Достаточно снять шланг, соединяющий его с впускным коллектором, заглушить штуцер на ресивере двигателя и завезти мотор. Если симптомы ушли значит дело в нем.
Если вут неисправен и идет подсос воздуха, то его нужно заменить на новый. Ремонтировать такую деталь бесполезно и дороже, так как это тормозная система и ваша безопасность.
Подсос воздуха в вакуумном усилителе тормозов легко найти с помощью не замысловатого прибора под названием дымогенератор. Часто бывает, что сосет наружу с корпуса вут в местах стыка.
Вакуумник важная деталь в автомобиле. Из-за него могут стать твердыми тормоза, не завезтись двигатель или троить.
Симптомы подсос воздуха через дроссельную заслонку
Дроссельная заслонка представляет собой узел, включающий в себя саму заслонку, которая открывается при помощи тросика газа или электрического импульса от педали. Также внутри нее есть байпасный канал, через который проходит воздух минуя заслонку, когда она закрыта в режиме холостого хода. Поток через этот обводной канал управляется регулятором холостого хода в случае с механическим дросселем. Если узел электронный, то поток регулируется самой заслонкой.
Хлопки от газового оборудования приводят к поломкам заслонки и увеличения щели до корпуса дросселя, что вызывает повышение холостых оборотов.
Симптомы подсоса воздуха в выпускном коллекторе
Трещины, прогары в выпускном тракте довольно частое явление. Шпильки часто ломаются, соответственно в этом месте подсасывает воздух. С виду, когда глушитель ревет, двигатель вроде работает ровно, но есть некоторые нюансы.
В современных инжекторных автомобилях, двигатели оснащаются катализаторами. Для их защиты стоят датчики кислорода, которые улавливают в выхлопных газах уровень кислорода и сравнивает его с атмосферой. Соответственно при подсосе воздуха через выпускной коллектор лямбда зонд будет видеть большее количество кислорода. Для системы управления двигателем это означает бедную смесь и соответственно увеличивается время впрыска форсунок, дабы поддержать нормальное горение смеси.
Таким образом, один из первых признаков подсоса воздуха через выпускной коллектор — это повышенный расход топлива и потеря тяги.
Проверить утечку в выпускной системе также возможно с помощью дымогенератора. Но как правило, свищи и так хорошо слышны при работающем двигателе и при увеличении оборотов.
Проверка выхлопной системы двигателя дымогенератором актуальна, когда утечка незначительна, но влияет на работу авто. Также, когда установлена турбина.
Подсос воздуха через масляный щуп
При диагностике утечек дым часто проявляется через масляный щуп. Это нормальное явление, так как дым проходит через впускной тракт, попадает в камеру сгорания, затем спускается под давлением вниз в картер через поршневые кольца и там уже уходит через канал сапуна или щуп.
На что влияет подсос воздуха из свечных колодцев
Подсос воздуха в топливную систему
Подсосы из бака могут влиять через систему адсорбера. То есть лишний воздух берется из бака и проходит напрямую во впускной коллектор через адсорбер и шланги. На саму топливную систему бензиновых двигателей никакого влияния не оказывает, в отличие от дизельных. Проверить топливную систему на утечки можно также дымом.
Подсос воздуха через вентиляцию картерных газов
Влияние такого вида подсоса разное в зависимости от конструкции вентиляции картерных газов. Есть простые системы вентиляции и на них мелкие подсосы на шлангах особо не влияют. Что же касается систем с редукционным клапаном, то там подсос существенно влияет на продувку картерных газов. Она попросту перестает работать, масло попадает в камеру сгорания и выгорает через глушитель. На многих авто редукционный клапан вентиляции картерных газов стоит в клапанной крышке. И если он приходит в негодность — лопается мембрана, отток не происходит, двигатель трясет, и сама крышка издает характерный свист. В таком случает нужно заменить мембрану, либо крышку.
Частое явление отечественных автомобилей — это подсос воздуха из трубки сапуна и шланг вентиляции картерных газов. Особо влияние не оказывает, так как система прямая и работает только лишь от разряжения малого круга.
Подсос воздуха через сальник коленвала
Симптомы такого подсоса проявляются как правило в тряске двигателя. Воздух попадает через задний сальник коленвала, со стороны коробки передач. Утечка оказывает влияние на впускную систему через канал вентиляции картерных газов. Как правило лечится заменой сальника.
Подсос воздуха гбо
В газобаллонном оборудовании очень много комплектующих через которые может идти подсос воздуха. К примеру, со шлангов, переходников, редуктора. Причем утечки с гбо влияют на работу двигателя не только на газе, но и на бензине.
Как сделать дымогенератор для проверки подсоса воздуха своими руками
Дело в принципе не хитрое. Достаточно под рукой иметь пачку сигарет, герметичный контейнер для пищи, пару шлангов и самодельный дымогенератор готов. Такой прибор можно использовать даже для профессиональной диагностики автомобилей.
В контейнере вырезаем два отверстия и герметично вставляем в них два шланга. В один из низ соединяем автомобильный компрессор или любой другой. А в другой шланг изнутри контейнера засовываем сигарету и подключаем к ресиверу впускного коллектора. Закрываем герметичную крышку. Дым от дымогенератора будет показывать утечки впуска на авто.
Таким образом, в домашних условиях своими руками можно определить подсос воздуха.
Такой приборчик для диагностики авто тоже будет стоить средств. Надо купить контейнер, шланги, хомуты, компрессор для подкачки шин. Все это выйдет в копеечку и пользоваться таким способом поиска подсоса воздуха стоит в крайнем случае.
По – возможности для проверки надо ехать к спецам, у которых есть профессиональный прибор. Заплатив порядка 300 рублей, узнаете, где нет герметичности на вашем авто и тут же устраните.
Как устранить подсос воздуха
Все зависит от места утечки.
- Если утечка между ресивером и коллектором, то заменить прокладку.
- С форсунок — заменить резиновые колечки
- С вут — заменить усилитель тормозов или шланг с клапаном.
- С адсорбера — убрать всю систему или же обновить.
- Через дроссельную заслонку — если не влияет на работу двигателя можно не трогать.
Устранение подсосов воздуха не вызывает особых затруднений, главное найти само место утечки.
Для чего предназначена система вентиляции картера двигателя, понятно из ее названия. Но почему картер необходимо вентилировать? Как показывает практика, точность ответа на этот вопрос сильно зависит от того, приходилось ли раньше тому или иному владельцу сталкиваться с проблемами, которые система вентиляции способна создавать. Если не приходилось, случается, что о том, из-за чего картер нуждается в вентиляции, равно как и том, как она реализуется, автовладелец может и не догадываться.
Все упирается в прорыв газов в картер. Как бы ни были хороши поршневые кольца, полную герметизацию пространства над поршнем, где происходит рабочий процесс, они обеспечить не могут. В результате под действием высокого давления из надпоршневого пространства в картер проникают не только продукты сгорания горючей смеси, но на такте сжатия и некоторая часть самой горючей смеси.
Если прорвавшиеся газы не отводить, давление в картере повышается, в результате чего картерные газы способны выдавить щуп масломера с последующим выбрасыванием масла из двигателя в моторное отделение и вызвать появление течей масла по прокладкам и сальникам. Вентиляция обеспечивает выравнивание давления в картере с атмосферным давлением, что позволяет избежать этих негативных последствий прорыва газов. Это и есть основная причина оснащения любого двигателя вентиляцией картера.
Однако в целую систему PCV (Positive Crankcase Ventilation) вентиляция превратилась благодаря экологии. Картерные газы токсичны. Поэтому широко применявшаяся некогда вентиляция с помощью сапуна с вытяжной трубкой, отводившей газы из картера прямо в атмосферу, примерно с середины 1960-х годов была запрещена сначала в США, а затем и в Западной Европе.
Сейчас сапуны открытого типа можно увидеть лишь на коробках передач, раздаточных коробках и других агрегатах, где их наличие обусловлено способностью воздуха от нагрева во время работы агрегата расширяться, из-за чего увеличивается давление внутри узла, что также чревато выдавливанием уплотнений и появлением течей.
В закрытых системах вентиляции, коими оборудованы все современные моторы, картерные газы отводятся во впускной коллектор, после чего возвращаются в цилиндры двигателя. Закрытые системы не сообщаются с атмосферой, а стало быть, не загрязняют окружающую среду углеводородными соединениями - несгоревшим топливом, продуктами неполного сгорания топлива, масляными парами, которыми насыщены картерные газы, а позволяют им с пользой догореть в цилиндрах.
Но только этим достоинства закрытой вентиляции не ограничиваются. Открытая вентиляция работала за счет разряжения, возникающего у среза вытяжной трубки, однако обязательным условием создания достаточного для интенсивной вентиляции разряжения было движение автомобиля - чем быстрее, тем разряжение выше. Работу закрытых систем обеспечивает разряжение во впускном коллекторе, поэтому вентиляция начинает функционировать сразу же с запуском двигателя. При этом небольшое разряжение создается и в картере, что повышает надежность уплотнений.
В недостатках - усложнение конструкции двигателя. Закрытая система вентиляции требует наличия каналов в блоке и головке цилиндров, а также патрубков и шлангов, по которым циркулируют картерные газы.
В картерных газах присутствует масляная взвесь, которую во избежание высокого расхода моторного масла на угар и загрязнения узлов системы питания, находящихся во впускном тракте, необходимо отделять. Поэтому должен быть предусмотрен маслоотделитель, иногда также называемый маслоуловителем, или маслоотстойником, и каналы, по которым собранное масло возвращается в поддон.
Помимо этого, сообщение картерного пространства с впускным коллектором оказывает влияние на работу двигателя по причине снижения разряжения в коллекторе и добавления к воздуху, поступающему в цилиндры двигателя, того или иного количества картерных газов, которое существенно изменяется в зависимости от режима работы силового агрегата.
Наконец, для нормального функционирования системы вентиляции требуется подвод свежего воздуха в картерное пространство, иначе вместо повышенного давления в картере, с которым вентиляция призвана бороться, возможен обратный эффект - чрезмерное разряжение.
Это общие положения, относящиеся к системам вентиляции, но что касается их исполнения на том или ином двигателе, то тут, как говорится, сколько производителей, столько и вариантов. Кроме того, на исполнение влияет экологический класс силового агрегата, тип двигателя - бензиновый или дизельный, наличие турбонаддува.
Например, маслоотделители могут быть встроенными в двигатель и при этом располагаться внутри клапанной крышки либо в блоке цилиндров, а могут быть выполнены как отдельный узел, расположенный на моторе.
В маслоотделителях используются лабиринтные и инерционные принципы улавливания масла. В первом случае поток картерных газов движется по каналам, резко изменяющим направление. При этом капельки масла оседают на стенках лабиринта, затем объединяются в крупные капли и стекают вниз, где попадают в сливные каналы и возвращаются в поддон двигателя.
В маслоотделителях центробежного типа капельки масла под действием сил инерции отбрасываются и прилипают к стенкам, а далее опять-таки стекают вниз.
Способы согласования работы системы вентиляции с работой двигателя тоже бывают разными. В карбюраторных моторах, двигателях с моновпрыском и нередко при распределенном впрыске вопрос решался с помощью двух каналов подвода картерных газов, один из которых выводили перед дроссельной заслонкой, а второй, заканчивающийся калиброванным отверстием (жиклером), - за ней. При работе на холостом ходу газы поступали по каналу с жиклером за дроссельной заслонкой, но когда по мере открытия дроссельной заслонки и увеличения оборотов коленвала разряжение за заслонкой уменьшалось, но количество газов, прорвавшихся в картер, увеличивалось, из-за чего этот канал переставал справляться со своими обязанностями, в дело вступал первый канал.
Однако наибольшее применение получили клапанные системы регулирования. В них проходное сечение в трубопроводе подвода картерных газов изменяется с помощью клапана в обратной зависимости от разряжения во впускном коллекторе - чем сильнее разряжение, тем меньше проходное сечение клапана и наоборот.
Клапаны PCV в свою очередь бывают золотниковые и мембранные. С точки зрения более точного дозирования количества картерных газов мембранные считаются лучшими, но, впрочем, это не так уж и важно. Важно, что неисправность клапана ведет к нарушению состава горючей смеси. Отсюда начинаются проблемы, которые в эксплуатации способна создавать вентиляция картера.
Клапаны, как известно, могут потерять подвижность или, говоря проще, заклинить в каком-то положении. У мембранных клапанов сомнение вызывает также надежность и долговечность материала мембраны. Заклинить клапан может из-за засорения. В картерных газах присутствуют мелкодисперсные частички сажи и нагара. Чем хуже техническое состояние двигателя, тем их больше. Опять же в мелких капельках масла могут находиться еще более мелкие инородные включения. Чем хуже обслуживается двигатель, тем включений больше. Эта грязь откладывается не только в клапане PCV, но и в калиброванных отверстиях, патрубках системы вентиляции. Опять же патрубки могут прорваться - их материал отнюдь не вечен.
Коварство системы вентиляции заключается в том, что неполадки в ней могут не оказывать сильно заметного влияния, а если и начинают сказываться уменьшением мощности, увеличением расхода топлива, слишком быстрым загрязнением дроссельной заслонки, регулятора холостого хода, замасливанием воздушного фильтра и прочими проблемами, то их списывают на неисправности других систем, прежде всего систем питания и зажигания.
По словам специалистов, некоторые модели двигателей, отвечающих экологическим требованиям от Евро-4 и выше, при неполадках с вентиляцией способны «свалиться» на работу в аварийном режиме, однако и при этом компьютерная диагностика не указывает на истинного виновника. Поэтому чаще всего лишь когда система засорилась настолько, что картерным газам не остается ничего другого, как выдавить щуп масломера и выгнать масло из двигателя, на вентиляцию наконец-то обращают внимание.
Но в зимний период эксплуатации вентиляция способна на настоящие подлости. Ко всему прочему в картерных газах содержатся водяные пары. Откуда им взяться? Из атмосферного воздуха, поступающего в двигатель, разумеется.
Перемещаясь по системе, пар может конденсироваться в «закоулках», после чего при низких температурах окружающей среды влага изменяет агрегатное состояние, превращаясь в лед. Он в свою очередь закупоривает какое-то «узкое место» системы. Картерным газам опять-таки не остается ничего другого, как выдавить щуп масломера и начать выгонять наружу моторное масло. Причем если засорения системы вентиляции нагаром при исправной работе силового агрегата и его своевременном обслуживании качественными расходными материалами можно ждать бесконечно долго, то обмерзание - вопрос очень короткого времени.
Проблема обмерзания известна разработчикам двигателей, о чем свидетельствует наличие встроенных в систему вентиляции обогревов. На приведенной выше схеме системы вентиляции дизелей 1.6 и 2.0 TDI Volkswagen функцию обогрева выполняет нагревательный резистор. К сожалению, нередко этими обогревами оборудуется вентиляция картера только тех моторов, которые предназначены для автомобилей, продающихся в странах с холодным климатом, - так называемое северное исполнение. Если подогрев не предусмотрен или он неисправен - жди сюрпризов.
И опять-таки, к сожалению, не во всех инструкциях по эксплуатации есть указания по уходу за системой вентиляции картера. Он должен заключаться в периодической очистке полостей вентиляционных шлангов, маслоотделителя, калиброванных отверстий и других узких мест в системе.
При этом обслуживание системы в существующих указаниях по уходу рекомендуется проводить одновременно с очередной заменой масла в двигателе либо через одну замену. Однако как часто подобные рекомендации используются на СТО, в гаражах, владельцами, самостоятельно обслуживающими свои машины? Как в такой ситуации говорят философы, вероятность есть всегда, в данном случае она равна нулю.
Сергей БОЯРСКИХ
Фото автора
ABW.BY
Благодарим за помощь в организации фотосъемки Ресурсный центр на базе автомеханического колледжа имени академика М.С.Высоцкого
Читайте также: